九年级上册数学期末试卷(3)
- 格式:doc
- 大小:249.50 KB
- 文档页数:2
人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。
期末复习:浙教版九年级数学学上册第三章圆的基本性质一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°3.如图,AB是圆0的直径,弦CD AB于点E,则下列结论正确的是( )A. OE=BEB.C. △BOC是等边三角形D. 四边形ODBC是菱形4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. B. 2 C. 2 D. 36.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A. 28°B. 56°C. 60°D. 62°7.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°8.如图,AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A. 30°B. 40°C. 45°D. 50°9.如图,CD为⊙O的直径,CD⊥EF,垂点为G,∠EOD=40°,则∠DCF ()A. 80°B. 50°C. 40°D. 20°10.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°二、填空题(共10题;共30分)11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.12.如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= ________.13.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC的中点,则MN长的最大值是________.14.平面直角坐标系中,以点P(0,1)为中心,把点A(5,1)逆时针旋转90°,得到点B,则点B 的坐标为________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°16.如图,点,,,在上,∠,∠,是中点,则∠的度数为________.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=________.18.如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为________.19.如图,P是等边三角形ABC中的一个点,PA=2,PB=2,PC=4,则三角形ABC的边长为________20.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为________三、解答题(共8题;共60分)21.(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.22.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD 的周长23.已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.(1)如图1,求证:∠B=∠C;(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.24.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.25.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.26.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.27.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.28.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= ,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.答案解析部分一、单选题1.【答案】A【考点】点与圆的位置关系【解析】【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.2.【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案。
九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
2023-2024学年湖北省武汉市九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,不是中心对称图形的是( )A. B. C. D.2.盒子里有10个球,它们只有颜色不同,其中红球有6个,黄球有3个,黑球有1个.小军从中任意摸一个球,下面说法正确的是( )A. 一定是红球B. 摸出红球的可能性最大C. 不可能是黑球D. 摸出黄球的可能性最小3.方程x 2−6x−5=0经过配方后,所得的方程是( )A. (x−6)2=30B. (x−6)2=41C. (x−3)2=4D. (x−3)2=144.在平面直角坐标系中,以点(−3,4)为圆心,3为半径的圆( )A. 与x 轴相离,与y 轴相切B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离5.已知x 1、x 2是一元二次方程x 2+2ax +b =0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( )A. a =3,b =1B. a =3,b =−1C. a =−32,b =−1D. a =−32,b =16.二次函数y =−(x +1)2+2的图象大致是( )A. B.C. D.7.若A (−4,y 1),B (−3,y 2),C (1,y 3)为二次函数y =ax 2+4ax +a (a >0)的图象上的三点,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3B. y 2<y 1<y 3C. y 3<y 1<y 2D. y 1<y 3<y 28.四张背面完全相同的卡片上分别写有1、2、3、4四个数字,把卡片背面朝上洗匀后,王明从这四张卡片中随机选两张,则王明选中的卡片中有偶数的概率是( )A. 56B. 34C. 12D. 239.如图,在平面直角坐标系中,△OAB的顶点O在原点上,OA边在x轴的正半轴上,AB⊥x轴,AB=1,∠AOB=30°,将△OAB绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点B的坐标为( )A. (1,3)B. (1,−3)C. (−3,1)D. (−1,3)10.定义:一个圆分别与一个三角形的三条边各有两个交点,且所截得的三条弦相等,我们把这个圆叫作“等弦圆”.现有一个斜边长为2的等腰直角三角形,当“等弦圆”最大时,这个圆的半径为( )A. 22B. 2−2C. 2−1D. 22−2二、填空题:本题共6小题,每小题3分,共18分。
北京市东城区2022-2023学年九年级上学期数学期末试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若关于x的一元二次方程220-+=有一个根为0,则m的值为()x x mA.2B.1C.0D.1-2.下列图形中是中心对称图形的是()A.正方形B.等边三角形C.直角三角形D.正五边形3.关于二次函数2=-+的最大值或最小值,下列说法正确的是()y x2(4)6A.有最大值4B.有最小值4C.有最大值6D.有最小值6 4.一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是确定事件的为()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球5.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=4426.如图,在O中,AB是直径,弦AC的长为5,点D在圆上,且30∠=︒,则OADC的半径为()7.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC ,BD 分别与⊙O 切于点C ,D ,延长AC ,BD 交于点P .若120P ∠=︒,⊙O 的半径为6cm ,则图中CD 的长为( )A .π cmB .2π cmC .3π cmD .4π cm8.如图,正方形ABCD 和O 的周长之和为20cm ,设圆的半径为cm x ,正方形的边长为cm y ,阴影部分的面积为2cm S .当x 在一定范围内变化时,y 和S 都随x 的变化而变化,则y 与x ,S 与x 满足的函数关系分别是( )A .一次函数关系,一次函数关系B .一次函数关系,二次函数关系C .二次函数关系,二次函数关系D .二次函数关系,一次函数关系二、填空题9.在平面直角坐标系xOy 中,抛物线245y x x =-+与y 轴交于点C ,则点C 的坐标为_________.10.把抛物线2112y x =+向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_______.11.请写出一个常数c 的值,使得关于x 的方程220x x c ++=有两个不相等的实数根,则c 的值可以是____________.12.2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)13.以⊙ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(﹣2,1),则C 点坐标为_____.14.如图,在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD ⊙OB 交⊙O 于点D ,连接CD .若⊙B =50°,则⊙OCD 的度数等于___________.15.