40.中考数学专题 反比例函数数学母题题源系列原卷版
- 格式:docx
- 大小:284.56 KB
- 文档页数:14
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
专题09.反比例函数一、单选题1.(2021·山西中考真题)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫ ⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小2.(2021·四川达州市·中考真题)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<3.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =-- D .11y x=-和21y x =-+ 4.(2021·天津中考真题)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( ) A .123y y y <<B .231y y y <<C .132y y y <<D .312y y y <<5.(2021·四川乐山市·中考真题)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A .3B .3或32C .3+或3-D .36.(2021·重庆中考真题)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0ky x x=>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOFS =,则k 的值为( ) A .73B .214C .7D .2127.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCDk kS-=;③()21212DCPk k Sk -=,其中正确的是( ) A .①②B .①③C .②③D .①8.(2021·浙江宁波市·中考真题)如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是( )A .2x <-或2x >B .20x -<<或2x >C .2x <-或02x <<D .20x -<<或02x << 9.(2021·浙江金华市·中考真题)已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( ) A .120y y <<B .210y y <<C .120y y <<D .210y y <<10.(2021·江苏连云港市·中考真题)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限; 丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .2yx D .1y x=-11.(2021·浙江温州市·中考真题)如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x ⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k的值为( )A .2B .2C .94D .12.(2021·浙江嘉兴市·中考真题)已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是( ) A .2130y y y <<< B .1230y y y <<< C .3210y y y <<<D .3120y y y <<<13.(2021·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF 的面积为1,则k 的值为( ) A .125B .32C .2D .314.(2021·四川自贡市·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( ) A .函数解析式为13I R=B .蓄电池的电压是18VC .当10A I ≤时, 3.6R ≥ΩD .当6R =Ω时,4A I = 15.(2021·浙江丽水市·中考真题)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力 F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( ) A .甲同学B .乙同学C .丙同学D .丁同学16.(2020·西藏中考真题)如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( ) A .1B .2C .3D .417.(2020·辽宁铁岭市·)如图,矩形ABCD 的顶点D 在反比例函数(0)ky x x=>的图象上,点(1,0)E 和点(0,1)F 在AB 边上,AE EF =,连接,//DF DF x 轴,则k 的值为( )A .B .3C .4D .18.(2020·山东烟台市·中考真题)如图,正比例函数y 1=mx ,一次函数y 2=ax+b 和反比例函数y 3=kx的图象在同一直角坐标系中,若y 3>y 1>y 2,则自变量x 的取值范围是( )A .x <﹣1B .﹣0.5<x <0或x >1C .0<x <1D .x <﹣1或0<x <119.(2020·黑龙江大庆市·中考真题)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是( )A .①②B .①④C .②③D .③④20.(2020·山东威海市·中考真题)如图,点(,1)P m ,点(-2,)Q n 都在反比例函数4y x=的图象上,过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则( )A .12:2:3S S =B .12:1:1S S =C .12:4:3S S =D .12:5:3S S =21.(2020·广西中考真题)如图,点,A B 是直线y x =上的两点,过,A B 两点分别作x 轴的平行线交双曲线()10y x x=>于点,C D.若AC =,则223OD OC -的值为( ) A .5B.C .4D.22.(2020·湖南郴州市·中考真题)在平面直角坐标系中,点A 是双曲线11(0)k y x x=>上任意一点,连接AO ,过点O 作AO 的垂线与双曲线22(0)k y x x=<交于点B ,连接AB .已知2AOBO =,则12k k =( ) A .4B .4-C .2D .2-23.(2020·江苏徐州市·中考真题)如图,在平面直角坐标系中,函数4y x=()0x >与1y x =-的图像交于点(),P a b ,则代数式11a b-的值为( ) A .12-B .12C .14-D .1424.(2020·湖北中考真题)如图,菱形ABCD 的顶点分别在反比例函数1k y x =和2ky x=的图象上,若120BAD ∠=︒,则12k k =( ) A .13B .3CD25.(2020·湖北武汉市·中考真题)若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A .1a <-B .11a -<<C .1a >D .1a <-或1a >26.(2020·湖北咸宁市·中考真题)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-27.(2020·湖北鄂州市·中考真题)如图,点123,,A A A 在反比例函数1(0)y x x=>的图象上,点123,,n B B B B 在y 轴上,且11212323B OA B B A B B A ∠=∠=∠=,直线y x =与双曲线1y x=交于点111122123322,,A B A OA B A B A B A B A ⊥⊥⊥,,则n B (n 为正整数)的坐标是( ) A.B.C. D.28.(2020·湖南湘西土家族苗族自治州·中考真题)已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A -,下列说法正确的是( )A .正比例函数1y 的解析式是12y x =B .两个函数图象的另一交点坐标为()4,2-C .正比例函数1y 与反比例函数2y 都随x 的增大而增大D .当2x <-或02x <<时,21y y < 29.(2020·天津中考真题)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<30.(2020·湖南衡阳市·中考真题)反比例函数ky x=经过点(2,1),则下列说法错误..的是( ) A .2k =B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小31.(2019·湖南娄底市·中考真题)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为( ) A .111y x =++ B .111y x =-+ C .111y x =+- D .111y x =--32.(2019·湖南娄底市·中考真题)如图,⊙O 的半径为2,双曲线的解析式分别为1y x =和1y x=-,则阴影部分的面积是( ) A .4π B .3πC .2πD .π二、填空题目33.(2021·浙江绍兴市·中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数ky x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______. 34.(2021·湖南中考真题)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.35.(2021·湖北武汉市·中考真题)已知点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,则a 的取值范围是__________.36.(2021·湖南株洲市·中考真题)点()11,A x y 、()121,B x y +是反比例函数ky x=图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________. 37.(2021·陕西中考真题)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”)38.(2021·浙江宁波市·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x 的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.39.(2021·云南中考真题)若反比例函数的图象经过点()1,2-,则该反比例函数的解析式(解析式也称表达式)为_________.40.(2020·山东日照市·中考真题)如图,在平面直角坐标系中,▱ABCD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于x 轴的负半轴上,双曲线y =kx(k <0,x <0)与▱ABCD 的边AB ,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣12,5),把△BOC 沿着BC 所在直线翻折,使原点O 落在点G 处,连接EG ,若EG ∥y 轴,则△BOC 的面积是_____.41.(2020·湖北荆门市·中考真题)如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,()2,1B -,将OAB 绕点O 顺时针旋转,点B 落在y 轴上的点D 处,得到OED ,OE 交BC 于点G ,若反比例函数(0)ky x x=<的图象经过点G ,则k 的值为______. 42.(2020·广西中考真题)反比例函数y =kx(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有_____个.43.(2020·内蒙古呼伦贝尔市·中考真题)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为(0,3),点A 在x 轴的正半轴上.直线1y x =-分别与边,AB OA 相交于,D M 两点,反比例函数(0)ky x x=>的图象经过点D 并与边BC 相交于点N ,连接MN .点P 是直线DM 上的动点,当CP MN =时,点P 的坐标是________________.44.(2020·江苏宿迁市·中考真题)如图,点A 在反比例函数y =kx(x >0)的图象上,点B 在x 轴负半轴上,直线AB 交y 轴于点C ,若AC BC=12,△AOB 的面积为6,则k 的值为_____. 45.(2020·辽宁锦州市·中考真题)如图,平行四边形ABCD 的顶点A 在反比例函数(0)ky x x=>的图象上,点B 在y 轴上,点C ,点D 在x 轴上,AD 与y 轴交于点E ,若3BCES=,则k 的值为_______.46.