相似三角形的判定1
- 格式:doc
- 大小:126.50 KB
- 文档页数:7
4.4相似三角形的判定相似三角形的判定定理1.(一)相似三角形判定的预备定理平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.3.判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定定理3:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.一、单选题1.如图,AD ,BC 相交于点O ,由下列条件仍不能判定△AOB 与△DOC 相似的是( )A .AB ∥CD B .∠C =∠B C .OA OBOD OC= D .OA ABOD CD= 【解答】D【提示】本题中已知∠AOB =∠DOC 是对顶角,应用两三角形相似的判定定理,即可作出判断. 【详解】解:A 、由AB ∥CD 能判定△AOB ∽△DOC ,故本选项不符合题意. B 、由∠AOB =∠DOC 、∠C =∠B 能判定△AOB ∽△DOC ,故本选项不符合题意.C 、由OA OBOD OC = 、∠AOB =∠DOC 能判定△AOB ∽△DOC ,故本选项不符合题意. D 、已知两组对应边的比相等:OA ABOD CD = ,但其夹角不一定对应相等,不能判定△AOB 与△DOC 相似,故本选项符合题意. 故选:DAB CDED EACB【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是( )A .C BAD ∠=∠B .BAC BDA ∠=∠ C .AC ADBC AB = D .2AB BD BC =⋅【解答】C【提示】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC ADBC AB =,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BCBD AB =,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键. 3.下列各种图形中,有可能不相似的是( ) A .有一个角是45的两个等腰三角形 B .有一个角是60的两个等腰三角形 C .有一个角是110的两个等腰三角形 D .两个等腰直角三角形【解答】A【提示】本题每一个选项都跟等腰三角形相似有关,注意的是一个角是一个角是45°,这个角可能是顶角或者底角,有一个角是60,这个三角形就是等边三角形,一个角是110,这个角一定是顶角,若是底角则不满足三角形内角和等于180°.等腰直角三角形的的底角是45°顶角是90°为固定值. 【详解】A .各有一个角是45°的两个等腰三角形,有可能是一个为顶角,另一个为底角,此时不相似,故此选项符合题意;B .各有一个角是60°的两个等腰三角形是等边三角形,两个等边三角形相似,故此选项不合题意;C .各有一个角是110°的两个等腰三角形,此角必为顶角,则底角都为35°,则这两个三角形必相似,故此选项不合题意;D .两个等腰直角三角形,底角是45°顶角是90°,为固定值,此三角形必相似,故此选项不合题意; 故选A .【点睛】本题解题关键在于,找准一个角是45,60,110的等腰三角形有几种情况,再就是等腰直角三角形的每个角的角度是固定的.4.下列条件,能使ABC 和111A B C △相似的是( )A .1111112.5,2,3;3,4,6AB BC AC A B B C AC ======B .11111192,3,4;3,6,2AB BC AC A B B C AC ======C.11111110,8;AB BC AC A B BCAC =====D.1111111,3;AB BC AC A B BCAC ====【解答】B【提示】根据相似三角形的判定定理进行判断.【详解】解:A 、11112.55213642AB BC A B B C ==≠==,不能使ABC ∆和△111A B C 相似,错误; B 、11111123242933632AB BC AC A B A C B C =======,能使ABC ∆和△111A B C 相似,正确;C、1111AB BC A B B C ≠=,不能使ABC ∆和△111A B C 相似,错误; D、1111AB BC A C B C =≠=ABC ∆和△111A B C 相似,错误; 故选B.【点睛】本题考查了相似三角形的判定.识别三角形相似,除了要掌握定义外,还要注意正确找出三角形的对应边、对应角.5.