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×失+失²).弧田(图中阴影部分)由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为120︒,半径等于4米的弧田,按照上述公式计算出弧田的面积约为______ 米2. 1.73)16.我们给出如下定义:在平面内,点到图形的距离是指这个点到图形上所有点的距离的最小值.在平面内有一个矩形,4,2ABCD AB AD ==,中心为O ,在矩形外有一点P ,3OP =,当矩形绕着点O 旋转时,则点P 到矩形的距离d 的取值范围为__________.三、解答题17.下面是小美设计的“过圆上一点作圆的切线”的尺规作图过程.已知:点A 在O 上.求作:O 的切线AB .作法: ⊙作射线OA ;⊙以点A 为圆心,适当长为半径作弧,交射线OA 于点C 和点D ;⊙分别以点C ,D 为圆心,大于12CD 长为半径作弧,两弧交点B ; ⊙作直线AB .则直线AB 即为所求作的O 的切线.根据小美设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接BC ,BD .由作图可知,AC AD =,BC = .⊙BA OA .⊙ 点A 在O 上,⊙直线AB 是O 的切线( ) (填写推理依据) .18.如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,若4AB =,求CD 的长.19.下面是小聪同学用配方法解方程:2240x x p --=()0p >的过程,请仔细阅读后,解答下面的问题.2240x x p --=解:移项,得:224x x p -=.⊙二次项系数化为1,得:222p x x -=.⊙ 配方,得2212p x x -+=.⊙ 即2(1)2p x -=. ⊙0p >,⊙1x -=⊙⊙11x =11x =⊙ (1)第⊙步二次项系数化为1的依据是什么?(2)整个解答过程是否正确?若不正确,说出从第几步开始出现的错误,并直接写出此方程的解.20.如图,已知抛物线L :y =x 2+bx +c 经过点A (0,﹣5),B (5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .求点M 的坐标;21.如图,在边长均为1个单位长度的小正方形组成的网格中,点A ,B ,O 均为格点(每个小正方形的顶点叫做格点).(1)作点A 关于点O 的对称点1A ;(2)连接1A B ,将线段1A B 绕点1A 顺时针旋转90︒得到线段11A B ,点B 的对应点为1B ,画出旋转后的线段11A B ;(3)连接1AB ,1BB ,求出1ABB 的面积(直接写出结果即可).22.2022年3月23日,“天宫课堂”第二课在中国空间站开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富讲了又一堂精彩的太空科普课.这场充满奇思妙想的太空授课,让科学的种子在亿万青少年的心里生根发芽.小明和小亮对航天知识产生了极大兴趣,他们在中国载人航天网站了解到,航天知识分为“梦圆天路”、“飞天英雄”、“探秘太空”、“巡天飞船”等模块.他们决定先从“梦圆天路”、“飞天英雄”、“探秘太空”三个模块中随机选择一个进行学习,分别设这三个模块为A ,B ,C ,用画树状图或列表的方法求出小明和小亮选择相同模块的概率.23.已知关于x 的一元二次方程()22120x m x m +++-=.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解.24.掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度y (单位:m)与水平距离x (单位:m)近似满足函数关系2()y a x h k =-+(0)a <.某位同学进行了两次投掷.(1)第一次投掷时,实心球的水平距离x 与竖直高度y 的几组数据如下:根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系2()y a x h k =-+(0)a <; (2)第二次投掷时,实心球的竖直高度y 与水平距离x 近似满足函数关系20.09( 3.8) 2.97y x =--+.记实心球第一次着地点到原点的距离为1d ,第二次着地点到原点的距离为2d ,则1d _____ 2d (填“>”“=”或“<”).25.如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作DF AB 交CO 的延长线于点F .(1)求证:直线DF 是O 的切线;(2)若30A ∠=°,AC =DF 的长.26.已知二次函数()2430y ax ax a =-+≠.(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点()()()()12343,1,12,,,,,y y y y --都在该二次函数图象上,⊙请判断1y 与2y 的大小关系:1y 2y (用“>”“=”“<”填空);⊙若1y ,2y ,3y ,4y 四个函数值中有且只有一个小于零,求a 的取值范围.27.如图,ABC 是等腰直角三角形,90ACB AC BC ∠=︒=,,D 为AC 延长线上一点,连接BD ,将线段BD 绕点D 逆时针旋转90︒得到线段DE ,过点E 作EF AC ⊥于点F ,连接AE .(1)依题意补全图形;(2)比较AF 与CD 的大小,并证明;(3)连接BE ,G 为BE 的中点,连接CG ,用等式表示线段CD CG BC ,,之间的数量关系,并证明.28.在平面直角坐标系xOy 中,我们给出如下定义:将图形M 绕直线3x =上某一点P 顺时针旋转90︒,再关于直线3x =对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次关联图形.已知点()0,1A .(1)若点P 的坐标是()3,0,直接写出点A 关于点P 的二次关联图形的坐标________;(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知O 的半径为1,点A 关于点P 的二次关联图形在O 上且不与点A 重合. 若线段1AB =,其关于点P 的二次关联图形上的任意一点都在O 及其内部,求此时 P 点坐标及点B 的纵坐标B y 的取值范围.参考答案:1.C【分析】将0x =代入方程220x x m -+=,即可求解.【详解】解:⊙关于x 的一元二次方程220x x m -+=有一个根为0,⊙0m =,故选:C .【点睛】本题考查了一元二次方程的解的定义,将0x =代入方程是解题的关键.2.A【分析】根据中心对称图形的概念求解即可.【详解】解:A 、是中心对称图形,本选项正确;B 、不是中心对称图形,本选项错误;C 、不是中心对称图形,本选项错误;D 、不是中心对称图形,本选项错误.故选A .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.3.D【分析】根据二次函数22(4)6y x =-+的解析式,得到a 的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:⊙在二次函数22(4)6y x =-+中,a =2>0,顶点坐标为(4,6),⊙函数有最小值为6.故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.4.A【分析】列出摸出的三个球的颜色的所有可能情况即可.【详解】根据题意可得,摸出的三个球的颜色可能为:两个白球,一个黑球;一个白球,两个黑球;三个黑球,则可知摸出的三个球中,至少有一个黑球,故必然事件是至少有一个黑球,故选:A.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.B【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程.【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.6.B【分析】连接BC,由题意易得30ABC ADC∠=∠=︒,在Rt ACB中解三角形求解.【详解】连接BC,ABC ADC∴∠=∠=︒30在O中,AB是直径,ACB∴∠=︒,90在Rt ACB中,∠=︒,3090ACBAC=ABC∠=︒,5==AB AC210OA=5故选:B.【点睛】本题主要考查圆周角定理及含30︒直角三角形的性质;熟练掌握圆周角定理及含30︒直角三角形的性质是解题的关键.7.B【分析】连接OC 、OD ,利用切线的性质得到90OCP ODP ∠=∠=︒,根据四边形的内角和求得60COD ∠=︒,再利用弧长公式求得答案.【详解】连接OC 、OD ,,AC BD 分别与O 相切于点C ,D ,⊙90OCP ODP ∠=∠=︒,120360P OCP ODP P COD ∠=︒∠+∠+∠+∠=︒,,⊙60COD ∠=︒,CD ∴的长6062(cm)180ππ⨯==, 故选:B【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.8.B 【分析】根据圆的周长公式和正方形的周长公式先得到152y x π=-+,再根据S S S =-阴影正方形圆得到2215254S x x πππ⎛⎫=--+ ⎪⎝⎭,由此即可得到答案. 【详解】解:⊙正方形ABCD 和O 的周长之和为20cm ,圆的半径为cm x ,正方形的边长为cm y ,⊙4220y x π+=, ⊙152y x π=-+, ⊙S S S =-阴影正方形圆, ⊙22222211552524S y x x x x x ππππππ⎛⎫⎛⎫=-=-+-=--+ ⎪ ⎪⎝⎭⎝⎭, ⊙y 与x ,S 与x 满足的函数关系分别是一次函数关系,二次函数关系,故选B .【点睛】本题考查二次函数与一次函数的识别、正方形的周长与面积公式,理清题中的数量关系,熟练掌握二次函数与一次函数的解析式是解答的关键.9.(0,5)【分析】令0x =,代入抛物线245y x x =-+,得到点C 的纵坐标,即可得解.【详解】解:依题意,令0x =,得到5y =,故抛物线245y x x =-+与y 轴交于点C 的坐标为(0,5),故答案为 :(0,5)【点睛】本题考查了二次函数与y 轴交点问题,令0x =,即可得到抛物线与y 轴交点的纵坐标.10.21(1)22y x =+- 【分析】直接根据“上加下减,左加右减”进行计算即可. 