(2020·江苏南通市·中考真题)将双曲线y =3x向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx ﹣2﹣k (k >0)相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)=_____.47.(2020·湖南永州市·中考真题)如图,正比例函数y x =-与反比例函数6y x=-的图象交于A ,C 两点,过点A 作AB x ⊥轴于点B ,过点C 作CD x ⊥轴于点D ,则ABD △的面积为_________.48.(2020·山东东营市·中考真题)如图,在平面直角坐标系中,已知直线1y x =+和双曲线1y x=-,在直线上取一点,记为1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交直线于点2A ,过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交直线于点3,A ······,依次进行下去,记点n A 的横坐标为n a ,若12,a =则2020a =______.49.(2020·广东深圳市·中考真题)如图,在平面直角坐标系中,ABCO 为平行四边形,O (0,0),A (3,1),B (1,2),反比例函数(0)ky k x=≠的图象经过OABC 的顶点C ,则k =___.50.(2020·广西玉林市·中考真题)已知函数1y x =与函数21y x=的部分图像如图所示,有以下结论: ①当0x <时,12,y y 都随x 的增大而增大;②当1x <-时, 12y y >;③12,y y 的图像的两个交点之间的距离是2;④函数12y y y =+的最小值为2;则所有正确的结论是_________.51.(2020·辽宁抚顺市·中考真题)如图,在ABC ∆中,AB AC =,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.52.(2020·江苏盐城市·中考真题)如图,已知点()5,2,54()(),81A B C ,,,直线l x ⊥轴,垂足为点0(),M m ,其中52m <,若A B C '''与ABC 关于直线l 对称,且A B C '''有两个顶点在函数(0)k y k x=≠的图像上,则k 的值为:_______________________.53.(2020·江苏淮安市·中考真题)如图,等腰ABC ∆的两个顶点(1,4)A --、(4,1)B --在反比例函数1k y x=(0x <)的图象上,AC BC =.过点C 作边AB 的垂线交反比例函数1k y x =(0x <)的图象于点D ,动点P 从点D 出发,沿射线CD 方向运动到达反比例函数2ky x=(0x >)图象上一点,则2k =__________.54.(2020·湖北鄂州市·中考真题)如图,点A 是双曲线1(0)y x x=<上一动点,连接OA ,作OB OA ⊥,且使3OB OA =,当点A 在双曲线1y x =上运动时,点B 在双曲线k y x=上移动,则k 的值为___________.55.(2020·河北中考真题)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________; (3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.56.(2020·四川自贡市·中考真题)如图, 直线y b =+与y 轴交于点A ,与双曲线ky x=在第三象限交于B C 、两点,且 ⋅=AB AC 16;下列等边三角形11OD E ,122E D E ,233E D E ,……的边1OE ,12E E ,23E E ,……在x 轴上,顶点123D ,D ,D ,……在该双曲线第一象限的分支上,则k = ____,前25个等边三角形的周长之和为 _______.57.(2019·贵州安顺市·中考真题)如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.59.(2019·湖南长沙市·中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =+25MF MB =,则MD =2MA .其中正确的结论的序号是_______.60.(2019·四川南充市·中考真题)在平面直角坐标系xOy 中,点(3,2)A m n 在直线1y x =-+上,点(,)B m n 在双曲线ky x=上,则k 的取值范围为___________. 三、解答题61.(2021·湖北随州市·中考真题)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2my x=(0m >)的图象交于点()1,2C ,()2,D n . (1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积.62.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,Rt ABC 的斜边BC 在x 轴上,坐标原点是BC 的中点,30ABC ∠=︒,4BC =,双曲线ky x=经过点A .(1)求k ;(2)直线AC 与双曲线y =D .求ABD △的面积.63.(2021·四川广安市·中考真题)如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.64.(2021·浙江杭州市·中考真题)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.65.(2021·山东临沂市·中考真题)已知函数()()()31 31131x x y x x x x⎧≤-⎪⎪=-⎨⎪⎪≥⎩<<(1)画出函数图象;列表:描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=.66.(2021·安徽中考真题)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m ,2).(1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.67.(2021·浙江中考真题)已知在平面直角坐标系xOy 中,点A 是反比例函数1(0)y x x=>图象上的一个动点,连结,AO AO 的延长线交反比例函数(0,0)ky k x x=><的图象于点B ,过点A 作AE y ⊥轴于点E .(1)如图1,过点B 作BF x ⊥轴于点F ,连结EF .①若1k =,求证:四边形AEFO 是平行四边形; ②连结BE ,若4k =,求BOE △的面积.(2)如图2,过点E 作//EP AB ,交反比例函数(0,0)ky k x x=><的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,POE △的面积是否会发生变化?请说明理由.68.(2021·四川乐山市·中考真题)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.69.(2021·重庆中考真题)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.(1)写出函数关系式中m 及表格中a ,b 的值:m =________,a =_________,b =__________; (2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________;(3)已知函数16y x=的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.70.(2021·四川自贡市·中考真题)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数28xy =-的图象,并探究其性质.列表如下:(1)直接写出表中a 、b 的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题: ①当22x -≤≤时,函数图象关于直线y x =对称;②2x =时,函数有最小值,最小值为2-;③11x -<<时,函数y 的值随x 的增大而减小.其中正确的是_________.(请写出所有正确命题的序号) (3)结合图象,请直接写出不等式284xx x >+的解集_________.71.(2021·四川遂宁市·中考真题)如图,一次函数1y =k x + b (k ≠0)与反比例函数2my x=(m ≠0)的图象交于点A (1,2)和B (-2,a ),与y 轴交于点M .(1)求一次函数和反比例函数的解析式;(2)在y 轴上取一点N ,当△AMN 的面积为3时,求点N 的坐标; (3)将直线1y 向下平移2个单位后得到直线y 3,当函数值123y y y >>时,求x 的取值范围.72.(2021·四川凉山州·中考真题)如图,AOB 中,90∠=︒ABO ,边OB 在x 轴上,反比例函数(0)ky x x=>的图象经过斜边OA的中点M,与AB相交于点N,912,2AOBS AN==.(1)求k的值;(2)求直线MN的解析式.73.(2021·四川泸州市·中考真题)一次函数y=kx+b(k≠0)的图像与反比例函数myx=的图象相交于A(2,3),B(6,n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求PQMN的值74.(2020·柳州市柳林中学中考真题)如图,平行于y轴的直尺(部分)与反比例函数myx=(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:①点A的坐标是;②不等式mkx bx+>的解集是;(2)求直线AC的解析式.75.(2020·山东济南市·中考真题)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,),反比例函数kyx=(x>0)的图象与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.76.(2020·江苏镇江市·中考真题)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣8x的图象交于点A(n,2)和点B.(1)n=,k=;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.77.(2020·内蒙古赤峰市·中考真题)阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12b x x a +=-,12cx x a⋅=. 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”;(3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.78.(2020·四川绵阳市·中考真题)如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数y =k x(k <0)的图象在第二象限交于A (﹣3,m ),B (n ,2)两点.(1)当m =1时,求一次函数的解析式; (2)若点E 在x 轴上,满足∠AEB =90°,且AE =2﹣m ,求反比例函数的解析式.79.(2020·云南昆明市·中考真题)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min ;完成2间办公室和1间教室的药物喷洒要11min .(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y (单位:mg /m 3)与时间x (单位:min )的函数关系如图所示:校医进行药物喷洒时y 与x 的函数关系式为y =2x ,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为A (m ,n ).当教室空气中的药物浓度不高于1mg /m 3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.80.(2020·四川眉山市·中考真题)已知一次函数y kx b =+与反比例函数my x=的图象交于(3,2)A -、(1,)B n 两点.(1)求一次函数和反比例函数的表达式;(2)求AOB 的面积;(3)点P 在x 轴上,当PAO 为等腰三角形时,直接写出点P 的坐标.81.