理学类分子动理学理论的平衡态理论
- 格式:ppt
- 大小:878.00 KB
- 文档页数:37
热物理学微观理论是在分子动理论(简称分子动理论)基础上发展起来的。
早在1783年伯努利曾设想气体压强由分子碰撞气壁而产生。
1744年俄罗斯科学家罗蒙诺索夫提出热是分子运动的表现,他把机械运动的守恒定律推广到分子运动的热现象去。
到了19世纪中叶,原子和分子学说逐渐取得实验支持,将哲学观念具体化发展为物理理论,热质说也日益被分子运动的观点所取代,在这一过程中统计物理学开始萌芽。
1857年克劳修斯首先导出了气体压强公式。
1859年英国物理学家麦克斯韦导出了速度的分布规律,由此可得到能量的均分定理,以上就是分子动理论的平衡态理论。
后来波耳滋蔓提出来了熵的统计解释以及H定理;1902年美国物理学家吉布斯在其名著《统计力学的基本原理》中,建立了平衡态统计物理体系,称为吉布斯统计(后来知道这个体系不仅适合于经典力学系统,甚至更自然地适用于服从量子力学规律的微观粒子,与此相适应建立起来的统计力学称为量子统计)此外还有非平衡态统计物理学。
上述三方面的内容都是在分子动理学理论的基础上发展起来的。
物理化学解释物理化学是研究物质的物理性质和化学性质之间的关系的学科。
它涉及到物质的组成、结构、性质和变化的研究。
下面是物理化学的一些重要概念和解释:1. 粒子:物质由粒子组成,这些粒子可以是原子、分子、离子或其他微观粒子。
物质的性质和行为取决于这些粒子的结构和相互作用。
2. 分子结构:分子是物质的最小可分辨单位,由原子通过共价键或离子键连接而成。
物质的性质和行为受分子的结构和组合方式的影响。
3. 化学键:化学键是原子之间的相互作用力,可以是共价键、离子键或金属键。
化学键的强度和类型会影响分子的稳定性和性质。
4. 反应动力学:反应动力学研究化学反应的速率和机制。
它涉及到反应速率的测量、反应速率方程的推导和反应机制的解释。
5. 热力学:热力学研究能量在物质转化过程中的变化和传递。
它包括热力学定律、热力学函数(如焓、熵和自由能)以及热力学平衡条件的研究。
6. 平衡态:平衡态是指系统中各组分的浓度、温度和压力等参数不再发生变化的状态。
平衡态的研究可以帮助理解反应的驱动力和平衡常数的确定。
7. 量子力学:量子力学是描述微观粒子行为的物理学理论。
它提供了解释原子和分子结构、光谱学和化学反应等现象的基础。
8. 表面化学:表面化学研究物质的表面和界面的性质和反应。
表面化学在催化、电化学和材料科学等领域有重要应用。
9. 电化学:电化学研究电荷在物质中的转移和化学反应与电流之间的关系。
它涉及到电解过程、电池和电解质溶液等方面的研究。
10. 光谱学:光谱学研究物质与电磁辐射之间的相互作用。
它提供了分析物质的结构、组成和性质的重要手段。
以上是物理化学的一些重要概念和解释,它们帮助我们理解物质的本质和行为,并为解释和应用化学现象提供了理论基础。
分子动力学基本知识分子动力学模拟基本步骤起始构型:进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的起始构型主要来自实验数据或量子化学计算。
分子动力学在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据波尔兹曼分布随机生成的,由于速度的分布符合波尔兹曼统计,因此在这个阶段,体系的温度是恒定的。
另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。
平衡相:由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。
生产相:在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化请大家注意:温度是体系中分子动能的宏观体现关于势能函数:在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。
但是相对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大的困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍然非常广泛。
时间步长:就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。
太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。
但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动.分子动力学模拟应用很广泛,也正应为如此我们在使用的时候需要根据自己的特殊状况,对模拟中的很多状况加以选取与约束。
第二章分子动理学理论的平衡态理论 基本要求一、麦克斯韦速率分布(1)掌握麦克斯韦速率分布函数,理解它的物理意义和它的分布曲线,并知道它的分布曲线是如何随温度或者分子质量变化。
(2)熟练掌握平均速率、方均根速率、最概然速率3个公式。
二、 麦克斯韦速度分布 (1)掌握麦克斯韦速度分布。
