管道应力分析与管道的振动
- 格式:ppt
- 大小:1.06 MB
- 文档页数:26
石油化工设计中管道的应力分析在石油化工设备和管道设计中,管道的应力分析是至关重要的一部分。
管道在输送化工产品、原油和天然气等流体过程中承受着巨大的压力和温度变化,因此对管道的应力进行准确的分析和评估是确保设备安全稳定运行的关键。
本文将就石油化工设计中管道的应力分析进行探讨,包括管道的应力来源、应力分析的方法以及如何通过应力分析来优化管道设计。
一、管道应力的来源管道在石油化工生产和运输中承受着各种不同类型的应力,主要包括以下几种:1. 内压力应力:当管道内输送流体时,流体对管道内壁产生压力,这种压力会导致管道内壁产生拉伸应力。
根据管道内部流体的压力大小和管道壁厚度,可以通过公式计算出内压力应力。
2. 外压力应力:当管道埋设在地下或者受到外部负荷作用时,管道外表面会受到外部压力的影响,产生外压力应力。
外压力应力的大小取决于埋深以及地下土壤或其他外部负荷的性质。
3. 温度应力:在石油化工生产中,管道内流体的温度会经常发生变化,管道壁由于温度变化而产生热应力。
当温度升高时,管道会受到膨胀,产生热膨胀应力;当温度降低时,管道会受到收缩,产生热收缩应力。
4. 惯性应力:当管道受到流体在流动中带来的冲击或者振动负荷时,管道会受到惯性应力的作用。
这种应力通常在管道系统启停或者调节流量时发生。
以上几种应力来源综合作用于管道中,会使得管道处于复杂的受力状态,因此需要进行系统的应力分析来保证管道的安全可靠运行。
二、管道应力分析的方法1. 弹性理论分析法:弹性理论分析法是管道应力分析常用的一种方法。
它基于弹性力学理论,通过有限元分析或者解析力学方法,对管道受力、应力分布和应力集中进行计算和分析。
这种方法可以较为准确地预测管道在各种受力情况下的应力状态,但需要复杂的数学计算和较高的专业知识。
2. 经验公式法:经验公式法是一种简化的应力分析方法,常用于一些简单的管道系统。
通过经验公式计算内压力应力、外压力应力和温度应力,并考虑到管道的材料性能和工作条件,可以得到初步的应力估计。
管道应力分析
管道应力分析是一种普遍存在的、涉及多项工程设计技术的实用工程方法。
它的目的是为了评估管道系统的机械特性,以满足运行应力以及其它设计要求。
管道应力分析基本上是指在设计、构造和维护水力管道或管道网时,确定压力、载荷以及应力的分布情况。
管道应力分析的原则包括:收集所需的数据,如管道的长度、材质、特性、尺寸、结构和附件;应用结构力学原理,考虑管道配置、材料和运行参数,利用有限元分析、数值分析和扩展Q-T分析等工具,计算出管道的应力和变形;根据计算的应力及其比例,结合管道材料的断裂极限,判断管道是否能够承受设计要求的应力。
管道应力分析可以有效地帮助相关工程人员有效地了解管道的物理行为,从而更好地了解管道的设计特征,可以更准确地估算管道的运行安全性,并且可以有效地与设计团队进行有效沟通,解决可能存在的管道应力问题。
不仅如此,管道应力分析还可以帮助企业识别出其管道系统的弱点,如可能存在的不足的断面和支撑,从而设计出有效的结构及其它补救措施,使管道系统能够达到规定的要求。
总之,管道应力分析对于提高管道设计质量、提高工程经济性和保障管道系统的安全性具有重要意义。
管道设计中关于管道应力的分析与考虑摘要:管道应力分析应该保证在设计的条件下有足够的柔性,为的是防止管道因为过度膨胀冷缩、管道自振或者是端点附加位移造成应力问题,在管道设计的时候,一部分管道要求必须进行管道应力分析和相关计算,同时还有一部分管道是不需要进行应力分析的,这种的管道分为两个部分,一种是根据实际的经验或者是已经成功的工程案例,在管道的设计中加上相应的弯管、膨胀节等环节来避免,所以就不需要进行管道应力分析,另一种就是管道的管径比较小,管道比较短,常温常压,不连接设备或者是不会产生振动,所以就不需要进行应力分析,文章就对管道的应力分析进行了详细的介绍说明。