(2020·湖北荆州市·中考真题)九年级某数学兴趣小组在学习了反比例函数的图像和性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下: (1)绘制函数图像,如图1①列表;下表是x 与y 的几组对应值,其中______m =;②描点:根据表中各组对应值(x ,y)在平面直角坐标系中描出了各点;③连线:用平滑的曲线顺次连接各点,画出了部分图像,请你把图像补充完整;(2)通过观察图1,写出该函数的两条性质:①_______________;②_______________; (3)①观察发现:如图2,若直线y=2交函数2y x=的图像于A ,B 两点,连接OA ,过点B 作BC//OA 交x 轴于点C ,则________OABC S =;②探究思考:将①的直线y=2改为直线y=a(a>0),其他条件不变,则________OABC S =; ③类比猜想:若直线y=a(a>0)交函数(0)ky k x=>的图像于A ,B 两点,连接OA ,过点B 作BC//OA 交x 轴于C ,则________OABC S =;82.(2020·湖南郴州市·中考真题)为了探索函数1(0)y x x x=+>的图象与性质,我们参照学习函数的过程与方法.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图1所示:(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象; (2)已知点1122(,),(,)x y x y 在函数图象上,结合表格和函数图象,回答下列问题:若1201x x <<≤,则1y 2y ;若121x x <<,则1y 2y ;若121x x ⋅=,则1y 2y (填“>”,“=”,“<”). (3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米,设水池底面一边的长为x 米,水池总造价为y 千元.①请写出y 与x 的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x 应控制在什么范围内?83.(2020·甘肃天水市·中考真题)如图所示,一次函数()0y mx nm =+≠的图象与反比例函数()0ky k x=≠的图象交于第二、四象限的点()2,A a -和点(),1B b -,过A 点作x 轴的垂线,垂足为点C ,AOC △的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出kmx n x +>中x 的取值范围; (3)在y 轴上取点P ,使PB PA -取得最大值时,求出点P 的坐标.84.(2019·江苏泰州市·中考真题)已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ①求m ,k 的值;②直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .①若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;②过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d .祝你考试成功!祝你考试成功!。
中考数学总复习《反比例函数》专项测试卷-带参考答案一、单选题(共12题;共24分)1.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═ k x(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4B.8C.12D.162.已知反比例函数y=k−2x的图象在第二、四象限内,则k的值不可能是()A.3B.1C.0D.−123.已知反比例函数y=k x的图象经过点(1,2),则函数y=-kx可为()A.y=-2x B.y=12x C.y=-12x D.y=2x4.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=−5x(x>0)和y=3x(x>0)的图象交于A,B两点.若点C是y轴上任意一点,点D是AP的中点,连接DC,BC,则△DBC的面积为()A.94B.4C.5D.11 45.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移2个单位长度后与y轴交于点C,交双曲线y=kx(x>0)于点D,若ABCD=13,则n的值()A.4B.3C.2D.56.如图,反比例函数y= yx(x<o)的图象经过点P,则k的值为()A.-6B.-5C.6D.57.函数y=ax(a≠0)与y=ax2-1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.反比例函数y=2x的图象位于平面直角坐标系的()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限9.如图,平面直角坐标系中,矩形OABC的边与函数y= 8x(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定10.已知二次函数y=ax2+bx+c的图象如图所示,则在同一直角坐标系中,一次函数y=ax+b和反比例函数y= cx的图象大致是()A.B.C.D.11.某反比例函数的图象过点(1,-3),则此反比例函数解析式为()A.y=3x B.y=-3x C.y=13x D.y=-13x12.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1二、填空题(共6题;共6分)13.如图,在反比例函数y1=4x和y2=k x的图象上取A,B两点,若AB//x轴,ΔAOB的面积为5,则k=.14.如图,点A是反比例函数y=k x的图象上的一点,过点A作AB△x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为3,则k的值=.15.如图,过原点的直线交反比例函数y=ax图象于P,Q两点,过点P分别作x轴,y轴的垂线,交反比例函数y=b x(x>0)的图象于A,B两点.若b−a=7,则图中阴影部分的面积为.16.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=k x的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE的面积是△OAB的面积2倍时,则k的值为.17.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF△BD于点F,AE△x轴于点E,连接OB,AD,若△OBD△△DAE,则点A的坐标是.18.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点P(2,3),且与函数y=2x(x>0)的图象交于点Q(m,n).若一次函数y随x的增大而增大,则m的取值范围是.三、综合题(共6题;共60分)19.制作一种产品,需先将材料加热达到60△后,再进行操作.设该材料温度为(△),从加热开始计算的时间为(分钟).据了解,该材料加热时,则温度与时间成一次函数关系;停止加热进行操作时,则温度与时间成反比例关系(如图8所示).已知该材料在操作加工前的温度为15△,加热5分钟后温度达到60△.(1)分别求出将材料加热和停止加热进行操作时,则与的函数关系式;(2)根据工艺要求,当材料的温度低于15△时,则须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.如图所示,直线y=12x与反比例函数y=kx(k≠0,x>0)的图象交于点Q(4,a),点P(m,n)是反比例函数图象上一点,且n=2m.(1)求反比例函数和直线PQ的解析式;(2)若点M在x轴上,使得△PMQ的面积为3,求点M的坐标.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.22.如图,一次函数y=﹣x+5的图象与反比例函数y= k x(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=k x (k≠0)的值时,则写出自变量x 的取值范围.23.如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (6,0),反比例函数的图象经过点C .(1)求点C 的坐标及反比例函数的解析式.(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.24.如图,在平面直角系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,△ABO =30°,AB =2,以AB 为边在第一象限内作等边△ABC ,反比例函数的图象恰好经过边BC 的中点D ,边AC 与反比例函数的图象交于点E .(1)求反比例函数的解析式; (2)求点E 的横坐标.参考答案1.【答案】B 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】D 13.【答案】14 14.【答案】-6 15.【答案】14 16.【答案】117.【答案】( √5 +1, 3√5−32)18.【答案】23<m <2 19.【答案】(1)解:材料加热时,则设由题意,有 ,解得 .材料加热时,则 与的函数关系式为:停止加热时,则设 ,由题意,有 ,解得停止加热进行操作时 与的函数关系式为:(2)解:把代入,得20+5=25(分钟)答:从开始加热到停止操作,共经历了25分钟20.【答案】(1)解:∵直线 y =12x 与反比例函数 y =kx(k ≠0,x >0) 的图象交于点 Q(4,a) ∴a =12×4=2, .则 Q(4,2)∴2=k 4∴k =8, ∴ 反比例函数的解析式为 y =8x(x >0)∵ 点 P(m,n) 是反比例函数图象上一点 ∴mn =8 ,且 n =2m,m >0 ∴m =2,n =4, ∴P(2,4) ; 设直线 PQ 的解析式为 y =kx +b,∴{2=4k +b4=2k +b解得 {k =−1b =6∴直线 PQ 的解析式为 y =−x +6 (2)解:∵直线 PQ 交x 轴于点A ∴令 y =0,−x +6=0 ,得 x =6 ,如图∴A(6,0) ,设 M(a,0)∵S △PQM =S △PAM −S △QAM 且 △PMQ 的面积为3∴3=12|6−a|×4−12|6−a|×2∴a =3 或 a =9∴点M 的坐标为 (3,0) 或 (9,0) .21.【答案】(1)解:由A (-2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4∴12OA•n=4; ∴n=4;∴点B 的坐标是(2,4);设该反比例函数的解析式为y= ax (a≠0),将点B 的坐标代入,得4= a2 ,∴a=8;∴反比例函数的解析式为:y= 8x;设直线AB 的解析式为y=kx+b (k≠0),将点A ,B 的坐标分别代入,得{−2k +b =02k +b =4 ,解得{k =1b =2;∴直线AB 的解析式为y=x+2(2)解:在y=x+2中,令x=0,得y=2.∴点C 的坐标是(0,2) ∴OC=2;∴S △OCB = 12 OC×2= 12×2×2=222.【答案】(1)解:∵一次函数y=﹣x+5的图象过点A (1,n )∴n=﹣1+5 ∴n=4∴点A 坐标为(1,4)∵反比例函数y=k x (k≠0)过点A (1,4)∴k=4∴反比例函数的解析式为y=4x;(2)解:联立{y =−x +5y =4x解得{x =1y =4或{x =4y =1即点B 的坐标(4,1)若一次函数y=﹣x+5的值大于反比例函数y=kx (k≠0)的值则1<x <4.23.【答案】(1)解:过C 点作CD△x 轴,垂足为D,设反比例函数的解析式为y= k x∵△ABC 是等边三角形 ∴AC=AB=6,△CAB=60°∴AD=3,CD=sin60°×AC= √32×6=3 √3∴点C 坐标为(3,3 √3 ) ∵反比例函数的图象经过点C ∴k=9 √3∴反比例函数的解析式y= 9√3x;第 11 页 共 11 (2)解:若等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上 则此时B 点的横坐标为6即纵坐标y= 9√36 = 3√32 ,也是向上平移n= 3√32. 24.【答案】(1)解:∵△ABO =30°,AB =2∴OA =1连接AD .∵△ABC 是等边三角形,点D 是BC 的中点∴AD△BC又△OBD =△BOA =90°∴四边形OBDA 是矩形∴D(1,√3)∴反比例函数解析式是 y =√3x. (2)解:由(1)可知,A (1,0), C(2,√3)设一次函数解析式为y =kx+b ,将A ,C 代入得 {k +b =02k +b =√3 ,解得 {k =√3b =−√3∴y =√3x −√3 .联立 {y =√3x −√3y =√3x,消去y ,得 √3x −√3=√3x 变形得x 2﹣x ﹣1=0解得 x 1=1+√52∵x E >1∴x E =1+√52.。