(2)知道如何利用麦克斯韦速度分布导出麦克斯韦速率分布。
三、 气体分子碰壁数及其应用 (1)知道气体气体压强和碰壁数的物理意义。
(2)能利用麦克斯韦速度分布推导气体分子碰壁数公式和理想气体压强公式,并熟记它们。
(3)会利用气体分子碰壁数公式研究一些实际问题。
四、波尔兹曼分布(1)掌握粒子在外场中的分布;(2)掌握波尔兹曼分布;(3)会从波尔兹曼分布出发求粒子在外场中的分布和麦克斯韦速度分布。
五、能量均分定理(1)理解自由度和自由度数,知道单原子分子、双原子分子和多原子分子的自由度; (2)掌握能量积分定理;会求常温下理想气体的内能、定体热容等。
(3)了解固体的热容和杜隆-珀蒂定律第三章 输运现象与分子动理学理论的非平衡态理论 基本要求一、黏性现象知道什么是层流,什么是湍流。
掌握牛顿黏性定律,理解气体黏性微观机理。
二、 扩散现象掌握菲克定律,理解气体扩散微观机理。
三、 热传导定律掌握傅立叶定律,理解气体热传导微观机理。
四、 气体分子平均自由程(1)理解什么是碰撞(散射)截面,掌握刚性分子碰撞截面公式。
(2)掌握气体分子间平均碰撞频率和分子平均自由程公式。
五 气体输运系数知道气体黏性系数、导热系数、扩散系数如何随温度和压强变化。
第二章和第三章复习题一 选择题1 水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ]2 做布朗运动的微粒系统可看作是在浮力ρρ/0mg -和重力场的作用下达到平衡态的巨分子系统.设m 为粒子的质量,ρ 为粒子的密度,ρ 0为粒子在其中漂浮的流体的密度,并令z = 0处势能为0,则在z 为任意值处的粒子数密度n 为 (A) )}1(exp{00ρρ-⋅-kTmgz n .(B) )}1(exp{00ρρ-⋅kTmgz n .(C) }/exp{00kT z mgn ρρ-.(D) }/exp{00kT z mgn ρρ.[ ]3 在二氧化碳激光器中,作为产生激光的介质CO 2分子的两个能级之能量分别为ε1 = 0.172 eV ,ε2 = 0.291eV ,在温度为 400℃时,两能级的分子数之比N 2∶N 1为(玻尔兹曼常量k = 1.38×10-23 J/K ,1 eV = 1.60×10-19 J )(A) 31.5. (B) 7.7. (C) 0.13. (D) 0.03. [ ] 4 温度为T 时,在方均根速率s/m 50)(212±v 的速率区间内,氢、氨两种气体分子数占总分子数的百分率相比较:则有(附:麦克斯韦速率分布定律:v v v ∆⋅⋅⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛π=∆222/32exp 24kT m kT m N N,(A) ()()22N H //N N N N ∆>∆, (B) ()()22N H //N N N N ∆=∆,(C) ()()22N H //N N N N ∆<∆(D) 温度较低时()()22N H //N N N N ∆>∆ ,温度较高时()()22N H //N N N N ∆<∆ [ ]5 下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线? [ ]6 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ. (D) v =40v ,Z =20Z ,λ=0λ. [ ] 7 一定量理想气体分子的扩散情况与气体温度T 、压强p 的关系是:(A) T 越高、p 越大,则扩散越快. (B) T 越低、p 越大,则扩散越快. (C) T 越高、p 越小,则扩散越快. (D) T 越低、p 越小,则扩散越快. [ ] 二 填空题8 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密 度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为_______________________m/s. (普适气体常量R = 8.31 J ·mol -1·K -1)9质量为 6.2×10-14 g 的某种粒子悬浮于27℃的气体中,观察到它们的方均根 速率为 1.4 cm/s ,则该种粒子的平均速率为__________.(设粒子遵守麦克斯韦速率分布律) 10 设气体分子服从麦克斯韦速率分布律,v 代表平均速率,v p 代表最概然速率,那么,速v v O O (B (A (D O(C O率在v p 到v 范围内的分子数占分子总数的百分率随气体的温度升高而__________(增加、降低或保持不变).11用绝热材料制成的一个容器,体积为2V 0,被绝热板隔成A 、B 两部分,A 内储有1 mol 单原子分子理想气体,B 内储有2 mol 刚性双原子分子理想气体,A 、B 两部分压强相等均为p 0,两部分体积均为V 0,则两种气体各自的内能分别为E A =________;E B =________; (2) 抽去绝热板,两种气体混合后处于平衡时的温度为T =______.12一氧气瓶的容积为V ,充入氧气的压强为p 1,用了一段时间后压强降为p 2,则瓶中剩下的氧气的内能与未用前氧气的内能之比为__________.13 设某原子能反应堆中心处单位时间穿过单位面积的中子数为 4×1016 m -2·s -1,且设这些中子是温度为 300 K 的热中子,并服从麦克斯韦速度分布律,试求中子气的分压强. (阿伏伽德罗常量N A = 6.02×1023 mol -1,玻尔兹曼常量k = 1.38×10-23 J ·K -1 中子的摩尔质量为1.01×10-3 kg )14玻尔兹曼分布律是自然界中的一条较为普遍的分布定律.