历年自主招生考试数学试题大全-2010年上海复旦大学自主招生数学试题(答案不全)+Word版含答案
- 格式:doc
- 大小:372.92 KB
- 文档页数:7
复旦自主招生试题及答案一、语文部分阅读理解:1. 阅读下面短文,回答问题。
(1)张謇(1854-1926)是中国现代教育家、政治家、社会活动家和思想家。
张謇曾于光绪十九年(1893年)中策划创办私立南洋公学,为中国留学生出国深造提供了机会,也为中国教育事业的发展做出了巨大贡献。
(2)南洋公学的创建者张謇,生于一般家庭,自小勤奋好学。
他上学时就常常帮助同学,与人为善,仗义疏财。
他在学习中总是能将分散的学习知识联系起来,形成系统地知识体系,且能应用灵活。
在上学期间,他还考取了举人资格。
(3)1875年,张謇考入了南洋公学,他将自己多年的积累展示了出来,并在广大师生的面前,发表了知名的《自力更生》演讲。
这个演讲使他备受赞誉,也为他未来的事业奠定了基础。
(4)张謇毕业后曾出任江西体育局局长,任内积极推行体育运动,提倡健身,改变了当时青年学生体育锻炼不足的状况。
后来,他还出任过官员、教育家等多个职位,努力改革中国教育制度,致力于提高教育的普及率和质量。
(5)张謇还通过创办南京高级工业学堂(复旦大学前身),来培养工科人才。
这一举措对中国的现代工业化进程起到了积极作用。
张謇还参与了辛亥革命,成为众多反清护国的活动家之一。
问题:(1)张謇是中国的哪位教育家和思想家?(2)张謇曾任职的机构有哪些?(3)南京高级工业学堂现在的名称是什么?答案:(1)张謇是中国现代教育家、政治家、社会活动家和思想家。
(2)张謇曾任江西体育局局长,官员和教育家等多个职位。
(3)南京高级工业学堂现在的名称是复旦大学。
二、数学部分选择题:1. 已知函数 f(x) = 2x + 3,求 f(4) 的值。
A. 7B. 9C. 11D. 132. 若 a + b = 20,且 a:b = 2:3,则 a 的值为多少?A. 8B. 10C. 12D. 16填空题:1. C = πd 的公式中,若 d = 10cm,则 C = ______ cm。
一、选择题1.在(x 2−1x)10的展开式中系数最大的项是_____.A .第4、6项B .第5、6项C .第5、7项D .第6、7项 2.设函数y=ƒ (x)对一切实数x 均满足ƒ (5+x )=ƒ(5−x),且方程ƒ (x )=0恰好有6个不同的实根,那么这6个实根的和为____.A .10B .12C .18D .30 3.假设非空集合X={x |a +1≤x≤3a−5},Y={x |1≤x≤16},那么使得X ⊆X ∪Y 成立的所有a 的集合是_____.A .{a |0≤a≤7}B .{a |3≤a≤7}C .{a |a≤7}D .空集 4.设z 为复数,E={z |(z−1)2=|z−1|2},那么以下_ 是正确的A .E={纯虚数}B .E={实数}C .{实数}⊆E ⊆{复数}D .E={复数}5.把圆x 2+(y−1)2=1与椭圆x 2+2(1)9y +=1的公共点,用线段连接起来所得到的图形为_____.A .线段B .等边三角形C .不等边三角形D .四边形6.在正三棱柱ABC —A 1B 1C 1中,假设BB 1,那么AB 1与C 1B 所成的角的大小是___. A .60° B .75° C .90° D .105°7.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量、可获利润以及托运所受限制如在最合理的安排下,获得的最大利润是______百元.A .58B .60C .62D .648.假设向量a +3b 垂直于向量7a −5b ,并且向量a −4b 垂直于向量7a −2b ,那么向量a 与b 的夹角为___ ___.A .2π; B .3π; C .4π; D .6π. 9.复旦大学外语系某年级举行一次英语口语演讲比赛,共有十人参赛,其中一班有三位,二班有两位,其它班有五位.假设采用抽签的方式确定他们的演讲顺序,那么一班的三位同学恰好演讲序号相连.问二班的两位同学的演讲序号不相连的概率是____.A .120 B .140 C .160 D .19010.sin α,cos α是关于x 的方程x 2−tx+t=0的两个根,这里t ∈3sin α+3cos α=___.A .B .;C .−D .11.设z 1,z 2为一对共轭复数,如果|z 1−z 2且122z z 为实数,那么|z 1|=|z 2|=____. AB .2C .3 D12.假设四面体的一条棱长是x ,其余棱长都是1,体积是V(x),那么函数V(x)在其定义域上为____.A .增函数但无最大值B .增函数且有最大值C .不是增函数且无最大值D .不是增函数但有最大值 13.以下正确的不等式是____.A .16<1201k =; B .18<1201k =<19; C .20<1201k =; D .22<1201k =<23. 14.设{αn }是正数列,其前n 项和为S n ,满足:对一切n ∈Z +,αn 和2的等差中项等于S n 和2的等比中项,那么limnn n→∞α=______.A .0B .4C .12D .10015.x 1,x 2是方程x 2−(α−2)x+(α2+3α+5)=0(α为实数)的两个实根,那么x 12+x 22的最大值为______.A .18B .19C .20D .不存在 16=α.条件乙:sin2θ+cos 2θ=α.那么以下________是正确的. A .甲是乙的充分必要条件 B .甲是乙的必要条件C .甲是乙的充分条件D .甲不是乙的必要条件,也不是充分条件 17.函数ƒ(x)的定义域为(0,1),那么函数g(x)= ƒ(x+c)+ƒ(x−c)在0<c<12时的定义域为____. A .(−c,1+c); B .