中考数学复习《反比例函数》专项练习题-带有答案一、选择题1.已知反比例函数y=−8x,下列结论错误的是()A.图象必经过点(−1,8)B.y随x的增大而增大C.图象在第二、四象限D.当x>1时2.已知点A(a,y1),B(a+1,y2)在反比例函数y=a2+1x(a是常数)的图象上,且y1<y2,则a的取值范围是()A.a<0 B.a>0 C.0<a<1 D.﹣1<a<03.若反比例函数y=kx(k≠0)的图象如图所示,则二次函数y=x2+kx−k的图象可能是().A.B.C.D.4.已知正比例函数y=kx与反比例函数y=−4x的图象交于A、B两点,若点A(m,4),则点B的坐标为()A.(1,-4)B.(-1,4)C.(4,-1)D.(-4,1)5.如图,直线y=n交y轴于点A,交双曲线y=kx(x>0)于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线y=kx (x>0)于点D,若ABCD=13,则n的值()A.4 B.6 C.2 D.56.如图,在平面直角坐标系中,Rt△AOB的顶点A在第一象限,顶点B在x轴的正半轴.函数y=kx(k>0,x>0)经过OA的中点D,且与AB交于点C,则ACBC的值为().A.32B.3 C.34D.47.如图,菱形OABC在第一象限内,∠AOC=45°,反比例函数y=kx(x>0)的图象经过点A,交BC边于点D,若△AOD的面积为√2,则k的值为()A.3 B.2 C.2√2D.√28.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C,D.若tan∠BAO=2,BC=3AC,则点D的坐标为()A.(2,3)B.(6,1)C.(1,6)D.(1,5)二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.的图象交13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x于A,B两点,则四边形MAOB的面积为.三、解答题(k为常数,k≠1);14.已知反比例函数y=k−1x(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.(x>0)的图象上有两点A(1,6),B(3,n).15.已知函数y=mx(1)求m,n的值.(2)已知直线y=kx+b与直线y=x平行,且直线y=kx+b与线段AB总有公共点,直接写出k值及b 的取值范围.(x>0)的图象交于点A(2n﹣1,6)(3,3n﹣1),16.如图,一次函数y=kx+b的图象与反比例函数y=mx与x轴交于点C.(1)求一次函数和反比例函数的表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出关于x的不等式:mx>kx+b的解集.17.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,其图象如下图所示所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为多少米?(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?18.如图,直线y=32x与双曲线y=kx(k≠0)交于A,B两点,点A的坐标为(m,−3),点C是双曲线第一象限分支上的一点,连结BC并延长交x轴于点D,且BC=2CD.(1)求k的值,并直接写出点B的坐标;(2)点G是y轴上的动点,连结GB,GC,求GB+GC的最小值和点G坐标;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案 1.B 2.D 3.A 4.A 5.B 6.B 7.D 8.C 9.k=-6 10.> 11.(-m ,-n ). 12.−4 13.1014.(1)解:∵点A(1,2)在这个函数的图象上,∴k−11=2,解得k =3.故答案是k =3.(2)解:在函数y =k−1x图象的每一分支上,y 随x 的增大而增大,∴k −1<0∴k <1.故答案是:k <1. 15.(1)解:将A (1,6)代入y =x 得m =6 ∴反比例函数为y =6x把B (3,n )代入y =6x 的n =63=2 ∴m =6,n =2(2)解:k =1,b 的取值范围为−1≤b ≤516.(1)解:∵反比例函数y =mx (x >0)的图象过点 A (2n-1,6)和点B (3,3n-1) ∴m =6(2n-1)=2(3n-1) ∴n =1∴m =6(2n-1)=6 ∴ A (1,6),B (3,2)把A 、B 的坐标代入y =kx+b 得{k +b =63k +b =2 解得:{k =−2b =8∴一次函数为y=-2x+8,反比例函数为y=6x;(2)解:令y=0,则-2x+3=0解得:x=4∴C(2,0)∴S△AOB=S△AOC−S△BOC=12×4×6−52×4×6=8;(3)解:观察图象,结合一次函数与反比例函数的交点坐标可得关于x的不等式mx>kx+b的解集为0<x<1或x>3.17.(1)解:设y与x之间的函数表达式为y=kx∴7=k2∴k=14∴y与x之间的函数表达式为y=14x;(2)解:当x=0.5时,y=140.5=28米∴当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为28米;(3)解:当y≥35时,即14x≥35∴x≤0.4∴某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是0.4厘米.18.(1)解:将点A的坐标为A(m,−3)代入直线y=32x中得﹣3=32m解得:m=−2∴A(−2,−3)∴k=−2×(−3)=6B的坐标为(2,3)(2)解:如图,作BE⊥x轴于点E,CF⊥x轴于点F,则BE∥CF∵BE ∥CF ∴△DCF ∽△DBE ∴DC DB =CFBE∵BC =2CD ∴DC DB =CF BE =13 ∵B(2,3) ∴BE =3 ∴CF =1∴C(6,1)作点B 关于y 轴的对称点B ′,连接B ′C 交y 轴于点G ,则B ′C 即为BG +GC 的最小值∵B ′(−2,3),C(6,1)∴B ′C =√(−2−6)2+(3−1)2=2√17∴BG +GC =B ′C =2√17设B ′C 的解析式为y =kx +b∵B ′(−2,3),C(6,1){3=−2k +b 1=6k +b 解得:{k =−14b =52∴B ′C 解析式为y =−14x +52 当x =0时y =52 ∴G(0,52);(3)解:存在.理由如下:当点P在x轴上时,如图设点P1的坐标为(a,0),过点B作BM⊥x轴于点M∵四边形ABP1Q1是矩形∴∠OBP1=90°∴∠OMB=∠OBP1=90°,∠BOM=∠P1OB∴△OBM∽△OP1B∴OBOP1=OMOB∵B(2,3)∴OB=√22+32=√13,OM=2∴√13a=√13∴a=132经检验符合题意∴点P1的坐标为(132,0);当点P在y轴上时,过点B作BN⊥y轴于点N,如图2设点P2的坐标为(0,b)∵四边形ABP2Q2是矩形∴∠OBP2=90°∵∠ONB=∠P2BO=90°,∠BON=∠P2OB∴△BON∽△P2OB∴OBOP2=ONOB即√13b =√13∴b=133经检验符合题意∴点P2的坐标为(0,133)综上所述,点P的坐标为(132,0)或(0,133).。
中考数学总复习《反比例函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图,直线l和双曲线y=k x(k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则().A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S32.已知正比例函数y=xk中,y的值随x的值的增大而增大,那么它和反比例函数y=kx在同一平面直角坐标系内的大致图像可能是()A.B.C.D.3.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣5x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y14.已知点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可能是() A.B.C.D.5.反比例函数y= a+4x的图象如图所示,P、Q为该图象上关于原点对称的两点,分别过点P、Q作y轴的垂线,垂足分别为A、B.若四边形AQBP的面积大于12,则关于x的方程(a﹣1)x2﹣x+ 14 =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k 2+2k+1x的图象上。
若点A的坐标为(-2,-2),则k的值为()A.1B.-3C.4D.1或-37.如图,已知P(m,0),Q(0,n)(m>0,n>0),反比例函数y=mx的图象与线段PQ交于C,D两点,若S△POC=S△COD=S△DOQ,则n=()A.92B.4C.3D.328.已知正比例函数y=2x与反比例函数y=2x的图象相交于A,B两点,若A点的坐标为(1,2),则B点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(2,1)9.如图,点A是反比例函数y=6x的图象上一点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=2x的图象于点C,则△OAC的面积是()A.2B.3C.4D.510.A(x1,y1),B(x2,y2)是反比例函数y=6x的图象上的两点,若2<x1<x2,则下列结论正确的是()A.3<y1<y2B.3<y2<y1C.y1<y2<3D.y2<y1<311.在同一直角坐标系中,反比例函数图象与二次函数图象的交点的个数至少有() A.0B.1C.2D.312.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是().A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例二、填空题(共6题;共7分)13.如图,点B是反比例函数y=k x在在第一象限内的图象上的点,若矩形OABC的面积为2,则k=.14.如图,在平面直角坐标系中,点A(−2,3),点B与点A关于直线x=1对称,过点B作反比例函数y=mx(x>0)的图像.(1)m=;(2)若对于直线y=kx−5k+4,总有y随x的增大而增大,设直线y=kx−5k+4与双曲线y=mx(x>0)交点的横坐标为t,则t的取值范围是.15.如图,在平面直角坐标系中,等腰直角三角形ABC的直角顶点在x轴上,顶点B在y轴上,顶点C在函数y=8x(x>0)的图象上,且BC△x轴.将△ABC沿y轴正方向平移,使点A的对应点A′落在此函数的图象上,则平移的距离为.16.已知一个矩形的面积为2,两条边的长度分别为x、y,则y与x的函数关系式为.17.设函数y=x−3与y=2x的图象的两个交点的横坐标为a、b,则1a+1b=.18.如图,已知动点A在函数y=4x(x>0)的图象上,AB△x轴于点B,AC△y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,则图中阴影部分的面积等于.三、综合题(共6题;共63分)19.如图,已知点A(1,√3)在反比例函数y= k x(x>0)的图象上,连接OA,将线段OA绕点O沿顺时针方向旋转30°,得到线段OB.(1)求反比例函数的解析式;(2)填空:①点B的坐标是;②判断点B是否在反比例函数的图象上?答;③设直线AB的解析式为y=ax+b,则不等式ax+b﹣k x<0的解集是.20.已知反比例函数y= k x与一次函数y=x+2的图象交于点A(﹣3,m)(1)求反比例函数的解析式;(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.21.病人按规定的剂量服用某种药物,测得服药后2小时,则每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,则y与x的函数关系式;(2)求当x>2时,则y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?22.如图,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象在第一象限内交于A(1,6),B(3,n)两点.请解答下列问题:(1)求这两个函数的表达式;(2)根据图象直接写出kx+b﹣mx>0的x的取值范围.23.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.参考答案1.【答案】D 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】A 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】B 12.【答案】B 13.【答案】2 14.【答案】(1)12(2)3<t <515.【答案】4 16.【答案】y=2x17.【答案】-1.5 18.【答案】13319.【答案】(1)解:∵点A (1, √3 )在反比例函数y= k x(x >0)的图象上∴√3 = k 1,解得k= √3∴反比例函数的解析式为y= √3x(x >0)(2)(1, √3 );点B 在反比例函数的图象上;0<x <1或x > √320.