【详解】解:抛物线2112y x =+,向左平移1个单位长度,再向下平移3个单位长度, 得到()211132y x =++- 即()21122y x =+- 故答案为:()21122y x =+-.【点睛】本题主要考查函数图像的平移;熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.11.0,(答案不唯一,1c <即可).【分析】利用一元二次方程根的判别式求出c 的取值范围即可得到答案.【详解】解:因为方程220x x c ++=有两个不相等的实数根,所以2Δ240c =->解得1c <故答案为:0,(答案不唯一,1c <即可)【点睛】本题主要考查了一元二次方程根的判别式;熟知一元二次方程根的判别式是解题的关键.12.0.9【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】⊙幼树移植数20000时,幼树移植成活的频率是0.902,⊙估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.13.(2,﹣1)【分析】根据平行四边形是中心对称图形,再根据⊙ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【详解】解:⊙⊙ABCD对角线的交点O为原点,A点坐标为(﹣2,1),⊙点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点睛】此题考查中心对称图形的顶点在坐标系中的表示.14.20°##20度【分析】连接OA,如图,根据切线的性质得到⊙OAB=90°,则利用互余可计算出⊙AOB=40°,再利用圆周角定理得到⊙ADC=20°,然后根据平行线的性质得到⊙OCD的度数.【详解】解:连接OA,如图,⊙AB切⊙O于点A,⊙OA⊙AB,⊙⊙OAB=90°,⊙⊙B=50°,⊙⊙AOB=90°-50°=40°,⊙⊙ADC =12⊙AOB =20°, ⊙AD ⊙OB ,⊙⊙OCD =⊙ADC =20°.故答案为:20°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理. 15.8.92【分析】由题意可知OC AB ⊥于D ,交圆弧于C ,由题意得4AO =米,120AOB ∠=︒解得122OD OA ==米,再求出CD ,最后由勾股定理得到AD ,由垂径定理求出AB 即可得出结果.【详解】解:如图,由题意可知,120AOB ∠=︒,AB CD ⊥,4OA OB ==(米),30,90DAO ADO ∴∠=︒∠=︒,12AD BD AB == 122OD OA ∴==(米) 422CD OC OD ∴=-=-=(米)AD ∴=2AB AD ∴==∴弧田面积()212AB CD CD =⨯+ ()21222=⨯+2=8.92≈(平方米)故答案为:8.92【点睛】本题考查了勾股定理以及垂径定理的应用;熟练掌握垂径定理是解答本题的关键.16.32d ≤【分析】根据题意分别求出当OP 过AB 的中点E 时,此时点P 与矩形ABCD 上所有点的连线中,d PE =;当OP 过顶点A 时,此时点P 与矩形ABCD 上所有点的连线中,d PA =;当OP 过顶点AD 边中点F 时,此时点P 与矩形ABCD 上所有点的连线中,d PF =,即可求解.【详解】解:如图,当OP 过AB 的中点E 时,此时点P 与矩形ABCD 上所有点的连线中,d PE =,112OE AD ==,⊙2d PE OP OE ==-=;如图,当OP 过顶点A 时,此时点P 与矩形ABCD 上所有点的连线中,d PA =,矩形,4,2ABCD AB AD ==,中心为O ,⊙2,90BC AD B ==∠=︒,⊙AC ==,⊙12OA AC ==⊙3d AP OP OA ==-=如图,当OP 过顶点AD 边中点F 时,此时点P 与矩形ABCD 上所有点的连线中,d PF =,122OF AB ==,⊙1d PF OP OF ==-=;综上所述,点P 到矩形的距离d 的取值范围为32d ≤.故答案为:32d ≤≤【点睛】本题考查矩形的性质,旋转的性质,根据题意得出临界点时点d 的值是解题的关键.17.(1)见解析;(2)BD ;⊥;经过半径的外端并且垂直于这条半径的直线是圆的切线.【分析】(1)依据题意,按步骤正确尺规作图即可;(2)结合作图,完成证明过程即可.【详解】(1)补全图形如图所示,(2)证明:连接BC ,BD .由作图可知,AC AD =,BC BD =.⊙BA OA ⊥,⊙ 点A 在O 上,⊙直线AB 是O 的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线, 故答案为:BD ;⊥;经过半径的外端并且垂直于这条半径的直线是圆的切线【点睛】本题考查了尺规作图能力和切线的证明;能够按要求规范作图是解题的关键.18.CD =【分析】由垂径定理得到CE DE =,推出CE OE =,在Rt COE △中,利用勾股定理即可求解.【详解】解:如图,连接OC .⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CE DE =.又⊙2CD OE =,⊙CE OE =.⊙4AB =,⊙2OC =.在Rt COE △中,222CE OE OC +=, ⊙CE ⊙CD =【点睛】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键.19.(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等(2)不正确,解答从第⊙步开始出错,1x =2x =【分析】(1)根据等式的性质2即可写出依据;(2)根据配方法解一元二次方程的步骤即可求解.【详解】(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;(2)不正确,解答从第⊙步开始出错,正确的步骤为: 配方,得22112p x x -+=+.⊙ 即22(1)2p x +-=⊙0p >,⊙1x -=⊙⊙1x =2x =.⊙此方程的解为1x =2x = 【点睛】本题考查等式的性质和解一元二次方程,解题的关键是读懂材料,明确每一步的做题依据.20.(1)4b =-,5c =-;(2)交点M 的坐标为(2,-3).【分析】(1)将点A 、点B 坐标代入函数解析式,求解方程组即可;(2)设直线AB 的解析式为:()0y kx b k =+≠,将点A 、点B 坐标代入函数解析式求解确定解析式,然后根据(1)中确定二次函数解析式,求出其对称轴,求两条之间交点即可确定点M 的坐标.【详解】解:(1)将点A 、点B 坐标代入函数解析式可得:50255c b c-=⎧⎨=++⎩, 解得:45b c =-⎧⎨=-⎩, ∴4b =-,5c =-;(2)设直线AB 的解析式为:()0y kx b k =+≠,将点A 、点B 坐标代入函数解析式可得:505b k b -=⎧⎨=+⎩, 解得:15k b =⎧⎨=-⎩, ∴一次函数解析式为:5y x =-,由(1)得二次函数解析式为:245y x x =--, 对称轴为:22b x a=-=, 直线5y x =-与2x =的交点为M ,∴当2x =时,=3y -,∴交点M的坐标为(2,-3).【点睛】题目主要考查利用待定系数法确定二次函数与一次函数解析式,两条直线的交点问题,二次函数的基本性质,理解题意,熟练运用待定系数法确定解析式是解题关键.21.(1)见解析(2)见解析(3)8【分析】(1)根据网格的特点作出点A关于点O的对称点1A;A B,即可求解;(2)根据题意,画出旋转后的线段11(3)根据网格的特点,以及三角形面积公式求得面积即可求解.【详解】(1)解:如图所示,点1A即为所求;A B即为所求;(2)解:如图所示,线段11(3)解:如图所示,118282ABB S =⨯⨯=. 【点睛】本题考查了画中心对称图形,画旋转图形,网格中求三角形面积,数形结合是解题的关键.22.13【分析】先画出树状图,从而可得所有等可能的结果,再找出小明和小亮选择相同模块的结果,然后利用概率公式计算即可得.【详解】解:由题意,画树状图如下:由图可知,所有等可能的结果共有9种,其中,小明和小亮选择相同模块的结果有3种. 则小明和小亮选择相同模块的概率为3193P ==, 答:小明和小亮选择相同模块的概率为13. 【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.23.(1)见解析(2)0m =,122,1x x =-=【分析】(1)判断判别式的符号,即可得证;(2)求出判别式的值最小时的m 的值,再解一元二次方程即可.【详解】(1)证明:⊙22(21)4(2)49m m m ∆=+-⨯-=+,⊙20m ≥,⊙2Δ490m =+>.⊙无论m 取何值,方程总有两个不相等的实数根.(2)解:由题意可知,当0m =时,249m ∆=+的值最小.将0m =代入2(21)20x m x m +++-=,得220x x +-=解得:122,1x x =-=.【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及解一元二次方程.熟练掌握判别式与根的个数的关系,以及解一元二次方程的方法,是解题的关键.24.(1)2.95,20.08(4) 2.95y x =--+(2)>【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值,并利用待定系数法得到抛物线解析式;(2)设着陆点的纵坐标为0,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标即为 1d 和2d ,然后进行比较即可.【详解】(1)解:由表格数据可知,抛物线的顶点坐标为(42.95),,所以实心球竖直高度的最大值为2.95,设抛物线的解析式为:2(4) 2.95y a x =-+,将点(01.67),代入,得1.6716 2.95a =+,解得0.08a =-,⊙抛物线的解析式为:20.08(4) 2.95y x =--+;(2)解:第一次抛物线解析式为20.08(4) 2.95y x =--+,令0y =,得到4x =(负值舍去), 第二次抛物线的解析式为20.09( 3.8) 2.97y x =--+,令0y =,得到 3.8x =+(负值舍去) 2954 3.88+ 12d d ∴>,故答案为:>【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.25.