对处于任何力场中的任何微粒系统只要______________________________可以忽略,这定律均适用. 15 一个很长的密闭容器内盛有分子质量为m 的理想气体,该容器以匀加速度a垂直于水平面上升(如图所示).当气体状态达到稳定时温度为T ,容器底部的分子数密度为n 0,则容器内离底部高为h 处的分子数密度n =_____________________. 16 用总分子数N 、气体分子速率v 和速率分布函数f (v ) 表示下列各量:(1) 速率大于v 0的分子数=____________________; (2) 速率大于v 0的那些分子的平均速率=_________________;(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=_____________. 17 图示的曲线分别表示了氢气和氦气在同一温度下的分子速率的分布情况.由图可知,氦气分子的最概然速率为___________,氢气分子的最概然速率为________________.18 一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的__________倍.19 已知氦气和氩气的摩尔质量分别为M mol 1 = 0.004 kg/mol 和M mol 2 =0.04 kg/mol ,它们在标准状态下的粘度分别为η1 =18.8×10-6 N ·s ·m -2和η2 = 21.0×10-6 N ·s ·m -2.则此时氩气与氦气的扩散系数之比D 2/ D 1= __________________. 三 计算题20 由N 个分子组成的气体,其分子速率分布如图所示.(1) 试用N 与0v 表示a 的值. (2) 试求速率在1.50v ~2.00v 之间的分子数目. (3) 试求分子的平均速率.21 将1 kg 氦气和M kg 氢气混合,平衡后混合气体的内能是2.45×106 J ,氦分子平均动能a16v (m /s)f (v )1000020是 6×10-21 J ,求氢气质量M . (玻尔兹曼常量k =1.38×10-23 J ·K -1 ,普适气体常量R =8.31 J ·mol -1·K -1)22 假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T 相等.试根据玻尔兹曼分布律计算大气层中分子的平均重力势能P ε.(已知积分公式⎰∞+-=01/!d e n ax n a n x x )23 在直径为D 的球形容器中,最多可容纳多少个氮气分子,才可以认为分子之间不致相碰?(设氮分子的有效直径为d ).24 一长为L ,半径为R 1 = 2 cm 的蒸汽导管,外面包围一层厚度为2 cm 的保温材料(导热系数为 K = 0.1 W ·m -1·K -1)蒸气的温度为100℃,保温材料的外表面温度为20℃.求:(1) 每秒钟从单位长度传出的热量; (2) 保温材料外表面的温度梯度. 四 理论推导和证明25 试根据麦克斯韦分子速率分布律222/3)2exp()2(π4)(v vv kTm kTm f -=,验证以下不等式成立 1)1(>⋅vv . [积分公式22321d )exp(λλ=-⎰∞x x x ,λλ21d )exp(02=-⎰∞x x x ]五 错误改正题26 已知有N 个粒子,其速率分布函数为: f ( v ) = d N / (N d v ) = c ( 0 ≤v ≤v 0 ) f ( v ) = 0 (v >v 0) 有人如下求得c 与v(1) 根据速率分布函数的归一化条件,求得常数c ,即有1d d )(00===⎰⎰∞v vv v v Nc Nc Nf∴ c = 1 / (N v 0) (2) 此粒子系统的平均速率⎰∞=0d )(v v v v Nf ⎰=0d 1v v v v N N0021d 10v v v vv ==⎰上述关于c 、v 的解答是否正确?如有错误请改正. 六 回答题27 由理想气体的内能公式mol2MiRTM E =可知内能E与气体的摩尔数M / M mol 、自由度i 以及绝对温度T 成正比,试从微观上加以说明.如果储有某种理想气体的容器漏气,使气体的压强、分子数密度都减少为原来的一半,则气体的内能是否会变化?为什么?气体分子的平均动能是否会变化?为什么?28在什么条件下,气体分子热运动的平均自由程λ与温度T 成正比?在什么条件下,λ与T 无关?(设气体分子的有效直径一定)29 什么叫分子的有效直径?它是否随温度变化而变化?为什么?30 什么是气体中的输运过程?。