【答案】(1)解:∵反比例函数y= k x与一次函数y=x+2的图象交于点A (﹣3,m )∴﹣3+2=m=﹣1∴点A 的坐标为(﹣3,﹣1) ∴k=﹣3×(﹣1)=3∴反比例函数的解析式为y= 3x(2)解:∵点M 的横、纵坐标都是不大于3的正整数∴点M 的坐标可能为:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)∵在反比例函数的图象上的有(1,3)和(3,1)两个点 ∴点M 在反比例函数图象上的概率为 2921.【答案】(1)解:根据图象,正比例函数图象经过点(2,4)设函数解析式为y=kx 则2k=4 解得k=2所以函数关系为y=2x (0≤x≤2)(2)解:根据图象,反比例函数图象经过点(2,4) 设函数解析式为y= k x则 k 2 =4解得k=8所以,函数关系为y= 8x (x >2)(3)解:当y=2时,则2x=2,解得x=18x=2,解得x=4 4﹣1=3小时∴服药一次,治疗疾病的有效时间是3小时22.【答案】(1)解:∵反比例函数y =mx (k≠0)的图象与一次函数y =kx+b 的图象在第一象限交于A(1,6),B(3,n)两点∴将A(1,6)代入反比例函数表达式中 m=1×6=6∴反比例函数表达式为:y=6x把B(3,n)代入得 n=2 ∴B(3,2)将A 、B 代入y =kx+b 中得{k +b =63k +b =2∴{k =−2b =8∴反比例函数和一次函数的表达式分别为y =6x,y =﹣2x+8(2)解:由图象可得:当kx+b ﹣mx >0时,则1<x <3或x <0. 23.【答案】(1)解:在Rt △AOB 中∵A(4,0)∴OA =4,OB =8∴B(0,8)∵A ,B 两点在直线y =ax +b 上∴{b =84a +b =0 ∴{a =−2b =8∴直线AB 的解析式为y =−2x +8 过点C 作CE ⊥OA 于点E∵BC =3AC ∴AB =4AC ∴CE//OB ∴CE OB =AC AB =14∴CE =2 ∴C(3,2)∴k =3×2=6∴反比例函数的解析式为y =6x(2)解:由{y =−2x +8y =6x,解得{x =1y =6或{x =2y =3 ∴D(1,6)过点D 作DF ⊥y 轴于点F∴S △OCD =S △AOB −S △BOD −S △COA =12⋅OA ⋅OB −12⋅OB ⋅DF −12⋅OA ⋅CE=12×4×8−12×8×1−12×4×2=824.【答案】(1)解:树状图如下图:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0)(2)解:∵点M(x,y)在函数y=﹣2x的图象上的有:(1,﹣2),(2,﹣1)∴点M(x,y)在函数y=﹣2x的图象上的概率为:29。
北师大版数学2024年中考反比例函数专题复习含答案一、选择题1.如图,在矩形ABCD中,AB与BC的长度比为3:4,若该矩形的周长为28,则BD 的长为()A.5B.6C.8D.10 2.如图,已知△ABC是等腰直角三角形,△ABC=90°,A点坐标(-2,0),B点坐标为(1,1),点C在反比例函数y=k x上,则k的值为()A.−2−√2B.−√2C.-4D.-2 3.已知函数y=k x的图象过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,−2)B.(−2,3)C.(1,−6)D.(−6,−1)4.若反比例函数y=k+2x的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是()A.k<-2B.k>-2C.k<2D.k>25.在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使y2−y1x2−x1<0成立的是()A.y=3x−1(x<0)B.y=−x2+2x−1(x>0)C.y=−√3D.y=x2−4x−1(x<0)x(x>0)6.若双曲线y=k x(k<0),经过点A(−1,y1),B(−3,y2),则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法比较y1与y2的大小7.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.8.函数y=−1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定9.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.你认为其中正确的信息是()A.①②③⑤B.①②③④C.①③④⑤D.②③④⑤10.已知A(x1,y1)和B(x2,,y2)是反比例函数y=8x的上的两个点,若x2>x1>0,则()A.y2>y1>0B.y1>y2>0C.0>y1>y2D.0>y2>y1二、填空题11.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,△DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG 的交点),则图③中△DHF=°12.已知x=2−√5是一元二次方程x2−4x+m=0的一个根,则m=,方程的另一个根是.13.在▱ABCD中,∠A=30°,AD=4√3,连接BD,若BD=4,则线段CD 的长为.14.如图,在四边形ABCD中,对角线AC平分∠DAB,∠D=90°,AC=25,AD=24.若点E是AB边上一动点,则CE的最小值为.15.直线y=2x﹣4与x轴的交点坐标是三、解答题16.已知一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)相交于A、B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式.(2)根据图象直接写出使得kx+b<mx时x的取值范围.17.如图,在△ABC中,AB=AC,BD△AC于D,若△ABC=72°,求△ABD的度数.四、综合题18.如图,直线y=-2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x 轴上点B(2,0).(1)求直线y=kx+b的解析式;(2)求两条直线与y轴围成的三角形面积;(3)直接写出不等式(k+2)x+b≥0的解集.19.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是()元;②月销量是()件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?20.如图,直线y=12x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣12x2+bx+c 经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)直线AB上方抛物线上的点D,使得△DBA=2△BAC,求D点的坐标;(3)M是平面内一点,将△BOC绕点M逆时针旋转90°后,得到△B1O1C1,若△B1O1C1的两个顶点恰好落在抛物线上,请求点B1的坐标.21.在一个不透明的袋子里装有只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到黑球的频率将会接近(精确到0.1);(2)试估计袋子中有黑球个;(3)若学习小组通过试验结果,想使得在这个不透明袋子中每次摸到黑球的可能性大小为50%,则可以在袋子中增加相同的白球个或减少黑球个.答案解析部分1.【答案】D 2.【答案】C 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】A 10.【答案】B 11.【答案】57 12.【答案】-1;2+√5 13.【答案】4或8 14.【答案】7 15.【答案】(2,0)16.【答案】(1)解:将点 A (1,3)代入 ,解得:m =3.∴反比例函数解析式为y =3x.∵点 B 的横坐标为﹣3, ∴点 B 坐标(﹣3,﹣1).把 A (1,3),B (﹣3,﹣1)代入 y =kx+b 得:{k +b =3−3k +b =−1解得:{k =1b =2∴一次函数的解析式为 y =x+2;(2)解:由图象可知 kx+b <mk 时,x <﹣3 或 0<1 17.【答案】解:∵BD△AC 于D ,∴△BDC=90°,∵△B=72°,AB=AC,∴△A=36°,∴△ABD=90°﹣△A=54°18.【答案】(1)解:把A(a,2)代入y=-2x中,得-2a=2,∴a=-1,∴A(-1,2),把A(-1,2)、B(2,0)代入y=kx+b中得{−k+b=22k+b=0,∴k=-23,b=43,∴一次函数的解析式是y=-23x+43;(2)解:设直线AB与y轴交于点C,则C(0,43),∴S△ABC=12×43×1=23;(3)解:不等式(k+2)x+b≥0可以变形为kx+b≥-2x,结合图象得到解集为:x≥-1. 19.【答案】(1)x﹣60;400﹣2x(2)解:由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元20.【答案】(1)解:y=12x+2,当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣12x2+bx+c,得{c=2−12×(−4)2−4b+c=0,解得{b=−32c=2,∴抛物线的解析式为:y=﹣12x2﹣32x+2(2)解:取点B关于x轴的对称点B′(0,﹣2),连接AB′,过点B作BD△AB′交抛物线于点D,∵B、B′关于x轴对称,∴AB=AB′,△BAB′=2△BAC,设AB′:y=kx﹣2,代入A(﹣4,0)得﹣4k﹣2=0,解得k=﹣1 2,则BD:y=﹣12x+2,解{y=−12x+2y=−12x2−32x+2得{x1=0y1=2,{x2=−2y2=3,∴D(﹣2,3)(3)解:∵△BOC绕点M逆时针旋转90°,∴B1O1△x轴,O1C1△y轴,当B1、O1在抛物线上时,设B1的横坐标为x,则O1的横坐标为x+2,∴﹣12x2−32x+2=﹣12(x+2)2﹣32(x+2)+2,解得x=﹣5 2,则B1(﹣52,218);当B1、C1在抛物线上时,设B1的横坐标为x,则C1的横坐标为x+2,C1的纵坐标比B1的纵坐标大1,∴﹣12x2−32x+2=﹣12(x+2)2﹣32(x+2)+2﹣1,解得x=﹣3,则B1(﹣3,2),∴B1的坐标为(﹣52,218)或(﹣3,2).21.【答案】(1)0.6(2)30(3)10;10北师大版数学2024年中考反比例函数专题复习含答案一、选择题1.在平行四边形的复习课上,小明绘制了如下知识框架图,箭头处添加条件错误的是()A.①:对角线相等B.②:对角互补C.③:一组邻边相等D.④:有一个角是直角2.如图,在同一直角坐标系中,函数y=kx与y=k x(k≠0)的图象大致是().A.①②B.①③C.②④D.③④3.设点A(x1,y1)和点B(x2,y2)是反比例函数y= k x图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A(x1,y1),B(x2,y2)在反比例函数y=−4x的图象上,若x1<x2,则下列关于y1、y2大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定5.对于双曲线y= 1−mx,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0B.m>1C.m<0D.m<1 6.若点A(−2,y1),B(−1,y2),C(1,y3)在反比例函数y=−6x的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y 3>y17.函数y=x+m与y= mx(m≠0)在同一坐标系内的图像可以是()A.B.C.D.8.若点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图像上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y 2>y19.一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.10.若点A(−3,y1),B(−2,y2),C(1,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y3>y 2>y1二、填空题11.长方形ABCD中,△ADB=20°,现将这一长方形纸片沿AF折叠,当折痕AF与AB的夹角△BAF为时, AB′∥BD.12.点(α,β)在反比例函数y=kx的图像上,其中α,β是方程x2−2x−8=0的两根,则k= .若点A(−1,y1),B(−14,y2),C(1,y3)都在反比例函数y=k x的图像上,则y1,y2,y3的大小关系是.13.如图,点D是△ ABCD内一点,CD△x轴,BD△y轴,BD=√2,△ADB=135°,S△ABD=2,若反比例函数y=kx(x<0)的图象经过A、D两点,则k的值是.14.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑米.15.三张完全相同的卡片上分别写有函数y=3x,y=3x,y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是.三、解答题16.已知反比例函数y=k x过点P(2,﹣3),求这个反比例函数的解析式,并在直角坐标系中作出该函数的图象.17.在等腰△ABC中,AB=AC=10,BC=12,求BC边上的高线AD的长。