(1−c,c); C .(1+c,−c); D .(c,1−c); 18.函数____.A .y min =54-,y max =54; B .无最小值,y max =54; C .y min =54-,无最大值 D .既无最小值也无最大值19.等差数列{αn }中,α5<0,α6>0且α6>|α5|,S n 是前n 项之和,那么以下___是正确的.A .S 1,S 2,S 3均小于0,而S 4,S 5,…均大于0B .S 1,S 2,…,S 5均小于0,而S 6,S 7,…均大于0C .S 1,S 2,…,S 9均小于0,而S 10,S 11,…均大于0D .S 1,S 2,…,S 10均小于0,而S 11,S 12,…均大于0 20.角θ的顶点在原点,始边为x 轴正半轴,而终边经过点Q(,y),(y≠0),那么角θ的终边所在的象限为___.A .第一象限或第二象限B .第二象限或第三象限C .第三象限或第四象限D .第四象限或第一象限21.在平面直角坐标系中,三角形△ABC 的顶点坐标分别为A(3,4),B(6,0),C(−5,−2),那么∠A 的平分线所在直线的方程为_____.A .7x−y−17=0;B .2x+y+3=0;C .5x+y−6=0;D .x−6y=0. 22.对所有满足1≤n≤m≤5的m ,n ,极坐标方程11cos nm C θρ=-表示的不同双曲线条数为_____.A .6B .9C .12D .1523.设有三个函数,第一个是y=ƒ(x),它的反函数就是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数是______.A .y=−ƒ(x);B .y=−ƒ(−x);C .y=−ƒ−1(x);D .y=−ƒ−1(−x);24∈[2,3]时,ƒ(x)=x ,那么当x ∈[−2,0]时,ƒ(x)的解析式为_____.A .x+4;B .2−x;C .3−|x+1|;D .2+|x+1|. 25.α,b 为实数,满足(α+b)59=−1,( α−b)60=1,那么α59+α60+b 59+b 60=_____.A .−2B .−1C .0D .1 26.设αn 是)n 的展开式中x 项的系数(n=2,3,4,…),那么极限2323222lim()nn n →∞+++ααα…=________. A .15 B .6 C .17 D .8 27.设x 1,x 2∈(0,2π),且x 1≠x 2,不等式成立的有 (1)12(tanx 1+tanx 2)>tan 122x x +; (2) 12(tanx 1+tanx 2)<tan 122x x +; (3)12(sinx 1+sinx 2)>sin 122x x +; (4) 12(sinx 1+sinx 2)<sin 122x x + A .(1),(3) B .(1),(4) C .(2),(3) D .(2),(4)28.如下图,半径为r 的四分之一的圆ABC 上,分别以AB 和AC 为直径作两个半圆,分别标有α的阴影局部面积和标有b 的阴影局部面积,那么这两局部面积α和b 有_____.A .α>bB .α<bC .α=bD .无法确定CBAba29.设a ,b PQ =2a +k b ,QR =a +b ,RS =2a −3b .假设P ,Q ,S 三点共线,那么k 的值为_____.A .−1;B .−3;C .43-;D .35-; ##Answer## 1.C 2.D 3.C 4.B 5.B6. 【简解】设BB 1=1,那么取AC 、BC 1的中点D 、O,DOC 1B 1A 1CBAOD ∥AB 1,∠BOD 即为所求;在△BOD 中,OD=OB 1=2,BD=2,∠BOD=90°。
复旦大学自主招生试题(2009.2)(2009-02-21 10:50:56)分类:自主招生标签:求职教育复旦金融晰杨晓倩上海杂谈核心提示:为期两天的复旦大学上海学生面试招生昨天结束,复旦的几位资深面试专家在接受早报记者采访时称,面试题目并不像笔试题目一样有标准的出题模式,面试题目出题时,面试专家有很大的自主权,每位专家独自出题。
2月11日,两名参加复旦大学自主招生面试的考生展示自己的考生报到证。
早报记者鲁海涛图“我算出来了,我算出来了。
”昨天(2月12日,下同),沪上一间写字楼的办公室内,几个白领用笔在会议桌上比画,把“=”号移动到“-”号处,“62=63-1”的等式出现了,办公室里爆发出掌声。
白领们如此热衷的游戏是复旦大学今年自主招生面试的一道试题,面试官问学生,如何通过移动一根火柴,使得“62-63=1”的等式成立。
为期两天的复旦大学上海学生面试招生昨天结束,堪比“十万个为什么”的考题也成了白领间讨论的话题。
千奇百怪的题目究竟是如何出炉的?复旦的几位资深面试专家在接受早报记者采访时称,面试题目并不像笔试题目一样有标准的出题模式,面试题目出题时,面试专家有很大的自主权,每位专家独自出题。
252位专家准备数千题据了解,今年有252位专家参与面试,专家准备好的问题超过了数千条,专家出题时,会结合自己的专业背景,但也不囿于专业限制,还会结合考生的材料,以及考生的现场回答深入追问。
每一位考生会接受五位专家的面试,五位专家组成的面试组会在面试前一个小时就自己事先准备的题目进行统筹,去掉重复的,“不过,在面试中,不同的专家出同样的问题也有可能,但是同样的问题提问的角度肯定不一样。
”复旦的一位连续四年参加过面试的面试官表示。
复旦面试专家也提醒,那些提前进行应试程式的准备,到了面试现场背诵的考生,不会得高分,对于极个别“背诵”答案、力求回答正确的考生,考官反而要扣分,“一旦发现考生在"背",我们就会马上跳过,所以考前集训没有用。
1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。