下列能判定ABC DEF ∽△△的条件是( ) A .AB AC DE DF = B .AB ACDE DF =,A F ∠=∠ C .AB AC DE DF =,B E ∠=∠ D .AB ACDE DF =,A D ∠=∠ 【解答】D【提示】利用相似三角形的判定定理:两边对应成比例且夹角相等的三角形相似,逐项判断即可得出答案.【详解】解:A.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; B. AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; C.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; D.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项正确; 故选:D .【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键. 6.如图,要使ACD ABC △△∽,需要具备的条件是( )A .AC ABAD BC = B .CD BCAD AC = C .2AC AD AB =⋅D .2CD AD BD =⋅【解答】C【提示】题目中隐含条件∠A =∠A ,根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件只能是AC ADAB AC =,根据比例性质即可推出答案. 【详解】解:∵在△ACD 和△ABC 中,∠A =∠A ,∴根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件是:AC ADAB AC =, ∴2AC AD AB ⋅= . 故选:C .【点睛】本题考查了相似三角形的判定,注意:有两边对应成比例,且夹角相等的两三角形相似. 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件不能满足△ADE ∽△ACB 的条件是( )A .∠AED=∠B B .AD AEAC AB = C .AD·BC= DE·AC D .DE//BC【解答】C【提示】根据相似三角形的判定定理去判断分析即可. 【详解】∵∠AED=∠B ,∠A=∠A , ∴△ADE ∽△ACB , 故A 不符合题意; ∵AD AEAC AB =,∠A=∠A , ∴△ADE ∽△ACB , 故B 不符合题意;∵AD·BC= DE·AC ,无夹角相等, ∴不能判定△ADE ∽△ACB , 故C 符合题意; ∵DE//BC , ∴△ADE ∽△ACB , 故D 不符合题意; 故选C .【点睛】本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键. 8.如图,等边ABC 中,点E 是AB 的中点,点D 在AC 上,且2DC DA =,则( )A .AED BED ∽△△ B .AED CBD ∽△△ C .AED ABD ∽△△ D .BAD BCD ∽△△ 【解答】B【提示】由等边三角形的性质,中点的定义得到2BC AB AE ==,60A C ∠=∠=︒,结合2DC DA =,得到12AE AD CB CD ==,即可得到AED CBD ∽△△. 【详解】解:∵ABC 是等边三角形, ∴BC AB =,60A C ∠=∠=︒, ∵点E 是AB 的中点, ∴2BC AB AE ==, ∵2DC DA =, ∴12AE AD CB CD ==,∵60A C ∠=∠=︒,∴AED CBD ∽△△. 故选:B .【点睛】本题考查了相似三角形的判定,等边三角形的性质,解题的关键是掌握相似三角形的判定进行判断.9.如图,在ACB △中,90,ACB AF ∠=︒是BAC ∠的平分线,过点F 作FE AF ⊥,交AB 于点E ,交AC 的延长线于点D ,则下列说法正确的是( )A .CDF EBF ∽B .ADF ABF ∽C .ADF CFD ∽D .ACF AFE ∽【解答】D【提示】根据相似三角形的判定方法AA 解题. 【详解】解:EF AF ⊥90AFE ∴∠=︒90ACB AFE ∴∠=∠=︒AF 是BAC ∠的平分线,CAF FAE ∴∠=∠()ACFAFE AA ∴故选项D 符合题意,选项A 、B 、C 均不符合题意,故选:D .【点睛】本题考查相似三角形的判定方法,角平分线的性质等知识,是重要考点,掌握相关知识是解题关键.10.如图,四边形ABCD 的对角线,AC BD 相交于点O ,且将这个四边形分成四个三角形,若::OA OC OB OD =,则下列结论中正确的是( )A .△AOB ∽△AOD B .△AOD ∽△BOC C .△AOB ∽△BOCD .△AOB ∽△COD 【解答】D【提示】根据相似三角形的判定定理:两边对应成比例且夹角相等,即可判断△AOB ∽△COD . 