中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。
中考数学反比例函数的图象与性质综合问题【方法归纳】(1)双曲线kyx=与坐标轴没有交点,当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(2)对称性图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(3)k的几何意义如图1,设点P(a,b)是双曲线kyx=上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是12|k|).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.图1 图22.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(4)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.【典例剖析】(x>0)的图象【例1】(2017·北京·中考真题)如图,在平面直角坐标系xOy中,函数y=kx与直线y=x−2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x-2于点M,过点P作平(x>0)的图象于点N.行于y轴的直线,交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.(x>0)的图象G经【例2】(2018·北京·中考真题)在平面直角坐标系xOy中,函数y=kxx+b与图象G交于点B,与y轴交于点C.过点A(4,1),直线l∶y=14(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC 围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【真题再现】1.(2011·北京·中考真题)如图,已知反比例函数y1=k1x(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C. 若△OAC的面积为1,且tan∠AOC=2 . (1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.2.(2012·北京·中考真题)如图,在平面直角坐标系xoy中,函数y=4x(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,直接写出点P的坐标.3.(2011·北京·中考真题)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=kx的图象的一个交点为A(﹣1,n).(1)求反比例函数y=kx的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.4.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足34【模拟精练】1.(2022·北京市广渠门中学模拟预测)在平面直角坐标系xOy中,一次函数y=k(x−1)+4(k>0)(m≠0)的图象的一个交点的横坐标为1.的图象与反比例函数y=mx(1)求这个反比例函数的解析式;(2)当x<−4时,对于x的每一个值,反比例函数y=m的值大于一次函数y=k(x−1)+x4(k>0)的值,直接写出k的取值范围.2.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交的图象在第四象限的交点为(n,−1).于点(4,0),且与反比例函数y=mx(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.(k≠0)与一次函数3.(2022·北京·二模)图,在平面直角坐标系xOy中,反比例函数y1=kxy2=ax+4(a≠0)的图像只有一个公共点A(2,2),直线y3=mx(m≠0)也过点A.(1)求k、a及m的值;(2)结合图像,写出y1>y2>y3时x的取值范围.4.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.5.(2022·北京顺义·二模)在平面直角坐标系xOy中,直线l:y=kx−k+4与函数y=mx(x>0)的图象交于点A(1,4).(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记直线l与函数y=mx(x>0)的图象所围成的区域(不含边界)为W.点B(n,1)(n≥4,n为整数)在直线l上.①当n=5时,求k的值,并写出区域W内的整点个数;②当区域W内恰有5个整点时,直接写出n和k的值.6.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,直线l1:y=−x+b与双曲线G:y=−12x的一个交点为A(−3,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=−12x有两个公共点,它们的横坐标分别为x1,x2(x1<x2).直线l1与直线l2的交点横坐标记为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.7.(2022·北京海淀·二模)在平面直角坐标系xOy中,一次函数y=k(x−1)+6(k>0)的图象与反比例函数y=mx(m≠0)的图象的一个交点的横坐标为1.(1)求这个反比例函数的解析式;(2)当x<﹣3时,对于x的每一个值,反比例函数y=mx的值大于一次函数y=k(x−1)+6(k> 0)的值,直接写出k的取值范围.8.(2022·北京东城·一模)在平面直角坐标系xOy中,一次函数y=x−2的图象与x轴交于点A,与反比例函数y=kx (k≠0)B(3,m),点P为反比例函数y=kx(k≠0)的图象上一点.(1)求m,k的值;(2)连接OP,AP.当S△OAP=2时,求点P的坐标.9.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.10.(2022·北京师大附中模拟预测)如图,一次函数y=-2x-2的图象分别交x轴、y轴于点B、A,与反比例函数y=mx(m≠0)的图象在第二象限交于点M,△OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.11.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=k的图象上,求m的值;x(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.12.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=k(k≠0)的两x个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.13.(2022·北京市第一六一中学分校一模)如图,在平面直角坐标系中,A(a,2)是直线l:(x>0)的图像G的交点.y=x−1与函数y=kx(1)①求a的值;(x>0)的解析式.②求函数y=kx(2)过点P(n,0)(n>0)且垂直于x轴的直线与直线l和图像G的交点分别为M,N,当S△OPM> S△OPN时,直接写出n的取值范围.14.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值15.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.16.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线l:y=x﹣1的图象与反(x>0)的图象交于点A(3,m).比例函数y=kx(1)求m、k的值;(2)点P(xp,0)是x轴上的一点,过点P作x轴的垂线,交直线l于点M,交反比例函数y=kx (x>0)的图象于点N.横、纵坐标都是整数的点叫做整点.记y=kx(x>0)的图象在点A,N之间的部分与线段AM,MN围成的区域(不含边界)为W.①当xp=5时,直接写出区域W内的整点的坐标为_____;②若区域W内恰有6个整点,结合函数图象,求出xp的取值范围.17.(2022·北京·中国人民大学附属中学分校一模)有这样一个问题:探究函数y=2x−1−3的图象与性质.小亮根据学习函数的经验,对函数y=2x−1−3的图象与性质进行了探究.下面是小亮的探究过程,请补充完整:(1)函数y=2x−1−3中自变量x的取值范围是;(2)表格是y与x的几组对应值.直接写出m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.②请再写出此函数的一条性质:.(5)已知不等式kx+b<2−3的解集为1<x<2或x>4,则k+b的值为.x−118.(2020·北京·模拟预测)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.标为(2,4),双曲线y=kx(1)求k的值及点E的坐标;(2)若点F是边OC上一点,当△FBC~△DEB时,求直线FB的解析式.19.(2022·北京四中模拟预测)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线G:y=2x 的一个交点为A(2,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=2有两个公共点,它们的横坐标分别为x1,x2x(x1<x2),直线l1与直线l2的交点横坐标为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.20.(2022·北京朝阳·模拟预测)已知:一次函数y1=x﹣2﹣k与反比例函数y2=−2k(k≠0).x(1)当k=1时,①求出两个函数图象的交点坐标;②根据图象回答:x取何值时,y1<y2;(2)请说明:当k取任何不为0的值时,两个函数图象总有交点;(3)若两个函数图象有两个不同的交点A、B,且AB=5√2,求k值.21.(2022·北京·北理工附中模拟预测)在平面直角坐标系xOy中已知双曲线y=k过点A(1,x1),与直线y=4x交于B,C两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=k,交于点D(t,y1),与直线y=4x交于点E(t,y2).当y1<y2x时,直接写出t的取值范围.22.(2022·北京朝阳·模拟预测)如图,一次函数y=kx+b的图象交反比例函数y=m的图x象于A(2,−4),B(a,−1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求ΔOAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?23.(2022·北京·二模)一次函数y=kx+b(k≠0)的图像与反比例函数y=m的图象相交于A(2,x3),B(6,n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与的值反比例函数的图象相交于点P,Q,求PQMN24.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)经过点A(0,-1)和点B(3,2).(1)求直线y=kx+b(k≠0)的表达式;(m≠0).(2)已知双曲线y=mx(m≠0)经过点B时,求m的值;①当双曲线y=mx②若当x>3时,总有kx+b>m直接写出m的取值范围.x(x>0)的图象上.25.(2021·北京·二模)如图,A、B两点在函数y=mx(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出函数y=m(x>0)的图象与直线AB围出的封闭图形中(不包括边界)所含格点的坐标.x26.(2021·北京朝阳·二模)在平面直角坐标系xOy中,过点A(2,2)作x轴,y轴的垂线,(k<4)的图象分别交于点B,C,直线AB与x轴相交于点D.与反比例函数y=kx(1)当k=−4时,求线段AC,BD的长;(2)当AC<2BD时,直接写出k的取值范围.27.(2021·北京顺义·二模)在平面直角坐标系xOy中,反比例函数y=m与一次函数y=kx+xb相交于A(3,2)、B(-2,n)两点.(1)求反比例函数和一次函数的表达式;(2)过P(p,0)(P≠0)作垂直于x轴的直线,与反比例函数y=m交于点C,与一次函数xy=kx+b交于点D,若SΔCOP=3SΔDOP,直接写出p的值.28.(2021·北京门头沟·二模)在平面直角坐标系xOy中,反比例函数y=k的图象过点P(2 , 2 ).x(1)求k的值;(2)一次函数y=x+a与y轴相交于点M,与反比例函数y=k(x > 0)的图象交于点N,x≤S△MNQ≤2时,过点M作x轴的平行线,过点N作y轴的平行线,两平行线相交于点Q,当12通过画图,直接写出a的取值范围.29.(2021·北京丰台·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与反比例函数(m≠0)的图象交于点A(−1,n),B(2,−1)两点.y=mx(1)求m,n的值;(2)已知点P(a,0)(a>0),过点P作x轴的垂线,分别交直线y=kx+b(k≠0)和反比例(m≠0)的图象于点M,N,若线段MN的长随a的增大而增大,直接写出a的取值范函数y=mx围.30.(2021·北京西城·二模)在平面直角坐标系xOy中,直线l:y=kx−k+2(k>0),函数y=2k(x>0)的图象为F.x(x>0)的图象F上,求直线l对应的函数解析式:(1)若A(2,1)在函数y=2kx(2)横、纵坐标都是整数的点叫做整点.记直线l:y=kx−k+2(k>0),图象F和直线y=12围成的区域(不含边界)为图形.①在(1)的条件下,写出图形G内的整点的坐标;②若图形G内有三个整点,直接写出k的取值范围.。