关键词:管道设计应力分析柔性标准一、管道应力分析的主要内容管道应力分析主要分为两个部分,动力分析和静力分析:1、管道应力分析中的动力分析动力分析主要包括了六个方面,第一是管道自振频率的分析,为的是有效的防止管道系统的共振现象;第二是管道强迫振动相应的分析,目的是能够有效的控制管道的振动和应力;第三是往复压缩机(泵)气(液)柱的频率分析,通过对压缩机(泵)气(液)柱的频率的相关分析有效的防止气(液)柱的共振现象发生;第四是往复压缩机(泵)压力脉动的分析,起到控制压力脉动值的作用;第五是冲击荷载作用下的管道应力分析,可以防止管道振动和应力过大;第六是管道地震分析,为防止管道地震应力过大。
2、管道应力分析中的静力分析静力分析包括了六个方面的内容:第一是压力荷载以及持续荷载作用下的一次应力计算,为的是有效的防止塑性变形的破坏;第二是管道热胀冷缩和端点附加位移产生的位移荷载作用下的二次应力计算,通过二次应力分析计算防止疲劳破坏;第三是管道对设备产生的作用力的相应计算,能够防止作用力太大,有效的保证设备的正常运行;第四是对于管道的支吊架的受力分析计算,能够为支吊架的设计提供充足的依据;第五是为了有效的防止法兰的泄漏而对管道法兰进行的受力分析;第六是管系位移计算,防止管道碰撞和支吊点位移过大2、管道应力分析的目的对管道进行应力分析为的就是能够使管道以及管件内的应力不超过许可使用的管道应力值;为了能够使和管道系统相连接的设备的管道荷载保持在制造商或者是国际规定的许可使用范围内;保证和管道系统相连接的设备的管口局部管道应力在ASME Vlll允许的范围内;为了计算管道系统中支架以及约束的设计荷载;为了进行操作的工况碰撞检查而进行确定管道的位移;为了能够尽最大可能的优化管道系统的设计。
管道应力专业的工作内容一、管道应力专业的工作内容那可老丰富啦。
咱先说说管道应力分析这块儿。
这就是看管道在各种受力情况下的反应。
比如说,管道里面有流体在流,这就会产生压力,这压力对管道就有作用力,得分析这力会让管道变形到啥程度。
还有啊,管道可能会受到外部的力,像周围设备的振动啥的,这些外力也会影响管道的应力情况。
这就像是你站在一个有风的地方,风就是外力,你得站稳了,管道也得在这些外力下保持稳定。
二、管道的布局和走向也和应力专业有关。
你想啊,管道要是弯弯绕绕的,它受力情况肯定和直直的管道不一样。
设计管道走向的时候,得考虑怎么布局能让应力分布比较均匀,不能这儿应力太大,那儿应力又太小。
就好比你在搭积木,怎么搭才能让整个结构稳稳当当的,是一个道理。
而且不同的介质在管道里,对管道的作用力也有差别,像油和水,密度不一样,流动起来对管道的冲击力啥的就不一样,这些都得考虑进去。
三、管道的支撑系统也是管道应力专业的重要工作内容。
支撑就像是管道的“小助手”,能分担管道的重量和应力。
选择什么样的支撑方式,是用吊架还是支架,放在什么位置,这些都是有讲究的。
就像你背个包,要是有个地方能帮你托着点包,你就不会那么累,管道的支撑就是这么个作用。
而且在管道运行过程中,支撑可能会因为各种原因出现问题,像松动或者损坏,这时候就得靠应力专业的人去检测和修复,保证管道的安全运行。
四、管道应力专业还得考虑热胀冷缩的影响。
管道在温度变化的时候,会膨胀或者收缩。
如果不考虑这个,管道可能就会被拉坏或者挤坏。
这就像是你穿衣服,冬天衣服缩起来了,夏天衣服又松松垮垮的,管道也是这样。
所以要设计一些伸缩节之类的东西,让管道能自由伸缩,同时又能控制应力在安全范围内。
五、还有管道的连接部位,这也是应力容易出问题的地方。
像焊接的地方,如果焊接质量不好,应力就会集中在那儿,就像一根绳子,有个薄弱的地方就容易断。
所以要对连接部位进行应力测试,确保连接牢固,应力分布合理。
浅谈管道的地震应力分析前言:为了保证电厂的运行安全,需要对管道进行地震工况下的应力分析。
本文首先介绍了目前国际上应用较多的地震规范,然后详细讲解了如何在计算模型中进行设置地震工况,最后说明了对结果的分析。