A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。
A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。
2015年高三数学高校自主招生考试真题分类解析10 不等式一、选择题。
1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( ) A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值范围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。
7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则的最小值是 .8.(2009年华中科技大学) 对任意的a>0,b>0,的取值范围是 .三、解答题。
9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年南京大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC的面积,求证:++≥.11.(2010年南京大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年浙江大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:+++…+>4.13.(2009年清华大学)设a=(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥;(2)a,b,c为正实数,求证:++≥3,其中x,y,z为a,b,c的一种排列.15.(2009年北京大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值. 16.(2011年北京大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值. 17.(2012年北京大学等十一校联考)求+=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0).4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值范围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x+)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.9.x2+xy+y2-3(x+y-1)=(x+y)2+x2+y2-3x-3y+3=(x+y)2+(x-3)2+(y-3)2-6≥(x+y)2+(x+y-6)2-6=(x+y)2-3(x+y)+3=[(x+y)-]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证++≥成立,即证(ad1+bd2+cd3)(++)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立.同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴>(i=1,2,3,…,n).∴+++…+>+++…+≥,又∵1=x 1+x2+x3+…+x n≥n,∴≥n,又∵n≥2,∴+++…+>n2≥4.13.S3=(x1-)(x2-)+(x2-)(x3-)=(x2-)(x1-+x3-)=·=-(x1+x3-2x2)2≤0.14.(1)设x=+a,则y=-a,其中-<a<,于是x n+y n=(+a)n+(-a)n=()n+()n-1·a+()n-2·a2+…+a n+()n-()n-1·a+()n-2·a2-…+(-a)n=2[()n+()n-2·a2+()n-4·a4+…]≥2×()n=.(2)不妨设a≥b≥c>0,即0<≤≤,且{,,}={,,},由排序不等式得++≥++=3.15.2【解析】方法一令cos x=t,则-1≤t≤1,f(t)=2bt2+at+1-b≥0恒成立.(1)当b<0时,,利用线性规划知识,如下图,可以解得:-1≤a+b<1.(2)当b=0时,at+1≥0,由-1≤t≤1,得-1≤a+b≤1.(3)当b>0时,(i),利用线性规划知识,如下图,可以解得:0<a+b<;(ii),即,⇒9b2-(2k+8)b+k2≤0,Δ≥0⇒-1≤k≤2,∴(a+b)max=2;(iii),即,利用线性规划知识,如图,可以解得:-1≤a+b<0.综上,(a+b)max=2.方法二2bcos2x+acos x-b+1≥0,令cos x=-,得+≤1,即a+b≤2,又当a=,b=时,cos2x+cos x+=(2cos x+1)2≥0成立,∴(a+b)max=2.16.【解析】解法一由绝对值的几何意义联想到求距离的最小值,如|x-a|+|x-b|的最小值应该是在数轴上a,b两点之间取得,为|a-b|,所以将函数f(x)的右边整理为|x-1|+|x-|+|x-|+|x-|+|x-|+|x-|+…+|x-|+|x-|+…+|x-|,共有1+2+3+…+2 011=1 006×2 011项,则f(x)可以理解为x到这1 006×2 011个零点的距离之和.从两端开始向中间靠拢,每两个绝对值的和的最小值都是在相应的零点之间取得,而且范围是包含关系,比如|x-1|+|x-|的最小值是在x∈[,1]上取得,|x-|+|x-|的最小值是在x∈[,]上取得,…,所以f(x)的最小值应该在正中间的零点或正中间的相邻两个零点之间取得.由=503×2 011可知,f(x)取得最小值的范围在第503×2 011个零点和第503×2 011+1个零点之间(这两个零点也可能相等).