(1)见解析(2)FD =【分析】(1)连接OD ,证明DF OD AB OD ⊥⊥,,可得结论;(2)再Rt ACB △中,30A ∠=︒,AC =4AB =,2OD =,再在Rt ODF △中,由60F ∠=︒,继而求得FD ;【详解】(1)证明:连接OD .⊙ AB 是O 的直径,CD 平分ACB ∠,AD DB ∴=⊙ 90AOD BOD ∠=∠=︒.又⊙ FD AB ∥,⊙ 90ODF BOD ∠=∠=︒.即 OD DF ⊥.⊙ 直线DF 为O 的切线.(2)解:⊙ AB 是O 的直径,⊙90ACB ∠=︒.又⊙30A ∠=︒,AC =⊙ 4AB =.⊙ 2OD =.⊙ AO CO =,30ACO A ∴∠=∠=︒⊙ 60COB A ACO ∠=∠+∠=︒.⊙ DF AB ,⊙ 60F ∠=︒,30FOD ∴∠=︒,设,FD x =则22OF FD x ==,又2OD =,在Rt ODF △中,由勾股定理得:22224x x +=,解得:x =故FD = 【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,特殊角的直角三角形性质,等知识,解题的关键是学会添加常用辅助线解决问题.26.(1)抛物线与y 轴交点的坐标为()0,3,对称轴2x =(2)⊙=; ⊙3154a -≤<-【分析】(1)0x =,可得抛物线与y 轴交点的坐标,再根据抛物线对称轴公式解答,即可求解;(2)⊙根据题意可得点()()12,3,1,y y 关于直线2x =对称,即可求解;⊙根据题意可得点()()()2341,,,1,2,y y y --在对称轴的左侧,点()13,y 在对称轴的右侧,然后分两种情况:当0a >时,当a<0时,即可求解.【详解】(1)解:令0x =,则3y =,⊙抛物线与y 轴交点的坐标为()0,3 . 对称轴422a x a-=-=. (2)解:⊙ ⊙函数图象的对称轴为直线2x =,⊙点()()12,3,1,y y 关于直线2x =对称,⊙12y y =,故答案为:=;⊙⊙函数图象的对称轴为直线2x =,3112>>->-,⊙点()()()2341,,,1,2,y y y --在对称轴的左侧,点()13,y 在对称轴的右侧.当0a >时,在对称轴的左侧,y 随x 的增大而减小,⊙1234y y y y =<<,不合题意.当a<0时,在对称轴的左侧,y 随x 的增大而增大,则1234y y y y =>>,1y ,2y ,3y ,4y 四个函数值可以满足12340y y y y >=≥>,⊙340,0y y ≥<,即当=1x -时,3430y a a =++≥,当2x =-时,44830y a a =++<.解得 3154a -≤<-.【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与性质是解题的关键.27.(1)见解析(2)AF CD =,见解析 (3)BC CD =,见解析【分析】(1)根据旋转的性质画图即可;(2)根据旋转的性质以及等腰直角三角形可以得到全等三角形,再根据全等三角形的性质即可求出结论;(3)根据题意画出已知图形,再根据图形得到全等三角形,利用全等三角形的性质和等腰直角三角形的性质即可求出结论.【详解】(1)解:补全图形如图所示(2)解:AF CD =,理由如下:⊙EF AD ⊥⊙90EFD ∠=︒⊙90ACB ∠=︒⊙EFD BCD ∠=∠⊙90ACB ∠=︒⊙90CBD CDB ∠∠=︒+由题意可知,90BDE ∠=︒⊙90EDF BDC ∠∠=︒+⊙EDF CBD ∠=∠在EFD △和DCB △中EDF CBD EFD DCB ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩⊙EFD △⊙()AAS DCB⊙EF CD DF BC ==,⊙BC AC =⊙AC DF =⊙AF CD =(3)解:BC CD = 理由如下:连接DG ,FG⊙ DE BD =,G 为BE 的中点,90BDE ∠=︒⊙EG BG DG ==, 90DGB ∠=︒⊙90EFD DGE ∠=∠=︒⊙GEF CDG ∠=∠在EFG 和DCG △中EF DC GEF CDG EG DG =⎧⎪∠=∠⎨⎪=⎩⊙EFG ⊙SAS DCG ()⊙FG CG =,EGF DGC ∠=∠⊙90EGF EGC DGC EGC ∠+∠=∠+∠=︒即 90CGF ∠=︒⊙CGF △为等腰直角三角形 ⊙CF⊙ BC AC AF CF ==+,AF CD = ⊙BC CD =【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等相关知识点,掌握全等三角形的性质和旋转的性质是解题的关键.28.(1)()2,3(2)()3,2-(3)()3,3-,12,102B y ≤≤【分析】(1)根据二次关联图形的定义分别找到A '和A '',过点A '作A D x '⊥轴于点D ,可证得AOP PDA '≌,从而得到1,3OA PD OP A D '====,即可求解;(2)根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,过点P 作PE y ⊥轴于点E ,过点A '作A F x '⊥轴交EP 延长线于点F ,坐标为m ,表达点A '的坐标,可得出结论; (3)由(2)可知,点A ''的坐标,由A 关于点P 的二次关联图形在O 上且不与点A 重合可得出点A ''的坐标,由线段1AB =,其关于点P 的二次关联图形上的任意一点都在O 及其内部,找到临界点B '',可得出B ''的坐标,进而可得出点B 的坐标,即可得出B y 的取值范围.【详解】(1)如图1,根据二次关联图形的定义分别找到A '和A '',过点A '作A D x '⊥轴于点D ,⊙90A DP AOP '∠=∠=︒由旋转可知,90,APA AP A P ''∠=︒=,⊙90APO A PD A PD PA D '''∠+∠=∠+∠=︒,⊙APO PA D '∠=∠,⊙()AAS AOP PDA '≌,⊙1,3OA PD OP A D '====,⊙()4,3A ',⊙点A '和A ''关于直线3x =对称,⊙点()2,3A '',即点A 关于点P 的二次关联图形的坐标为()2,3;故答案为:()2,3(2)解:根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,如图,过点P 作PE y ⊥轴于点E ,过点A '作A F x '⊥轴交EP 延长线于点F ,由(1)得: AEP PFA '≌,⊙1,3AE PF m EP A F '==-==,⊙()4,3A m m '-+,根据题意得:点A 和点A '关于直线3x =对称,⊙46m -=,解得:2m =-,⊙点P 的坐标为()3,2-,(3)解:设点P 的纵坐标为n ,由(2)得:()4,3A n n '-+,⊙()2,3A n n ''++,⊙A ''在在O 上,⊙()()22231n n +++=,解得:2n =-(舍去)或3-,⊙点P 的坐标为()3,3-,⊙1AB =,AB 其关于点P 的二次关联图形上的任意一点都在O 及其内部,此时点B ''是一个临界点,连接OB ,如图,⊙1OA A B OB ''''''''===,⊙OA B ''''是等边三角形,过点B ''作B M x ''⊥轴于点M ,则12A M OM ''==,⊙B M ''=⊙1,2B ⎛''- ⎝⎭,⊙13,2B ⎛' ⎝⎭,⊙12B ⎫⎪⎝⎭,由对称性得:另一个点的坐标为12B ⎛⎫ ⎪ ⎪⎝⎭,⊙B y 的取值范围为102B y ≤≤. 【点睛】本题属于新定义类问题,主要考查轴对称最值问题,等边三角形的性质与判定,圆的定义等相关知识,关键是理解给出新定义,画出对应的图形.。
九年级(上)期末数学试卷一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.64.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4二、填空题9.一元二次方程x2=3x的解是:.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2017-2018学年云南省红河州九年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点评】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<2【考点】根的判别式;一元一次方程的解;一元二次方程的定义.【分析】分类讨论:当m=0,方程变形为﹣4x+2=0,一元一次方程有实数解;当m≠0,根据判别式的意义得到△=(﹣4)2﹣4m×2≥0,解得m≤2,然后综合两种情况即可.【解答】解:当m=0,方程变形为﹣4x+2=0,方程的解为x=;当m≠0,△=(﹣4)2﹣4m×2≥0,解得m≤2;综上所知当m≤2时,方程有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.6【考点】垂径定理的应用;勾股定理.【分析】过O作OD⊥AB交AB于C,交圆于点D,根据垂径定理求出BC的长,再根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:过O作OD⊥AB交AB于C,交圆于点D,如图所示:∴OD=OB=10,∵AB=16,∴由垂径定理得:BC=AB=8,∴OC===6,∴CD=OD﹣OC=10﹣6=4.故选A.【点评】本题考查了垂径定理的应用、勾股定理等知识;熟练掌握垂径定理与勾股定理是解决问题的关键.4.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm2【考点】正多边形和圆.【分析】根据正六边形的边长等于半径进行解答即可.【解答】解:∵正六边形内接于半径为2cm的圆内,∴正六边形的半径为2cm,∵正六边形的半径等于边长,∴正六边形的边长a=2cm;∴正六边形的面积S=6××2×2sin60°=6cm2.