关键词:地震应力分析管道设计1 引言电厂内部结构复杂,当地震袭来时,所有的结构、设备、管道同时受到激发,产生远远偏离设计工况的荷载。
如果设计中不考虑这方面的因素,地震一旦发生,将产生难以弥补的经济损失甚至人员伤亡。
在地震频发地区,以及要求万无一失的核电厂中,在电厂的设计中必须考虑地震的影响。
当前,地震分析主要采用两种方法,一种是将地震力分解为各个方向的加速度,用静态分析的方法进行模拟计算;另一种是采用动态分析的方法,将地震力作为一种响应谱输入到模型中进行计算。
根据经验,这两种方法得出的结果差别在允许的工程范围内,所以,采用任何方法都是可行的。
本文将主要以静态分析为例进行讲解。
B31E对地震计算有详细的说明,3.1节提到地震力的静态分析主要需要确定外部地震的水平和垂直加速度,这需要根据规范通过计算来获得。
地震加速度在三个坐标系方向上都存在,但我们可以通过垂直方向和各个水平方向的叠加来作为地震加速度。
2 地震分析理论简介2.1 地震分析所需的地震数据地震分析需要获得当地的地震力的情况或者地震等级情况,这一过程需要根据相关的规范结合业主提供的资料,进行分析后获得。
目前地震方面相关的国际规范主要有ASCE 7-05、NBC,国内相关的规范为《建筑抗震设计规范》。
我们应用这几个规范主要是对获得外部地震力的大小。
2.1.1 ASCE 7-05本规范对于水平加速度和垂直地震力的定义分别为(13.3节):其中三个矢量分别为X,Y,Z方向上地震加速度的值。
3.2 工况组合详见图2,除了传统的OPE,SUS,EXP之外,因为本工程需要对地震过程中的应力进行校核,同时考察地震时支吊架的荷载情况,因此需要增加一系列设计工况。
石油化工设计中管道的应力分析石油化工设计中,管道的应力分析是至关重要的一环。
在石油化工项目中,管道系统承载着各种化工介质,其正确的应力分析可确保管道系统的安全运行。
本文将从管道应力的定义、应力分析的重要性、应力分析的方法以及应力分析的应用等方面进行详细介绍。
一、管道应力的定义管道应力是指管道在内外载荷作用下所产生的应力状态。
内载荷包括介质压力、介质温度变化引起的热应力等,而外载荷则包括风载荷、地震作用、管道施工过程中的施工载荷等。
在石油化工设计中,管道应力主要包括轴向应力、周向应力和剪切应力等。
二、应力分析的重要性管道应力的分析对石油化工项目的安全稳定运行至关重要。
正确认识管道的应力状态能够避免管道系统出现过度应力破坏、应力腐蚀裂纹等问题,从而保障生产系统的安全稳定运行。
合理的应力分析还可以指导设计人员优化管道系统的设计,提高其运行效率,减少资源浪费。
1. 模拟分析法:通过有限元分析软件对管道系统进行模拟建模,并对不同载荷条件下的应力进行计算。
2. 经验计算法:利用经验公式或经验参数计算得到管道系统在不同载荷下的应力状态。
3. 简化计算法:将复杂的管道系统简化为理想模型,利用简化的方法对管道的应力状态进行计算。
1. 管道受力分析:对管道系统在不同条件下的受力状态进行分析,确保其能够承受外部载荷的作用,不产生过度应力。
2. 安全评估:对管道系统的应力状态进行评估,判断其安全稳定性,发现潜在问题并进行预防性维护。
3. 设计优化:通过应力分析,优化管道系统的设计方案,提高其运行效率,减少资源浪费。
4. 施工指导:在管道施工过程中,根据应力分析结果,制定合理的施工方案,确保管道系统的施工质量。
海底管道液体运输中的管道振动和疲劳分析海底管道承担着将石油、天然气等重要能源从海上开采场地输送到陆地的重要任务。
然而,在运输过程中,海底管道往往会遭受到来自海洋环境的振动力和外界荷载的作用,这些因素导致了管道的疲劳问题。
为了确保海底管道的安全可靠运行,进行管道振动和疲劳分析变得至关重要。
管道振动是指管道受到外界激励时的振动现象。
海洋环境中存在着波浪、涡流、海底地震等导致管道振动的因素。
这些振动力会对管道产生应力集中和疲劳破坏的风险。
因此,准确地分析管道受到的振动力对于确定管道的运输能力和寿命具有重要意义。