由<503×2 011算得n≤1 421,所以第503×2 011个零点和第503×2 011+1个零点均为,则[f(x)]min=f()=.解法二由零点分区间法讨论去绝对值:当x∈(-∞,]时,f(x)=(1-x)+(1-2x)+…+(1-2 011x),此函数图象是一条直线中的一部分,斜率k1=-1-2-…-2 011.当x∈(,]时,f(x)=(1-x)+(1-2x)+…+(1-2 010x)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2=-1-2-…-2 010+2 011.当x∈(,]时,f(x)=(1-x)+…+(1-2 009x)+(2 010x-1)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k3=-1-2-…-2 009+2 010+2 011.……当x∈(,]时,f(x)=(1-x)+…+(1-mx)+[(m+1)x-1]+…+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2 012-m=-1-2-…-m+(m+1)+…+2 011.当x∈(,]时,f(x)=(1-x)+…+[1-(m-1)x]+(mx-1)+…+(2 011x-1),此函数图象是一条直线,斜率k2 013-m=-1-2-…-(m-1)+m+…+2 011.令,即,即,由于m∈N*,解得m=1 422.所以当x∈(,]时,f(x)=(1-x)+…+(1-1 422x)+(1 423x-1)+…+(2 011x-1)=833-711×1 423x+1 717×589x,.[f(x)]min =f()=11。
复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。
本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。
一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。
分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。
根据极值的定义,我们可以通过求解f'(x) = 0来得到。
2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。
求该商品的原价。
分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。
通过解这个方程,我们可以求出该商品的原价x。
二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。
Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。
自主招生考试数学试卷及参考答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22第2自主招生考试 数学试题卷亲爱的同学:欢迎你参加考试!考试中请注意以下几点:1.全卷共三大题,满分120分,考试时间为100分钟。
2.全卷由试题卷和答题卷两部分组成。
试题的答案必须做在答题卷的相应位置上。
做在试题卷上无效。
3.请用钢笔或圆珠笔在答题卷密封区上填写学校、姓名、试场号和准考证号,请勿遗漏。
4.答题过程不准使用计算器。
祝你成功!一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)1.如果一直角三角形的三边为a 、b 、c ,∠B=90°,那么关于x 的方程a(x 2-1)-2cx+b(x 2+1)=0的根的情况为A 有两个相等的实数根B 有两个不相等的实数根C 没有实数根D 无法确定根的情况2.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则 A S S S 123<< B S S S 213<< C S S S 132<<D S S S 123==3.如图,以BC 为直径,在半径为2圆心角为900的扇形内作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是33第5A π-1B π-2C 121-πD 221-π4.由325x y a x y a x y a m-=+⎧⎪+=⎪⎨>⎪⎪>⎩得a>-3,则m 的取值范围是A m>-3B m ≥-3C m ≤-3D m<-3 5.如图,矩形ABCG (AB <BC )与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是 A 0 B 1 C 2 D 36.已知抛物线y=ax 2+2ax+4(0<a<3),A (x 1,y 1)B(x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a,则A y 1< y 2B y 1= y 2C y 1> y 2D y 1与y 2的大小不能确定二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. 二次函数y =ax 2+(a -b )x —b 的图象如图所示,44那么化简222||a ab b b -+-的结果是______▲________.8. 如图所示,在正方形 ABCD 中,AO ⊥BD 、OE 、FG 、HI 都垂直于 AD ,EF 、GH 、IJ 都垂直于AO ,若已知 S ΔA JI =1, 则S 正方形ABCD = ▲9.