故选B.【点评】本题考查的是正六边形的性质,熟知正六边形的边长等于半径是解答此题的关键.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】根据x1、x2与对称轴的大小关系,判断y1、y2的大小关系.【解答】解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.【点评】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】可根据a>0时,﹣a<0和a<0时,﹣a>0分别判定.【解答】解:当a>0时,﹣a<0,二次函数开口向上,当b>0时一次函数过一,二,四象限,当b <0时一次函数过二,三,四象限;当a<0时,﹣a>0,二次函数开口向下,当b>0时一次函数过一,二,三象限,当b<0时一次函数过一,三,四象限.所以B正确.故选:B.【点评】本题主要考查了二次函数及一次函数的图象,解题的关键是根据a,b的取值来判定二次函数及一次函数的图象的正误.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P 在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.【点评】本题考查的是平面展开﹣最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.二、填空题9.一元二次方程x2=3x的解是:x1=0,x2=3.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为y=3(x+2)2﹣5.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=3x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣2,﹣5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣5),所以所得抛物线的解析式为y=3(x+2)2﹣5.故答案为y=3(x+2)2﹣5.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为:13.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为(﹣3,2).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】如图,作PQ⊥y轴于点Q,由P点坐标得PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,根据旋转的性质得∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,然后根据第二象限点的坐标特征可写出P′点的坐标.【解答】解:如图,作PQ⊥y轴于点Q,∵点P坐标为(﹣2,3),∴PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,∴∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,∴P′点的坐标为(﹣3,2).故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把点旋转的问题转化为直角三角形旋转的问题和画出旋转图形.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【考点】抛物线与x轴的交点;一次函数的性质.【专题】分类讨论.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出解;(2)原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义计算,第三项利用负整数指数幂、零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:(1)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0;(2)原式=﹣1﹣+1+4﹣2=4﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【考点】一元二次方程的应用.【专题】销售问题.【分析】首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【点评】本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.【考点】作图-旋转变换;作图-轴对称变换.【专题】计算题;作图题.【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式,结合摸出一个球是白球的概率为求出答案;(2)采用列表法或树状图法,解题时要注意是放回实验还是不放回实验.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.【点评】此题主要考查了树状图法求概率,解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【考点】三角形的内切圆与内心.【分析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.【解答】解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.【点评】此题要熟练运用切线长定理.注意解方程组的简便方法:三个方程相加,得到x+y+z的值,再进一步用减法求得x,y,z的值.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。
2022-2023学年第一学期九年级数学期末数学模拟试题(03)(考试时间:100分钟试卷满分:120分)考生注意:1.本试卷26道试题,满分120分,考试时间100分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.52.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.23.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.549.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为.12.已知2a=3b,其中b≠0,则=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为cm(精确到0.1).14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=cm.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是°.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.答案与解析一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.5【分析】根据极差的概念求解.【解答】解:极差为:3﹣(﹣2)=5.故选:D.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.2【分析】直接利用勾股定理得出AB的长,再利用锐角三角三角函数关系得出答案.【解答】解:∵Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB=,∴sin A===.故选:C.【点评】此题主要考查了锐角三角函数的定义,正确把握相关定义是解题关键.3.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】先把方程化为一般式,再计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:方程化为x2+2x+1=0,∵Δ=22﹣4×1=0,∴方程有两个相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm【分析】根据二次函数的定义逐项判断即可.【解答】解:A.正方体集装箱的体积ym3,棱长xm,则y=x3,故不是二次函数;B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm,则y=14πx2,故是二次函数;C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤,则y=,故不是二次函数;D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm,则y=南京与上海之间的距离﹣108x,故不是二次函数.故选:B.【点评】本题考查二次函数的实际应用,熟练掌握二次函数的定义是解题关键.5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m【分析】把t=4代入可得答案.【解答】解:把t=4代入得,h=9.8×42=78.4m.故选:B.【点评】本题考查二次函数的实际应用,根据题意把t=4代入是解题关键6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.2【分析】根据等腰直角三角形的性质得到=,=,进而得到=,得到△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:在Rt△ADB中,∠BAC=45°,则=,同理:=,∴=,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴==,∵DE=2,∴BC=2,故选:D.【点评】本题考查的是相似三角形的判定与性质、等腰直角三角形的性质,证明△ADE∽△ABC是解题的关键.7.