管道疲劳是指由于外界荷载作用,管道内部产生的应力循环导致管道材料发生破裂的现象。
疲劳问题是海底管道运输过程中最严重的问题之一。
长期以来,疲劳问题导致了很多管道事故和能源泄漏事故的发生,造成了巨大的经济损失和环境污染。
因此,对管道的疲劳行为进行分析和评估,以设计出更安全可靠的管道系统,具有重要的现实意义。
在进行管道振动和疲劳分析时,需要考虑多种因素。
首先,需要对管道受到的外界激励进行准确的建模和分析。
这包括波浪、涡流、震动等因素的考虑。
其次,需要对管道的结构特性进行准确的描述,包括材料性质、几何形状、支撑方式等。
此外,还需要考虑管道的运行环境,如水深、海底地质条件等因素。
对于管道振动的分析,可以采用数值模拟方法。
通过有限元分析等技术,可以模拟和预测管道受到的振动力,并对其产生的应力和位移进行计算。
此外,还可以采用试验方法,通过在实验室中进行管道模型的振动试验,获取实际振动数据,并对其进行分析和评估。
对于管道疲劳的分析,可以采用应力循环法。
通过对管道受到的应力循环进行计数和评估,可以确定疲劳寿命和疲劳破坏的风险。
同时,还可以采用裂纹扩展法,通过模拟裂纹的扩展和破裂行为,对管道进行疲劳寿命估计和可靠性评估。
除了对管道振动和疲劳进行分析外,还可以采取一系列的措施来减小振动和延长疲劳寿命。
比如,在设计阶段就考虑减震措施、选择合适的材料、优化管道结构等。
输水管道振动分析水利水电工程和农业水利工程中,为了减小蒸发、输水方便、利于控制,常采用压力管道进行输水。
在管道输水过程中,往往会发生管道的振动现象,若管线长期振动会遭受疲劳破坏,进而引发管线断裂、水体外泄等事故。
应在设计中予以考虑。
1.输水管道振动机理在压力和流速作用下,管道壁会承受动水压力,动力设备、来流条件、流体输送机械操作和外部环境的刺激会使管道产生随机振动。
管道、支架和相连设备构成一个结构系统,在激振力的作用下,系统会发生振动。
管道振动分为两个系统:一个是管道系统,一个是流体系统。
压力管道的激振力来源于系统自身或系统外部。
来自系统自身的激振力主要有与管道相连接的机器的振动和管内流体不稳定流动引起的振动;来自系统外的主要有风、地震等。
振动对压力管道而言是交变荷载,危害程度取决于激振力的大小和管道的抗震性能。
2.管道激振力分析来自系统内部的激振力主要有以下几种:2.1 由于运动要素脉动产生的脉动压力实际工程中的液体流动多属于紊流,其基本特征是许多大小不等的涡体相互混掺着前进,在流动过程中流速、压强等运动要素会发生脉动,继而产生脉动压强和附加切应力,管道在此作用下会发生振动。
2.2 由于气蚀产生的冲击力对于部分压力管道,基于提供水流动能和节省工程投资的需求,常选择断面较小的管道,管道内流动的水流为高速水流。
水流流动过程中动能较大,压能较小,当压强低于同温度下的气化压强时,部分液体发生气化,产生空泡。
空泡随液流前进的过程中逸出,当压强增大,其自身的存在条件被破坏后,空泡发生溃灭。
空泡在管壁附近频频溃灭,会在瞬间产生较大的冲击力,使管道发生振动。
2.3 由于水击产生的水击压力压力管道中流动的液体流速因某种外界原因发生急剧变化时(如阀门开启或关闭),由于液体具有一定的压缩膨胀性,液体内部压强产生迅速交替升降,这种交替升降的水击压力像锤子击打在管壁、阀门或其他管路元件上一样,造成管道的弹性变形和振动。
管道设计中关于管道应力的分析与考虑摘要:管道应力分析应该保证在设计的条件下有足够的柔性,为的是防止管道因为过度膨胀冷缩、管道自振或者是端点附加位移造成应力问题,在管道设计的时候,一部分管道要求必须进行管道应力分析和相关计算,同时还有一部分管道是不需要进行应力分析的,这种的管道分为两个部分,一种是根据实际的经验或者是已经成功的工程案例,在管道的设计中加上相应的弯管、膨胀节等环节来避免,所以就不需要进行管道应力分析,另一种就是管道的管径比较小,管道比较短,常温常压,不连接设备或者是不会产生振动,所以就不需要进行应力分析,文章就对管道的应力分析进行了详细的介绍说明。