将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为 ▲ 10.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(1)第4个图案中有白色纸片 ▲ 张 (2)第n 个图案中有白色纸片 ▲ 张(3)从第1个图案到第100个图案,总共有白色纸片 ▲ 张第10题 第7题第8题5511.如图所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= ▲12.阅读下列证明过程: 已知,如图四边形ABCD 中,AB =DC ,AC =BD ,AD ≠BC ,求证:四边形ABCD 是等腰梯形.读后完成下列各小题.(1)证明过程是否有错误?如有,错在第几步上,答: ▲ . (2)作DE ∥AB 的目的是: ▲ .(3) 判断四边形ABED 为平行四边形的依据是: ▲ . (4)判断四边形ABCD 是等腰梯形的依据是 ▲ .(5)若题设中没有AD ≠BC ,那么四边形ABCD 一定是等腰梯形吗为什么 答 ▲ .自主招生考试第11题第12题66数学标准答案一、选择题(本题共6小题,每小题5分,共30分.在每小题的四个选项中,只有一个符合题目要求)二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)7. ______-1__________ 8. 256 9. 57610.(1) 13 (2) 3n+1 (3) 15250 11. a b12.(1)没有错误 (2)为了证明AD ∥BC(3) 一组对边平行且相等的四边形是平行四边形(4)梯形及等腰梯形的定义 (5) 不一定,因为当AD =BC 时,四边形ABCD 是矩形 三、解答题(本题共5小题,共60分.解答应写出必要的计算过程、推演步骤或文字说明)13.(本小题10分)某公园门票每张10元,只供一次使用,考虑到人们的不同需求,也为了吸引更多游客,该公园除保留原有的售票方法外,还推出一种“购个人年票”的售票方法(个人年票从购买之日起,可供持票者使用一年)。
2010年复旦大学自主招生考试数学试题一.选择题:(每题5分,共155分,答对得5分,答错扣2分,不答得0分)1.设函数()1x y f x e ==+,则其反函数()1x f y -=在坐标系xOy 中的大致图像是 ( )2.设()f x 是区间[],a b 上的函数,如果对任意满足a x y b <≤≤的x 、y 都有()()f x f y ≤,那么称()f x 是[],a b 上的递增函数,()f x 是[],a b 上的非递增函数应满足( )(A)存在满足x y <的x 、y ∈[],a b ,使得()()f x f y >; (B)不存在x 、y ∈[],a b 满足x y <,且()()f x f y ≤; (C)对任意满足x y <的x 、y ∈[],a b ,都有()()f x f y >; (D)存在满足x y <的x 、y ∈[],a b ,使得()()f x f y ≤.3.设α、β∈,22ππ⎡⎤-⎢⎥⎣⎦,且满足sin cos sin cos 1αββα+=,则sin sin αβ+的取值范围是( )(A)2,2⎡-⎣; (B)2⎡-⎣; (C)2⎡⎣; (D)2⎡⎣.4.设实数0,x y ≥≥0,且满足25x y +=,则函数()2,22f x y x xy x y =+++的最大值是( )(A)978; (B)19516; (C);494 (D)252.5.设一个多面体从前面、后面、左面、右面、上面看到的图形(其中正方形边长为1)分别为则该多面体的体积为( )(A)23; (B)34; (C);45(D)56.6.在一个底面半径为12,高为1的圆柱内放入一个直径为1的实心球后,再圆柱内空余的地方放入与实心球、圆柱的侧面以及两个底面之一都相切的小球,最多可以放入这样的小球的个数是 ( ) (A)32个; (B) 30个; (C)28个l ; (D) 26个.7.给定平面向量(1,1),那么平面向量1313-+⎝⎭是将向量(1,1) ( )(A)顺时针旋转60°所得; (B)顺时针旋转120°所得;(C)逆时针旋转60°所得; (D)逆时针旋转120°所得.8.在直角坐标系Oxy 中,已知点()12313131,0,,,22A A A ⎛⎛- ⎝⎭⎝⎭()41,0A -,513,22A ⎛-- ⎝⎭,613,22A ⎛- ⎝⎭,那么在向量(),1,2,3,4,5,6,i j A A i j i j =≠中,不同向量的个数有( )(A)9个; (B)15个; (C) 18个; (D) 30个 9.对函数[][]:0,10,1f →,定义()()()()()11,,n n f x f x f x ff x -=⋅⋅⋅=,1,2,3,,n =⋅⋅⋅满足()n f x x =的点x ∈[]0,1称为f 的一个n -周期点.现设()12,0;2122,1,2x x f x x x ⎧⎪⎪=⎨⎪-⎪⎩≤≤≤≤则f 的一个n -周期点的个数是( )(A) 2n 个; (B) 22n 个; (C)2n个; (D) ()221n-个. 10.已知复数1213,33z i z i ==-,则复数12z z 的一个辐角是 ( ) (A)1312π; (B)1112π; (C)4π-; (D)712π-.11.设复数cos sin ,sin cos z i i αβωαβ=+=+,满足3z ω=,则()sin βα-=( ) (A)33或12-; (C)12±; (D)12或312.已知常数1k ,2k 满足12120,1k k k k <<=.设1C 和2C 分别是以()111y k x =±-+和()211y k x =±-+为渐近线且通过原点的双曲线,则1C 和2C 的离心率之比12e e 等于( );; (C)1; (D)12k k . 