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴以及抛物线与y轴的交点,即可判断①;由对称轴改善得到b=﹣2a 代入a﹣b+c<0中得3a+c<0,即可判断②;由x=﹣1时对应的函数值y<0,可得出a﹣b+c<0,得到a+c<b,x=1时,y>0,可得出a+b+c>0,得到|a+c|<|b|,即可得到(a+c)2﹣b2<0,即可判断③;由对称轴为直线x=1,即x=1时,y有最大值,即可判断④.【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,所以①正确;②当x=﹣1时,y<0,∴a﹣b+c<0,∵﹣=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c<0中得3a+c<0,所以②错误;③当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,当x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∴|a+c|<|b|∴(a+c)2<b2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最大值为a+b+c,∴a+b+c≥am2+mb+c,即a+b≥m(am+b),所以④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.54【分析】利用DE∥BC判定△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方,列出关系式即可求得结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC.∴.∵=,∴=.∴S△ABC=9S△ADE=54.故选:D.【点评】本题主要考查了相似三角形的判定与性质,利用相似三角形的判定方法得出△ADE∽△ABC是解题的关键.9.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°【分析】利用圆周角定理求解即可.【解答】解:∵∠BAC=BOC,∠BOC=64°,∴∠BAC=32°,故选:B.【点评】本题考查圆周角定理,解题的关键是理解圆周角定理,属于中考常考题型.10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC【分析】根据中线BE、CD交于点O,可得DE是△ABC的中位线,根据三角形的中位线定理得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴=,故A选项正确;∵DE∥BC,∴=,故B选项正确;∵DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故C选项错误;∵DE∥BC,∴△ADE∽△ABC,故D选项正确;故选:C.【点评】本题主要考查了三角形中位线定理以及相似三角形的判定与性质,解题时注意:三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为30°.【分析】根据30°角的余弦值等于解答.【解答】解:∵cos A=,∴锐角A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°的三角函数值是解题的关键.12.已知2a=3b,其中b≠0,则=.【分析】根据比例的性质等式两边都除以2b,即可得出答案.【解答】解:∵2a=3b,b≠0,∴除以2b,得=,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ad=bc,那么=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为 2.5cm(精确到0.1).【分析】设蝴蝶身体的长度为xcm,根据黄金比为列式计算即可.【解答】解:设蝴蝶身体的长度为xcm,由题意得,x:4=,解得,x=2﹣2≈2.5,故答案为:2.5.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比为是解题的关键.14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.【分析】让朝上一面的数字是6的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为6的只有1种,∴朝上一面的数字为6的概率为,故答案为:.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=2cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵圆锥的母线长是5cm,侧面积是10πcm2,∴圆锥的侧面展开扇形的弧长为:l===4π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===2cm,故答案为:2.【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为y=﹣2x2.【分析】直接利用二次函数的平移规律进而得出答案.【解答】解:将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为:y=﹣2x2.故答案为:y=﹣2x2.【点评】此题主要考查了二次函数图象与几何变换,正确掌握平移移规律是解题关键.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是t<﹣4或t≥12.【分析】根据抛物线的对称轴方程可求出抛物线的解析式,要使关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,只需直线y=t与抛物线y=x2+bx在﹣1<x<6的范围内没有交点,只需结合图象就可解决问题.【解答】解:∵抛物线y=x2+bx的对称轴为x=2,∴x=﹣=2,∴b=﹣4,∴抛物线的解析式为y=x2﹣4x.当x=﹣1时,y=5;当x=2时y=﹣4;当x=6时y=12.结合图象可得:当t<﹣4或t≥12时,直线y=t与抛物线y=x2﹣4x在﹣1<x<6的范围内没有交点,即关于x的一元二次方程x2﹣4x﹣t=0(t为实数)在﹣1<x<6的范围内无解.故答案为t<﹣4或t≥12.【点评】本题主要考查了抛物线的性质、抛物线上点的坐标特征等知识,运用数形结合的思想是解决本题的关键.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是48°.【分析】根据直径所对的圆周角是直角推出∠ACB=90°,再结合图形由直角三角形的性质得到∠B=90°﹣∠CAB=48°,进而根据同弧所对的圆周角相等推出∠D=∠B=48°.【解答】解:连接CB.∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=42°,∴∠B=90°﹣∠CAB=48°,∴∠D=∠B=48°.故答案为:48.【点评】本题考查圆周角定理,解题的关键是结合图形根据圆周角定理推出∠ACB=90°及∠D=∠B,注意运用数形结合的思想方法.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.【分析】(1)先代入三角函数值,再计算乘方和乘法即可;(2)先将方程整理成一般式,再利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)原式=()2+4××=3+;(2)整理成一般式,得:x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【分析】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE ∽△BCA,利用相似比得到AE=x,则DE=x,从而可计算出AE:DE.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)解:设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴=,即=,∴AE=x,∴DE=AD﹣AE=2x﹣x=x,∴AE:DE=x:x=1:3.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.【分析】(1)用负数的个数除以数字的总个数即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)第一次抽到写有负数的卡片的概率是,故答案为:;(2)画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上数字都为正数的有4种结果,所以两次抽出的卡片上数字都为正数的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【分析】(1)过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,由含30°角的直角三角形的性质即可得出答案;(2)由锐角三角函数定义求出DE,即可解决问题.【解答】解:(1)如图,过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,则CH⊥AG,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,∵i=1:=tanα=,∴α=30°,在Rt△ABH中,α=30°,AB=50m,∴BH=AB=25(m),答:山坡B距离山脚下地面的高度为25m;(2)由(1)得:FG=BH=25m,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG≈59.4+30+25=114.4≈114(m),答:山顶D距离山脚下地面的的高度约为114m.【点评】本题考查了解直角三角形的应用—仰角俯角问题、坡度坡角问题,正确作出辅助线构造直角三角形是解题的关键.23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?【分析】(1)根据利润=销售量×(单价﹣成本),列出函数关系式即可;(2)根据(1)求得的函数关系式进一步利用配方法求出答案即可;(3)首先由(2)中的函数得出降价x元时,每天要获得9750元的利润,进一步利用函数的性质得出答案.