关键词:管道设计应力分析柔性标准一、管道应力分析的主要内容管道应力分析主要分为两个部分,动力分析和静力分析:1、管道应力分析中的动力分析动力分析主要包括了六个方面,第一是管道自振频率的分析,为的是有效的防止管道系统的共振现象;第二是管道强迫振动相应的分析,目的是能够有效的控制管道的振动和应力;第三是往复压缩机(泵)气(液)柱的频率分析,通过对压缩机(泵)气(液)柱的频率的相关分析有效的防止气(液)柱的共振现象发生;第四是往复压缩机(泵)压力脉动的分析,起到控制压力脉动值的作用;第五是冲击荷载作用下的管道应力分析,可以防止管道振动和应力过大;第六是管道地震分析,为防止管道地震应力过大。
2、管道应力分析中的静力分析静力分析包括了六个方面的内容:第一是压力荷载以及持续荷载作用下的一次应力计算,为的是有效的防止塑性变形的破坏;第二是管道热胀冷缩和端点附加位移产生的位移荷载作用下的二次应力计算,通过二次应力分析计算防止疲劳破坏;第三是管道对设备产生的作用力的相应计算,能够防止作用力太大,有效的保证设备的正常运行;第四是对于管道的支吊架的受力分析计算,能够为支吊架的设计提供充足的依据;第五是为了有效的防止法兰的泄漏而对管道法兰进行的受力分析;第六是管系位移计算,防止管道碰撞和支吊点位移过大2、管道应力分析的目的对管道进行应力分析为的就是能够使管道以及管件内的应力不超过许可使用的管道应力值;为了能够使和管道系统相连接的设备的管道荷载保持在制造商或者是国际规定的许可使用范围内;保证和管道系统相连接的设备的管口局部管道应力在ASME Vlll允许的范围内;为了计算管道系统中支架以及约束的设计荷载;为了进行操作的工况碰撞检查而进行确定管道的位移;为了能够尽最大可能的优化管道系统的设计。
管道应力分析的原则管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。
ASME B31《压力管道规范》由几个单独出版的卷所组成,每卷均为美国国家标准。
它们是子ASME B31压力管道规范委员会领导下的编制的。
每一卷的规则表明了管道装置的类型,这些类型是在其发展过程中经考虑而确定下来的,如下所列:B31.1压力管道:主要为发电站、工业设备和公共机构的电厂、地热系统以及集中和分区的供热和供冷系统中的管道。
B31.3工艺管道:主要为炼油、化工、制药、纺织、造纸、半导体和制冷工厂,以及相关的工艺流程装置和终端设备中的管道。
B31.4液态烃和其他液体的输送管线系统:工厂与终端设备剑以及终端设备、泵站、调节站和计量站内输送主要为液体产品的管道。
B31.5冷冻管道:冷冻和二次冷却器的管道B31.8气体输送和配气管道系统:生产厂与终端设备(包括压气机、调节站和计量器)间输送主要为气体产品的管道以及集汽管道。
B31.9房屋建筑用户管道:主要为工业设备、公共结构、商业和市政建筑以及多单元住宅内的管道,但不包括B31.1所覆盖的只寸、压力和温度范围。
B31.11稀浆输送管道系统:工厂与终端设备间以及终端设备、泵站和调节站内输送含水稀浆的管道。
管道应力分析的主要内容一、管道应力分析分为静力分析和动力分析1.静力分析包括:1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏;2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算一一防止疲劳破坏;3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行;4)管道支吊架的受力计算——为支吊架设计提供依据:5)管道上法兰的受力计算一防止法兰汇漏。
2.动力分析包括:1)管道自振频率分析一一防止管道系统共振:2)管道强迫振动响应分析——控制管道振动及应力;3)往复压缩机(泵)气(液)柱频率分析一一防止气柱共振;4)往复压缩机(泵)压力脉动分析——控制压力脉动值。