13.参数方程()()()sin 01cos x a t t a y a t =-⎧⎪>⎨=-⎪⎩所表示的函数()y f x =( ) (A)图像关于原点对称; (B)图像关于直线x π=对称;(C)是周期为2a π的周期函数; (D)是周期为2π的周期函数.14.将同时满足不等式20x ky --≤,2360x y +-≥,()61000x y k +->≤的点组成的集合D 称为可行域,将函数1y x+称为目标函数.所谓规划问题就是求解可行域中的点(),x y 使目标函数达到在可行域上的最小值,如果这个规划问题有无穷多个解(),x y ,那么k 的取值为( )(A)1k ≥; (B)2k ≤; (C)2k =; (D)1k = .15.某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量ω是该班同学某一门课程的考试成绩.则下列选项中正确的是 ( ) (A) y 是x 的函数; (B) z 是y 的函数;(C) ω是z 的函数; (D) ω是x 的函数. 16.对下于原命题“单调函数小不是周期函数”,下列陈述正确的是 ( ) (A)逆命题为“周期函数不是单调函数”; (B)否命题为“单调函数是周期函数”; (C)逆否命题为“周期函数是单调函数”; (D)以上三者都不正确. 17.设集合(){}(){},loglog 0,,aa A x y x y B x y x y a =+>=+<,如果A ∩B =∅,那么a 的取值范围是( )(A)∅; (B)0a >,且1a ≠; (C)02a <≤,且1a ≠; (D) 12a <≤.18.设集合x 是实数集R 的子集,如果点0x ∈R 满足:对任意0a >,都存在x ∈X ,使得00x x a <-<,那么称0x 为集合X 的聚点,用Z 表示整数集,则在下列集合 (1)Z,01n n n n ⎧⎫⎨⎬+⎩⎭∈≥,(2){}\0R ,(3)1,0n Z n n ⎧⎫⎨⎬⎩⎭∈≥,(4)整数集Z 中,以0为聚点的集合有 ( ) (A)(2)、(3); (B)(1)、(4);(C)(1)、(3); (D)(1)、(2)、(4) .19.已知点()()()2,0,1,0,0,1A B C -,如果直线y kx =将△ABC 分割为两个部分,那么当k 等于多少时,这两个部分的面积之积最大? ( ) (A)32-; (B)34-; (C)43-; (D)23-.20.已知()2sin cos f x x x x =,定义域()7,1212D f ππ⎡⎤=⎢⎥⎣⎦,则其反函数()1f x -=( )(A) 1arccos 212x π⎛+ ⎝⎭;(B)1arccos 26x π⎛- ⎝⎭;(C) 1arcsin 212x π⎛-+ ⎝⎭;(D)1arcsin 226x π⎛⎫-- ⎪ ⎪⎝⎭. 21.设1l ,2l 是两条异面直线,则直线l 与1l ,2l 都垂直的必要非充分条件是( )(A) l 是过点1P ∈1l 和点2P ∈2l 的直线,这里12PP 等于直线1l 和2l 间的距离;(B) l 上每一点到1l 和2l 的距离都相等; (C)垂直于l 的平面平行1l 和2l ;(D)存在与1l 和2l 都相交的直线与l 平行或重合.22.设ABC A B C '''-是正三棱柱,其底面边长和高都为1,P 是侧面ABB A ''的中心点,则P 到侧面ACC A ''的对角线的距离是( )(A)12;.23.在一个球面上画一组三个互不相交的圆,称为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,那么称这两个三圆组有相同的位置关系,否则就称有不同的位置关系,球面上具有不同的位置关系的三圆组有( ) (A)2种; (B)3种; (C)4种; (D)5种. 24.设非零向量()()()123123123,,,,,,,,a a a a b b b b c c c c ===为共面向量,()123,,x x x x =是未知向量,则满足0,0,0a x b x c x ===的向量x 的个数为( )(A)1个; (B)无穷多个; (C)0个; (D)不能确定. 25.在坐标平面上Oxy 给定点()()()1,2,2,3,2,1A B C ,矩阵211k ⎛⎫⎪-⎝⎭将向量OA ,OB ,OC 分别变换成向量OA ',OB ',OC ',如果联结它们的终点A '、B '、C '构成直角三角形,且斜边为B C '',那么k =( )(A)2±; (B)2; (C)0; (D)0,2-.26.设集合A 、B 、C 、D 是全集X 的子集,A ∩B ≠∅,A ∩c ≠∅,则下列选项中正确的是 ( )(A)若D B 或D C .则D ∩A ≠∅;(B)若D A ,则XD ∩B ≠∅,XD ∩C ≠∅; (C)若DA ,则X D ∩B =∅,XD ∩C =∅;(D)上述各项都不正确.27.已知数列{}n a 满足12a =,且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则1nk k a ==∑( )(A) 122n n +-; (B)()1122n n +-+;(C)()221nn n +-; (D) ()122nn n -+. 28.复平面上圆周112z z i-=-+的圆心是 ( ) (A)3i +; (B)3i -; (C)1i +; (D)1i -.29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足2OP OP r *=,则称P 、P *关于圆周C 对称,那么,双曲线221x y -=上的点(),P x y 关于单位圆周C ':221x y +=的对称点P *所满足的方程是( )(A)2244x y x y -=+; (B)()22222x y x y -=+;(C)()22442x y x y -=+; (D)()222222x y x y-=+.30.