【解答】解:(1)由题意得:y=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,答:工厂每天的利润y元与降价x元之间的函数关系为y=﹣50x2+400x+9000;(2)由(1)得:y=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,∵﹣50<0,∴x=4时,y最大为9800,即当降价4元时,工厂每天的利润最大,最大为9800元;(3)﹣50x2+400x+9000=9750,解得:x1=3,x2=5,48﹣3=45,48﹣5=43,∴定价应为43﹣45元之间(含43元和45元).【点评】此题考查二次函数的实际运用,解题的关键是求得函数解析式,进一步利用函数的性质解决问题.24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.【分析】(1)如图1中,连接BC.想办法证明∠E=∠DCE即可;(2)①如图2中,根据等腰三角形的性质得到∠CFH=∠CHF,根据三角形外角的性质得到∠ACO=∠OBC,求得∠OCB=∠OBC,得到∠ACO=∠BCO=∠ACB=45°,推出AC=BC,根据全等三角形的性质即可得到结论;②连接OD交BC于G.设OG=x,则DG=2﹣x.利用勾股定理构建方程求解即可.【解答】(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.【点评】本题属于圆综合题,考查了圆周角定理,弧,圆心角,弦之间的关系,全等三角形的判定和性质,三角形的中位线,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.【分析】(1)①过点F作FG⊥BC交BC的延长线于M,利用AAS证明△ABE≌△EGF,得FM=BE=,EM=AB=BC,则CM=BE,从而求出CF的长;②利用△BAE∽△CEP,得,代入即可;(2)将△ADQ绕点A顺时针旋转90°得△ABG,首先由∠ABG=∠ABE=90°,得B,G,E三点共线,再利用SAS证明△GAE≌△EAQ,得∠AEG=∠AEQ,则有∠QEP=∠CEP,可得h=CP,利用②中结论得h=﹣m2+m=﹣(m﹣)2+.【解答】解:(1)①如图,过点F作FG⊥BC交BC的延长线于M,在等腰直角三角形AEF中,∠AEF=90°,AE=FE,在正方形ABCD中,∠B=90°,∴∠BAE+∠AEB=∠FEM+∠AEB,∴∠BAE=∠FEM,又∵∠B=∠FME,∴△ABE≌△EGF(AAS),∴FM=BE=,EM=AB=BC,∴CM=BE=∴FC==;②∵∠BAE=∠FEC,∠B=∠ECP=90°,∴△BAE∽△CEP,∴,即,∴CP=m﹣m2,即n=m﹣m2;(2)如图,将△ADQ绕点A顺时针旋转90°得△ABG,则AG=AQ,∠GAB=∠QAD,GB=DQ,∵∠EAF=45°,∴∠BAE+∠QAD=∠BAE+∠GAB=90°﹣45°=45°,即∠GAE=∠EAF=45°,∵∠ABG=∠ABE=90°,∴B,G,E三点共线,又∵AE=AE,∴△GAE≌△EAQ(SAS),∴∠AEG=∠AEQ,∴∠QEP=∠CEP,∴h=CP,∴h=﹣m2+m=﹣(m﹣)2+,即当m=时,h有最大值为.【点评】本题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,角平分线的判定,全等三角形的判定与性质,二次函数的性质等知识,作辅助线构造全等三角形证明∠QEP=∠CEF是解题的关键.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.【分析】(1)设C(t,t2),求出A、B点的坐标,利用勾股定理求t的值即可;(2)设A(﹣,m),C(t,t2),则B(,m),由勾股定理求得t2=2m﹣4,则当2m﹣4≥0时,此时△ABC是直角三角形;(3)①由(2)可得h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),由勾股定理求得t2=,可确定点A(﹣m,am2),C(t,),则h=.【解答】解:(1)∵点A的横坐标为﹣4,∴A(﹣4,8),∵AB∥x轴,∴B(4,8),设C(t,t2),∵△ABC为直角三角形,∴AB2=AC2+BC2,即(t+4)2+(t2﹣8)2+(4﹣t)2+(t2﹣8)2=64,∴t2=16(舍)或t2=12,∴C(2,6)或C(﹣2,6);(2)不是总存在,理由如下:设A(﹣,m),C(t,t2),则B(,m),∵AB2=AC2+BC2,即(t+)2+(t2﹣m)2+(﹣t)2+(t2﹣m)2=8m,∴t2=2m(舍)或t2=2m﹣4,当2m﹣4≥0时,m≥2,此时△ABC是直角三角形;(3)①h的大小不改变,理由如下:由(2)可知,C(,m﹣2)或C(﹣,m﹣2),∴C点的纵坐标为m﹣2,∵AB边上的高为h,∴h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),∵AB2=AC2+BC2,即(t+m)2+(at2﹣am2)2+(m﹣t)2+(at2﹣am2)2=4m2,∴t2=m2(舍)或t2=,∴A(﹣m,am2),C(t,),∴h=am2﹣=.【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,灵活应用勾股定理,准确计算是解题的关键.。
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2022-2023学年上学期杭州九年级初中数学期末典型试卷3一.选择题(共10小题)1.(2021春•西湖区期末)某口罩生产厂2020年1月份平均日产20万个,1月底因防控新冠疫情需求,工厂立即决定从2月份起扩大产能,3月份平均日产量达到45万个.则口罩日产量的月平均增长率是()A.20%B.30%C.40%D.50%2.(2021春•上城区期末)已知关于x的一元二次方程ax2+bx+c=0(a≠0),下列命题是真命题的有()①若a+2b+4c=0,则方程ax2+bx+c=0必有实数根;②若b=3a+2,c=2a+2,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若t是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2at+b)2.A.①②B.②③C.①④D.③④3.(2020秋•西湖区期末)对称轴为y轴的二次函数是()A.y=(x+1)2B.y=2(x﹣1)2C.y=2x2+1D.y=﹣(x﹣1)24.(2021春•西湖区校级期末)在平面直角坐标系中,将抛物线y=﹣2x2+3向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣25.(2021春•上城区期末)“潮涌”是2022年杭州亚运会会徽,钱塘江和钱江潮头是会徽的形象核心,如图是会徽的一部分,在以下四个选项中,能由该图经过平移得到的是()A.B.C.D.6.(2021春•江干区期末)下列垃圾分类的标志中是中心对称图形的是()A.B.C.D.7.(2020秋•上城区期末)已知圆内接四边形ABCD中,∠A:∠C=1:2,则∠A=()A.50°B.60°C.100°D.120°8.(2020秋•萧山区期末)数轴上有两个点A和B,点B表示实数6,点A表示实数a,⊙B半径为4.若点A在⊙B内,则()A.a<2或a>10B.2<a<10C.a>2D.a<109.(2020秋•萧山区期末)下列事件中,属于不可能事件的是()A.a是实数,则|a|≥0B.任意一个三角形都有外接圆C.抛掷一枚骰子,朝上面的点数是6D.一匹马奔跑的速度是每秒100米10.(2020秋•拱墅区期末)任意抛掷一枚均匀的骰子,骰子停止转动后,发生可能性最大的事件是()A.朝上一面的点数大于2B.朝上一面的点数为3C.朝上一面的点数是2的倍数D.朝上一面的点数是3的倍数二.填空题(共10小题)11.(2020秋•拱墅区校级期末)一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率 .12.(2020秋•杭州期末)某射手在同一条件下进行射击,结果如下表所示:射击次数(n )10 20 50 100 200 500 … 击中靶心次数(m ) 8 1745 92 182 453 … 击中靶心频率(m n) 0.80 0.85 0.90 0.92 0.91 0.905 … 由此表估计这个射手射击1次,击中靶心的概率是 .(保留一位小数)13.(2020秋•滨江区期末)一个仅装有球的不透明布袋里共有4个球(只有颜色不同),其中3个是红球,1个是黑球,从中任意摸出一个球,是黑球的概率为 .14.(2020秋•拱墅区校级期末)如图⊙O 的直径为20,圆心O 到弦AB 的距离OM 的长为6,则弦AB 的长是 .15.(2020秋•杭州期末)已知圆心角为60°的扇形的弧长为π,则扇形的半径为 .16.(2020秋•滨江区期末)若扇形的面积为24π,圆心角为216°,则它的弧长是 .17.(2021春•西湖区校级期末)在平面直角坐标系中,点P (3,−√2)关于原点的对称点P ′的坐标是 .18.(2020秋•拱墅区期末)如图是一可调节座椅的侧面示意图,靠背AO 与地面垂直,为了使座椅更舒适,现调整靠背,把OA 绕点O 旋转到OA '处,若AO =m ,∠AOA '=α,则调整后点A '比调整前点A 的高度降低了 (用含m ,α的代数式表示).19.(2021春•拱墅区期末)如果抛物线y =x 2﹣6x +c ﹣1的顶点到x 轴的距离是4,则c 的值等于 .20.(2021春•拱墅区期末)关于x 的一元二次方程x 2+mx +3=0的一个根是2,则m 的值为 .三.解答题(共10小题)21.(2021春•上城区校级期末)计算或解方程:(1)√23−(16√24−32√12).(2)2x 2﹣7x +5=0.22.(2021春•西湖区校级期末)疫情期间,某企业每日需向疫情严重的地区捐赠20万只口罩.该企业原口罩日产量为40万只,经政府出资两次加大设备投入后,日产量提升为90万只.每日用于销售的口罩当日全部售出,且每只口罩的成本和销售单价始终不变,该企业原来每日亏损4万元,加大设备投入后,每日盈利11万元.(1)求两次口罩日产量的平均增长率;(2)求每只口罩的成本和单价.23.