中考数学反比例函数综合题附答案一、反比例函数1.如图,四边形OP1A1B1、 A1P2A2B2、 A2P3 A3B3、、 A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、 A2 A3、、A n﹣1 A n都在y轴上( n≥1的整数),点P1( x1,y1),点P2(x2,y2),, P n( x n, y n)在反比例函数y=(x>0)的图象上,并已知B1(﹣ 1,1).(1)求反比例函数 y= 的解析式;(2)求点 P2和点 P3的坐标;( 3)由( 1)、( 2)的结果或规律试猜想并直接写出:△ P n B n O的面积为________ ,点P n的坐标为 ________ (用含【答案】(1)解:在正方形则B1与 P1关于 y 轴对称,∵B1(﹣ 1,1),∴P1( 1,1).n的式子表示).OP1A1B1中, OA1是对角线,则 k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、 P3B3,分别交 y 轴于点 E、 F,又点 P1的坐标为( 1, 1),∴OA1=2,设点 P2的坐标为( a,a+2),代入 y= 得 a= -1,故点 P2的坐标为(-1,+1),则A1E=A2E=2 -2, OA2=OA1+A1A2=2 ,设点 P3的坐标为( b, b+2),代入 y= ( >0)可得 b= - ,故点 P3的坐标为(- ,+ )(3) 1;( - ,+ )【解析】【解答】解:( 3)∵=2 =2× =1,=2 =2× =1,∴△ P n B n O 的面积为1,由 P1( 1, 1)、 P2(﹣ 1,+1)、 P3(﹣,+ )知点 P n的坐标为(﹣,+ ),故答案为: 1、(﹣,+ ).【分析】( 1)由四边形 OP1 1 1 1 1 1A B 为正方形且OA 是对角线知 B 与 P 关于 y 轴对称,得出点 P1(1, 1),然后利用待定系数法求解即可;(2)连接 P2B2、 P3B3,分别交 y 轴于点 E、 F,由点 P1坐标及正方形的性质知OA1=2,设P2的坐标为( a, a+2),代入解析式求得 a 的值即可,同理可得点P3的坐标;(3)先分别求得 S△P1 B1 O、 S△P2B2O 的值,然后找出其中的规律,最后依据规律进行计算即可 .2.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
初中数学反比例函数中考试题汇编及答案解析(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--初中数学反比例函数中考试题汇编及答案解析1.已知A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是反比例函数y=上的三点,若x 1<x 2<x 3,y 2<y 1<y 3,则下列关系式不正确的是( )A .x 1•x 2<0B .x 1•x 3<0C .x 2•x 3<0D .x 1+x 2<02. 如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD⊥OB 于点D ,若点C ,D 都在双曲线y=上(k >0,x >0),则k 的值为( )A .25B .18C .9D .93. 已知A (x 1,y 1),B (x 2,y 2)是反比例函数y=(k≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y=kx ﹣k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4. 位于第一象限的点E 在反比例函数y=的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO=EF ,△EOF 的面积等于2,则k=( )A .4B .2C .1D .﹣25. 下列说法中不正确的是( )A .函数y=2x 的图象经过原点B .函数y=的图象位于第一、三象限C .函数y=3x ﹣1的图象不经过第二象限D .函数y=﹣的值随x 的值的增大而增大6. 如图5,在反比例函数2y x=-的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC BC =,当点A 运动时,点C 始终在函数k y x=的图5y x B OC A 图象上运动,若tan 2CAB ∠=,则k 的值为 ()A 2()B 4()C 6 ()D 87. 二次函数y=ax 2+bx+c (a≠0)的图象如图,则反比例函数与一次函数y=bx﹣cA .B . D .8. 函数y=的图象可能是( )A .B .C .D .9. 如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在函数y=(x >0)的图象上,当m >1时,过点P 分别作x 轴、y 轴的垂线,垂足为点A ,B ;过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D .QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积( )A.减小 B.增大 C.先减小后增大 D.先增大后减小10.“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为,则表示y与x函数关系的图象大致是()A.B.C.D.参考答案1.【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.2.【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.3.【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x 1<x 2<0时,y 1>y 2,确定反比例函数y=(k≠0)中k 的符号,然后再确定一次函数y=kx ﹣k 的图象所在象限.【解答】解:∵当x 1<x 2<0时,y 1>y 2,∴k >0,∴﹣k <0,∴一次函数y=kx ﹣k 的图象经过第一、三、四象限,∴不经过第二象限,故选:B .【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k 的符号.4.【考点】反比例函数系数k 的几何意义.【分析】此题应先由三角形的面积公式,再求解k 即可.【解答】解:因为位于第一象限的点E 在反比例函数y=的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO=EF ,△EOF 的面积等于2, 所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k 的几何意义问题,关键是由三角形的面积公式,再求解k .5.【考点】正比例函数的性质;一次函数的性质;反比例函数的性质.【分析】分别利用正比例函数以及反比例函数的定义分析得出答案.【解答】解:A 、函数y=2x 的图象经过原点,正确,不合题意;B 、函数y=的图象位于第一、三象限,正确,不合题意;C 、函数y=3x ﹣1的图象不经过第二象限,正确,不合题意;D 、函数y=﹣的值,在每个象限内,y 随x 的值的增大而增大,故错误,符合题意. 故选:D .6.答案:D解析:连结CO ,由双曲线关于原点对称,知AO =BO ,又CA =CB ,所以,CO ⊥AB ,因为tan 2CAB ∠=,所以,CO AO =2 作AE ⊥x 轴,CD ⊥x 轴于E 、D 点。
【母题来源一】【2019•上海】下列函数中,函数值y 随自变量x 的值增大而增大的是 A .y 3x =B .y 3x =-C .y 3x=D .y 3x=-【答案】A【解析】A 、该函数图象是直线,位于第一、三象限,y 随x 的增大而增大,故本选项正确. B 、该函数图象是直线,位于第二、四象限,y 随x 的增大而减小,故本选项错误.C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 的增大而减小,故本选项错误.D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误. 故选A .【名师点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.【母题来源二】【2019•柳州】反比例函数y 2x=的图象位于 A .第一、三象限 B .第二、三象限 C .第一、二象限D .第二、四象限【答案】A 【解析】∵k =2>0,∴反比例函数经过第一、三象限; 故选A .【名师点睛】本题考查反比例函数的图象及性质;熟练掌握函数的性质和图象是解题的关键. 【母题来源三】【2019•哈尔滨】点(-1,4)在反比例函数y kx=的图象上,则下列各点在此函数图象上的是 A .(4,-1)B .(14-,1) C .(-4,-1) D .(14,2)专题07 反比例函数【答案】A【解析】将点(-1,4)代入ykx =,∴k=-4,∴y4x-=,∴点(4,-1)在函数图象上,故选A.【名师点睛】本题考查反比例函数的图象及性质;熟练掌握待定系数法求函数解析式的方法是解题的关键.【母题来源四】【2019•天门】反比例函数y3x=-,下列说法不正确的是A.图象经过点(1,-3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【答案】D【解析】由点(1,-3)的坐标满足反比例函数y3x=-,故A是正确的;由k=-3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数的对称性,可知反比例函数y3x=-关于y=x对称是正确的,故C也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选D.【名师点睛】考查反比例函数的性质,当k<0时,在每个象限内y随x的增大而增大的性质、反比例函数的图象是轴对称图象,y=x和y=-x是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的基础;多方面、多角度考查反比例函数的图象和性质.【母题来源五】【2019•天津】若点A(-3,y1),B(-2,y2),C(1,y3)都在反比例函数y12x=-的图象上,则y1,y2,y3的大小关系是A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【答案】B【解析】当x=-3,y1123=-=-4;当x=-2,y2122=-=-6;当x=1,y3121=-=-12,所以y3<y1<y2.故选B.【名师点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ykx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.【母题来源六】【2019•安徽】已知点A(1,-3)关于x轴的对称点A'在反比例函数ykx=的图象上,则实数k的值为A.3 B.13C.-3 D.13-【答案】A【解析】点A(1,-3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入ykx=得k=1×3=3.故选A.【名师点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ykx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.