经过坐标变换cos sin sin cos x x y y x y θθθθ'=+⎧⎨'=-+⎩,将二次曲线223560x y -+-=转化为形如22221x y a b ''±=的标准方程,则θ的值及二次曲线的类型是 ( ) (A)()6k k Z πθπ=+∈,椭圆;(B) ()26k k Z ππθ=+∈,椭圆;(C) ()6k k Z πθπ=-∈,双曲线;(D) ()26k k Z ππθ=-∈,双曲线. 31.设k 、m 、n 是整数,不定方程mx ny k +=有整数解的必要条件是( ) (A) m 、n 都整除k ; (B) m 、n 的最大公因子整除k ;(C) k 、m 、n 两两互质; (D) k 、m 、n 除1外没有其他公因子.2010年名牌大学自主招生考试试题(1)详解适用高校:复旦大学选择题(每题5分,共155分,答对得5分,答错扣2分,不答得0分) 1.[答案]A[解答]注意到反函数表达式中x 与y 没有互换,所以()1x f y -=的图像即()y f x =的图像. 2.[答案]A[解答]“任意”的否定是“存在”,“≤”的否定是“>”. 3.[答案] D[解答]依题意,()sin 1αβ+=,因为παβπ-+≤≤,所以2παβ+=.又因为,222πππβα⎡⎤=-∈-⎢⎥⎣⎦.所以0,2πα⎡⎤∈⎢⎥⎣⎦, sin sin sin cos 2sin 1,24παβααα⎛⎫⎡⎤+=+=+∈ ⎪⎣⎦⎝⎭.4.[答案]C[解答]因为520y x =-≥,所以502x ≤≤,消去y ,得()234924f x x ⎛⎫=--+ ⎪⎝⎭,当32x =时,max 494f =.5.[答案] D[解答]该几何体是一个棱长为1的正方体截去一个角所得. 6.[答案] B[解答]如图,图(1)是圆柱的轴截面,图(2)是圆柱的底面. 设小实心球的半径为r ,则12222r r +=-,解得3222r -=. 所以AB 322=-,OA =OB =21-,且∠AOB =21arcsin2-, 因为1516212arcsin<<-,所以最多可以放30个小实心球.7.[答案]C[解答]因为向量()1311,1,,22a b ⎛⎫-== ⎪ ⎪⎝⎭的夹角60θ=︒,结合图像知选(C). 8.[答案]C[解答]依题意,A 1、A 2、A 3、A 4、A 5、A 6是正六边形的6个顶点,其中模为1、2的向量各有6个,所以向量,12345,6,i j A A i j i j ≠(=,,,,)中,不同向量的个数为18. 9.[答案]C[解答]将x 写成二进制小数()1220.n a a a ⋅⋅⋅⋅⋅⋅,其中()210.111=⋅⋅⋅⋅⋅⋅,则由()f x 定义知,()()2320.n f x a a a =⋅⋅⋅⋅⋅⋅.若()1220.n x a a a =⋅⋅⋅⋅⋅⋅是()f x 的n -周期点,则()()12122220.0.n n n n a a a a a a ++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅,即x 在二进制下是以n 为周期的循环小数,这样的x 共有2n个.10.[答案]A[评注]1z 的辐角主值为3π,2z 的辐角主值为34π,则12z z 的辐角主值为3133412πππ+=. 11.[答案]C .[解答]因为()()sin cos sin cos sin sin cos cos 2zwi ααββαβαβ=++-=, 所以sin cos sin cos sin sin cos cos 0ααββαβαβ⎧+=⎪⎨⎪-=⎩因为()cos0αβ+=,所以()sin 1αβ+=±.又因为sin 2sin 2αβ+=()()sin cos αββα+-= ()()1cos 2βαβα-=-=±. 12.[答案]C[解答]依题意,设()()()2212211:10y x C a b ab---=>>,()()()2222211:10x y C B A A B ---=>>因为12,C C 都过原点,所以222211111a b A B -=-=,即22221111a Bb A+=+.又因为121k k =,所以1a B b A =,即11aB bA=,所以 1111a B b A +=+,且1111a B A b-=-,解得,a A b B ==,所以12e e =. 13.[答案]C[解答]当()()()22sin 2sin 2x x a a a t t a t t ππππ'=+=+-=+-+⎡⎤⎣⎦时,相对应的()()1cos 2y a t y π'=-+=,即()()2f x a f x π+=,所以()f x 是周期为2a π的周期函数.14.[答案]C [解答]1y x+表示可行域中一点(),x y 与点()0,1-连线斜率,当规划问题有无数多个解时,点()0,1-在直线20x ky --=上,所以2k =.15.[答案]B 16.[答案] D[解答]逆命题:如果一个函数不是周期函数,那么它是单调函数; 否命题:如果一个函数不是单调函数,那么它是周期函数; 逆否命题:如果一个函数是周期函数,那么它不是单调函数. 7.[答案] D[解答]当01a <<时,(){},01,0,0A x y xy x y =<<>>,A ∩B ≠∅,当1a >时,(){},1,0,0A x y xy x y =>>>.若A ∩B =∅,则曲线1xy =与x y a +=仅有一个交点或无交点,消去y ,得210x ax -+=,所以240a -≤,解得12a <≤. 18.[答案]A [解答] {}\0R 与1,0n Z n n ⎧⎫⎨⎬⎩⎭∈≥中均存在以0为极限的非零实数列. 19.