(2020秋•拱墅区校级期末)已知二次函数y =ax 2+bx 的图象过点(2,0),(﹣1,6).(1)求二次函数的关系式,并在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y <0时,x 的取值范围;(3)若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.24.(2020秋•萧山区期末)已知二次函数y =ax 2+4ax +3a (a 为常数).(1)若二次函数的图象经过点(2,3),求函数y 的表达式.(2)若a >0,当x <m 3时,此二次函数y 随着x 的增大而减小,求m 的取值范围.(3)若二次函数在﹣3≤x ≤1时有最大值3,求a 的值.25.(2020秋•滨江区期末)已知,如图,⊙O 中两条弦AB ,CD 相交于点E ,且AB =CD .(1)求证:AĈ=BD ̂; (2)若∠AEC =80°,求∠A 的度数;(3)过点B作BH⊥AD于点H,交CD于点G,若AE=2BE,求证:EG=GD.26.(2020秋•滨江区期末)如图,⊙O的直径AB垂直于弦CD,连接OD,AC,若∠CAO=56°.̂=BD̂;(1)求证:BC(2)求∠AOD的度数.27.(2020秋•西湖区期末)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=5,AC=3.连接OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求EF:FD的值.28.(2020秋•滨江区期末)如图,转盘中A,B,C三个扇形的圆心角均为120°,让转盘自由转动两次,当转盘停止转动时,求指针两次都落在A扇形的概率.(转盘停止转动时,若指针箭头恰好停留在分界线上,则重转一次)29.(2020秋•萧山区期末)设有3个型号相同的杯子,其中一等品2个,二等品1个.从中任取1个杯子,记下等级后放回,第二次再从中取1个杯子.求:(1)第一次取出的杯子是一等品的概率.(2)用树状图或列表的方法求两次取出都是一等品的概率.30.(2020秋•江干区期末)有A、B、C三种款式的衣服,E、F、G三种款式的裤子,小江任意选一件衣服和一件裤子.(1)请用列表法或画树状图的方法表示小江有多少种不同的可能;(2)求恰好选中A款衣服和E款裤子的概率.。
九年级数学期末试卷(3)
一、选择题
1.已知关于x 的方程2x 2
-9x +n =0的一个根是2,则n 的值是 (
)
A .n =2
B .n =10
C .n =-10
D .n =10或n =2
2.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为31
,那么袋中共有球的个数为
( ) A .6个 B .7个 C .9个 D .12个
3.已知锐角α,且tan α=cot37°,则α等于( )A .37° B .63° C .53° D .45°
4.如图2,已知AD 是△ABC 的中线,AE=EF=FC ,下面给出三个关系式:①. AG:AD=1:2; ②. GE:BE=1:3 ③. BE:BG= 4:3,其中正确的为 ( ) A. ① ② B .① ③ C. ② ③ D. ①②③
5. 如图3,△ABC ,AB=12,AC=15,D 为AB 上一点,且AD=32
AB ,若在AC 上取一点E ,使以A 、D 、E 为顶点的三角形与 ABC 相似,则AE 等
于( ) A. 16 B. 10 C. 16或32/5 D. 以上答案都不对 6、如图,在矩形
ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R
不动时,下列结论正确的是( )。
A 线段EF 的长逐渐增长
B 线段EF 的长逐渐减小
C 线段EF 的长始终不变
D 线段EF 的长与点P 的位置有关 7、如图,正方形
ABCD 中,E F 、分别为AB BC 、的中点,AF
与DE 相交于点O ,则AO DO
= ( )
A .
3
1
B .5
52
C .
23
D .
2
1
8、若∠A 是锐角,且sinA =
3
1,则( )
A .00
<∠A<300
B .300
<∠A<450
C .450
<∠A<600
D .600
<∠A<900
9、如图,在钝角三角形ABC 中,AB =6cm ,AC =12cm ,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1cm/秒,点E 运动的速度为2cm/秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( ).
A .3秒或4.8秒
B .3秒
C .4.5秒
D . 4.5秒或4.8秒
10、如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是( )
A .5
8
B .
12
C .
34
D .
78
二、填空题(每题3分,共27分): 11. 关于x 的一元二次方程
()21
1680k k x
x +-++= 的解为_________________.
12.在△ABC 中,(2sinA-1)2
=0,则△ABC 的形状为_________________.
13. 如图4,表示△AOB 以O 位似中心,扩大到△COD ,各点坐标分别为:A (1,2)、B (3,0)、D (4,0)则点C 坐标为 . 14、已知1x ,2x 是方程2
630x
x ++=的两实数根,则
21
12
x x x x +的值为__ ____
15、如图,正三角形△111A B C 的边长为1,取△111A B C 各边的中点2A 、2B 、2C ,作第二个正三角形△222A B C ,再取△222A B C 各
边的中点3
A 、3
B 、3
C ,作第三个正三角形△
333A B C ,…用同样的方法作正三角形则第10个正三角形△101010A B C 的面积是 。
16. 观察图5,若第一个图中阴影部分面积为1,第二个图中阴影部分面积为43
,第三个图中阴影部分面积为169,第四图中阴影部分的面积
为6427
,则第n 个图中阴影部分面积为: 。
17、如图,公园原有一块正方形空地,后来从这块空地上划出部分区域栽种鲜花,原空地一边减少了1米,另一边减少了2米,剩余空地面
积为12平方米,求原来正方形空地的边长。
若设原来正方形空地的边长为x 米,则可列方程 ; 18、如图,在△ABC 中,90
C
=∠,AC =8cm ,AB 的垂直平分线MN 交AC 于D ,连BD ,若cos ∠BDC =
5
3
,则BC 的长为 。
19、小华在书上看到一个标有1,2,3,4的均匀转盘(如图),想做一做实验,研究转盘指针转动后停留在区域“1”上的机会的大小,但没有转盘,请你为小华找三种不同的满足条件的替代物作模拟实验.实物替代物:
① ② ;③ ;
20、如图,墙上挂着两串物品,A 、B 、C 、D 、E 每次从某一串的最下面取下一个物品,这样取五次将五件物品取完,那么共有 取法。
三、解答下列各题: 21.解方程: )5(2)5(2-=-x x 22.计算
(1)01(π4)sin 30
2
---
23.已知关于x 的方程2
244680x mx m m -+--=有两个实数根α、β
, m 是负整数.求:① m 的值;②2
2α
β+的值.
第15题图
1
A 1
B 1
C 2
C 2
B 2
A 3
A 3
B 3
C
(第9题图)
C
第
10题
图3
第6题图
B
C D E
F
P
R
A
B
C E F
第7题
第17题图
第19题
图(14)
第18题
24、改革开放以来,鹤壁人民创造性地执行党的路线方针政策,把握机遇,发挥优势,艰苦创业,经济社会发生了天翻地覆的变化。
2008年鹤壁市农村居民人均收入为6000元,到2010年增长至7260元。
(1)求这两年中,农村居民人均收入平均每年的增长率。
(2)按此增长率预测,到2012年,农村居民人均收入可达多少元?
25、 如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,•为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长多少?(精确到0.1)
26、在一个箱子中放有三张完全相同的卡片,卡片上分别标有数字1,2,3.从箱子中任意取出一张卡片,用卡片上的数字作为十位数字,然后放回,再取出一张卡片,用卡片上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题. (1)按这种方法能组成哪些两位数? (2)组成的两位数是2的倍数的概率是多少?
27、.如图,梯形ABCD 中,AB ∥CD ,且AB=2CD ,E ,F 分别是AB ,BC •的中点,EF 与BD 相交于点M . (1)求证:△EDM ∽△FBM ;(2)若DB=9,求BM .
28、如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1cm/ s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动。
设运动时间为t(s),解答下列问题:
(1)当t 为何值时,△BPQ 为直角三解形;(2)设△BPQ 的面积为S(cm2),求S 与t 的函数关系式;(3)作QR ∥BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?
29、如图,在矩形ABCD 中,6AB
=,12BC =。
动点M 、N 分别从点B 、D 同时出发,以每秒1个单位长度的速度运动。
其中点M 沿
BC 向终点C 运动,点N 沿DA 向终点A 运动,过点N 作NP BC ⊥于点Q ,交AC 于点P ,连接MP .设动点运动的时间为t 秒.
(1)当6t =时,PM = ;(2)t 为何值时,△PMC 的面积等于矩形ABCD 面积的
1
9
?
30、Rt △AOB 在平面直角坐标系内的位置如图所示,点O 为原点,点A (0,8),点B (6,0),点P 在线段AB 上,且6AP
=.(1)求点P
的坐标;(2)x 轴上是否存在点Q ,使得以B 、P 、Q 为顶点的三角形与△AOB 相似.若存在,请求出点Q 的坐标,若不存在,请说明理由。
A
B
C
D N
P
Q
M。