【母题来源七】【2019•株洲】如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数ykx=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【答案】B【解析】∵点A、B、C为反比例函数ykx=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S112=k,S△BOE=S△COF12=k,∵S△BOE-S OME=S△CDF-S△OME,∴S3=S2,故选B.【名师点睛】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.【母题来源八】【2019•泸州】如图,一次函数y1=ax+b和反比例函数y2kx=的图象相交于A,B两点,则使y1>y2成立的x取值范围是A.-2<x<0或0<x<4 B.x<-2或0<x<4C.x<-2或x>4 D.-2<x<0或x>4【答案】B【解析】观察函数图象可发现:当x<-2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<-2或0<x<4.故选B.【名师点睛】本题考查了反比例函数与一次函数的交点问题,根据两函数图象的上下位置关系结合交点的横坐标找出不等式的解集是解题的关键.【母题来源九】【2019•宁夏】函数ykx=和y=kx+2(k≠0)在同一直角坐标系中的大致图象是A.B.C.D.【答案】B【解析】在函数ykx=和y=kx+2(k≠0)中,当k>0时,函数ykx=的图象在第一、三象限,函数y=kx+2的图象在第一、二、三象限,故选项A、D错误,选项B正确,当k<0时,函数ykx=的图象在第二、四象限,函数y=kx+2的图象在第一、二、四象限,故选项C错误,故选B.【名师点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的数学思想解答.【母题来源十】【2019•娄底】将1yx=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为A.y11x=++1 B.y11x=-+1 C.y11x=+-1 D.y11x=--1【答案】C【解析】由“左加右减”的原则可知,y1x=的图象向右平移1个单位所得函数图象的关系式是:y11x=-;由“上加下减”的原则可知,函数y11x=-的图象向上平移1个单位长度所得函数图象的关系式是:y11x=+-1.故选C.【名师点睛】本题考查的是反比例函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.【母题来源十一】【2019•孝感】公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200 N和0.5 m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是A.F1200l=B.F600l=C.F500l=D.F0.5l=【答案】B【解析】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200 N和0.5 m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F600l =.故选B.【名师点睛】此题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.【母题来源十二】【2019•无锡】某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是__________(只要写出一个符合题意的答案即可).【答案】y=x2(答案不唯一)【解析】y=x2中开口向上,对称轴为x=0,当x>0时y随着x的增大而增大,故答案为:y=x2(答案不唯一).【名师点睛】考查了一次函数、二次函数、反比例函数的性质,根据函数的增减性写出答案即可.【母题来源十三】【2019•镇江】已知点A(-2,y1)、B(-1,y2)都在反比例函数y2x=-的图象上,则y1__________y2.(填“>”或“<”)【答案】<【解析】∵反比例函数y2x=-的图象在二、四象限,而A(-2,y1)、B(-1,y2)都在第二象限,∴在第二象限内,y随x的增大而增大,∵-2<-1,∴y1<y2.故答案为:<.【名师点睛】此题主要考查了反比例函数的性质,当k<0时,在每个象限内,y随x的增大而增大,由x 的值变化得出y的值变化情况;也可以把x的值分别代入关系式求出y1、y2再作比较亦可.【母题来源十四】【2019•兰州】如图,矩形OABC的顶点B在反比例函数ykx=(k>0)的图象上,S矩形OABC=6,则k=__________.【答案】6【解析】根据题意,知S =|k |=6,k =±6, 又因为反比例函数位于第一象限,k >0, 所以k =6, 故答案为:6.【名师点睛】主要考查了反比例函数y kx=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.【母题来源十五】【2019•北京】在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y 1k x=上,点A 关于x 轴的对称点B 在双曲线y 2k x=,则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a ,b )(a >0,b >0)在双曲线y 1k x=上, ∴k 1=ab ;又∵点A 与点B 关于x 轴的对称, ∴B (a ,-b ) ∵点B 在双曲线y 2k x=上, ∴k 2=-ab ;∴k 1+k 2=ab +(-ab )=0; 故答案为:0.【名师点睛】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.【母题来源十六】【2019•吉林】已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.【解析】(1)y 是x 的反例函数, 所以,设()0ky k x=≠, 当x =2时,y =6. 所以,k =xy =12, 所以,12y x=. (2)当x =4时,y =3.【名师点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键. 【母题来源十七】【2019•广东】如图,一次函数y =k 1x +b 的图象与反比例函数y 2k x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b 2k x>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.【解析】(1)∵点A 的坐标为(-1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b 2k x >的x 的取值范围是x <-1或0<x <4. (2)∵反比例函数y 2kx=的图象过点A (-1,4),B (4,n ),∴k 2=-1×4=-4,k 2=4n , ∴n =-1∴B (4,-1).∵一次函数y =k 1x +b 的图象过点A ,点B , ∴11441k b k b -+=⎧⎨+=-⎩,解得:k 1=-1,b =3.∴直线解析式y=-x+3,反比例函数的解析式为y4x =-.(3)如图,设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC12=⨯3×132=,∴S△AOB=S△AOC+S△BOC12=⨯3×1132+⨯⨯4152=,∵S△AOP∶S△BOP=1∶2,∴S△AOP1515 232 =⨯=,∴S△COP5322=-=1,∴12⨯3·x P=1,∴x P23 =,∵点P在线段AB上,∴y23=-+373=,∴P(23,73).【名师点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.【母题来源十八】【2019•辽阳】如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数ykx=(x>0)的图象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.【解析】(1)∵OABC是矩形,∴∠B=∠OAB=90°,∵AB=DB,∴∠BAD=∠ADB=45°,∴∠OAD=45°,又∵AD⊥x轴,∴∠OAD=∠DOA=45°,∴OD=AD,∵D(3,0),∴OD=AD=3,即A(3,3),把点A(3,3)代入的ykx=得,k=9,∴反比例函数的解析式为:y9x =.(2)如图,过点B作BE⊥AD,垂足为E,∵∠B=90°,AB=BD,BE⊥AD,∴AE=ED12=AD32=,∴OD+BE=339 22 +=,∴B(92,32),则点B 关于y 轴的对称点B 1(92-,32),直线AB 1与y 轴的交点就是所求点P ,此时PA +PB 最小, 设直线AB 1的关系式为y =kx +b ,将A (3,3)B 1(92-,32),代入得,339322k b k +=⎧⎪⎨-+=⎪⎩,解得:k 15=,b 125=, ∴直线AB 1的关系式为y 11255x =+, 当x =0时,y 125=, ∴点P (0,125).【名师点睛】考查矩形的性质、等腰直角三角形的性质、反比例函数图象上点的坐标特征以及轴对称和一次函数的性质等知识,综合应用的知识较多,掌握基本的解题思路是关键,对每个知识点的掌握是基础.【命题意图】这类试题重点考查反比例函数的图象和性质、反比例函数比例系数k 的几何意义、反比例函数的应用等, 【方法总结】 1.反比例函数的性质当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小. 当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大. 2.用待定系数法求反比例函数解析式的一般步骤: (1)设——根据题意,设反比例函数的解析式为(0)ky k x=≠; (2)代——把它的一对对应值(x ,y )代入ky x=中,得到关于k 的方程; (3)解——解方程,求出常数k ;(4)写——把k 的值代入反比例函数的解析式中即可写出解析式. 3.反比例函数中k 的几何意义 如下图,过反比例函数ky x=(k ≠0)图象上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON的面积S =PM ·PN =|y |·|x |=|xy |.∵ky x=,∴xy =k ,S =|k |.4.用反比例函数解决实际问题的步骤:(1)审——审清题意,找出题目中的常量、变量,并审理清常量与变量之间的关系; (2)设——根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示; (3)列——由题目中的已知条件列出方程,求出待定系数; (4)写——写出函数解析式,并注意解析式中变量的取值范围; (5)解——用函数解析式去解决实际问题.1.【天津市滨海新区2019届中考一模数学试题】若点()13A y -,,()21B y -,,()32C y ,在反比例函数21k y x+=(k 为常数)的图象上,则123y y y ,,的大小关系是A .213y y y <<B .123y y y <<C .231y y y <<D .321y y y <<2.【2019年山东省潍坊市中考数学一模试卷】函数y =ax -a 与y =ax(a ≠0)在同一直角坐标系中的图象可能是A .B .C .D .3.【2019年广西柳州市中考数学考前最后一卷】若反比例函数y =2kx-的图象位于第一、第三象限,则k 的取值范围是 A .k <2B .k >-2C .k <-2D .k >24.【2019年江苏省盐城市东台市中考数学模拟试卷(5月份)】如图,正方形ABCD 的顶点A 、D 分别在x 轴、y 轴的正半轴上,若反比例函数y =kx(x >0)的图象经过另外两个顶点B 、C ,且点B (6,n ),(0<n<6),则k的值为A.18 B.12 C.6 D.25.【北京市西城区2019届九年级5月模拟测试(二模)数学试题】已知y是x的函数,其函数图象经过(1,2),并且当x>0时,y随x的增大而减小.请写出一个满足上述条件的函数表达式:__________.6.【2019年湖北省黄冈市中考数学二模试卷】如图,直线y=15x-1与x,y轴交于B、A,点M为双曲线ykx上的一点,若△MAB为等腰直角三角形,则k=__________.7.【山东省菏泽市曹县2019年中考数学三模试卷】如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.8.【2019年河南省第二届名校联盟中考数学模拟试卷(5月份)】在平面直角坐标系中,一次函数y=-x+b的图象与反比例函数y=kx(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的半标为(-2,3)(1)求一次函数和反比例函数的解析式;(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.。