[答案] A[解答]当且仅当两部分面积相等时,这两部分的面积之积最大,此时直线y kx =过线段AC 上一点D ,且OA AD ⋅=,即34AD AC ==,所以13,24D ⎛⎫- ⎪⎝⎭,解得32k =-. 20.[答案]A[解答]因为())1sin 2cos 21sin 223f x x x x π⎛⎫=+=+= ⎪⎝⎭cos 262x π⎛⎫-+⎪⎝⎭,且[]20,6x ππ-∈,所以()11arccos 2212f x x π-⎛=-+ ⎝⎭,331,122x ⎡⎤∈-++⎢⎥⎣⎦.21.[答案]D[解答]12,l l 的公垂线与l 平行或重合. 22.[答案] C[解答]设P 在侧面ACC A ''上的射影为H ,则H 到侧面ACC A ''对角线的距离为2, 且34PH =,所以P 到侧面ACC A ''对角线的距离为14.23.[答案]A[提示]如图,不同的三圆组位置只有两种可能.24.[答案]B[解答]向量x 与a 、b 、c 都垂直,只需取x 与a 、b 、c 所在平面垂直,显然这样的x 有无穷多个. 25.[答案] B[解答]依题意,()()()22,1,43,1,4,1A k B k C k '''+++-,所以 ()()2,0,2,2A B k A C k ''''=+=--,因为A B A C ''''⊥,所以()()2200,2k k k +-+==±. 当2k =-时,A'与B'重合,不合题意舍去,所以2k =. 26.[答案]D[提示]利用文氏图构造反例. 27.[答案]B[解答]依题意,12312,222322nnn n kk a n an ===+++⋅⋅⋅+∑,且()23112222122nn n kk an n +==++⋅⋅⋅+-+∑.两式相减,得()()11231122222122n n n n k k an n ++==-+++⋅⋅⋅=-+∑.28.[答案] C[解答]设(),z x yi x y R =+∈.由11z z i -=-+,得()()()222211112x y x y ⎡⎤-+=-++⎣⎦. 化简,得()()22112x y -+-=.所以圆心为1i +.29.[答案]B[解答]设()()00,,:,,P x y OP y kx P x y *=,则 20211x k=-,()2011OP OP k x x *=+=,所以()2222111k x k +=-. 将y k x =代入上式化简,得()22222x y x y -=+. 30.[答案] B[解答]将cos sin sin cos x x y y x y θθθθ''=-⎧⎨''=+⎩代入曲线方程后,得x y ''项的系数为224sin cos θθθθ+-,所以224sin cos 0θθθθ+-=,解得()26k k Z ππθ=+∈.且2x '项系数为223cos 5sin cos θθθθ+-,2y '项系数为223sin 5cos cos θθθθ++,代入得椭圆方程,得2266x y ''+=或22326x y ''+=.31.[答案]B[解答]设()(),,,,m n d m ad n bd a b N *===∈,则()mx ny ax by d k +=+=, 所以d 整除k .。
O x O xO xβsin的取值范A .97/8B .195/16C .49/4D .25/2答案:C5、设一个多面体从前面、后面、左面、右面、上面看到的图形分别为:则该多面体的体积为______________。
A .2/3 B .3/4 C .4/5 D .5/6答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。
A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________.A .顺时针旋转60°所得;B .顺时针旋转120°所得;C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____.A .9个;B .15个;C .18个;D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12B .11π/12C .−π/4D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______.A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______A .∅B .a>0,a≠1C .0<a≤2, a≠1D .1<a≤2 答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f _____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21 B .43 C .814 D .823 答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______.A .如果B D ⊂或CD ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n n B .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y -=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±by a x 的标准方程,求θ的取值并判断二次曲线的类型_______A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线 31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。