【详解】解:∵四边形ABCD 的对角线,AC BD 相交于点O , ∴∠AOB=∠COD , 在△AOB 和△COD 中, =OA OBOC OD AOB COD ⎧⎪⎨⎪∠=∠⎩∴△AOB ∽△COD . 故选:D .【点睛】本题考查相似三角形的判定.熟练掌握两边对应成比例且夹角相等则这两个三角形相似是解题的关键.二、填空题11.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【解答】∠ADE=∠B (答案不唯一).【提示】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定. 【详解】解∶∵∠A=∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B 或∠AED=∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AEAB AC =证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 12.图,在ABC 中,AB AC >,点D 在AB 上(点D 与A ,B 不重合),若再增加一个条件就能使ACD ABC △∽△,则这个条件是________(写出一个条件即可).【解答】ACD ABC ∠=∠(答案不唯一)【提示】两个三角形中如果有两组角对应相等,那么这两个三角形相似,据此添加条件即可. 【详解】解:添加ACD ABC ∠=∠,可以使两个三角形相似. ∵CAD BAC ∠=∠,ACD ABC ∠=∠, ∴ACD ABC △∽△.故答案为:ACD ABC ∠=∠(答案不唯一)【点睛】本题考查相似三角形的判定定理,两组角对应相等的两个三角形相似.理解和掌握三角形相似的判定是解题的关键.13.如图,∠1=∠2,请补充一个条件:________________,使△ABC ∽△ADE .【解答】∠C =∠E 或∠B =∠ADE(答案不唯一)【提示】再添加一组角可以利用有两组角对应相等的两个三角形相似来进行判定. 【详解】∵∠1=∠2 ∴∠1+∠DAC=∠DAC+∠2 ∴∠BAC =∠DAE又∵∠C =∠E (或∠B =∠ADE ) ∴△ABC ∽△ADE .故答案为:∠C =∠E 或∠B =∠ADE (答案不唯一).【点睛】本题考查了相似三角形的判定,熟悉相似三角形的几个判定定理是关键. 14.如图,在ABC 中,点D 为边AC 上的一点,选择下列条件:①2A ∠=∠;②1CBA ∠=∠;③BC CDAC AB =;④BC CD DB AC BC AB ==中的一个,不能得出ABC 和BCD △相似的是:__________(填序号).【解答】③【提示】根据相似三角形的判定定理可得结论.【详解】解:①2A ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故①不符合题意; ②1CBA ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故②不符合题意; ③BC CDAC AB =,C C ∠=∠时,不能推出ABC BDC ∆∆∽,故③符合题意; ④BC CD DBAC BC AB ==,C C ∠=∠时,ABC BDC ∆∆∽,故④不符合题意, 故答案为:③【点睛】本题考查了相似三角形的判定,解题的关键是掌握两组对应边对应成比例且夹角相等的两个三角形相似;有两角对应相等的两个三角形相似.15.如图,在ABC 中,DE BC ∥,DE 分别交AB 、AC 于点D 、E ,DC 、BE 交于点O ,则相似三角形有______.【解答】ADE∽ABC,DOE∽COB△【提示】根据DE BC∥,找出相等的角,进而得到相似三角形.【详解】解:∵DE BC∥,∴∠ADE=∠ABC,∠AED=∠ACB,∴ADE∽ABC,∵DE BC∥,∴∠EDO=∠BCO,∠DEO=∠CBO,∴DOE∽COB△,故答案为ADE∽ABC,DOE∽COB△.【点睛】本题考查了平行线的性质以及相似三角形的判定,解题的关键是掌握:一个三角形的两个角与另一个三角形的两个角对应相等,这两个三角形相似.16.如图,在△ABC中,AB=10,AC=5,AD是角平分线,CE是高,过点D作DF⊥AB,垂足为F,若DF=83,则线段CE的长是______.【解答】4【提示】延长AC,作DG⊥AC,根据根据角平分线的性质得到FD=GD,再根据三角形的面积公式即可求解.【详解】解:延长AC,作DG⊥AC,∵AD平方∠BAC,∴FD=DG,∴S△ABC= S△ABD+ S△ADC=12AB FD⨯⨯+12AC GD⨯⨯=12AB EC⨯⨯即111105883310222EC⨯⨯+⨯⨯=⨯⨯ 解得EC=4.【点睛】本题考查了角平分线的性质,角的平分线上的点到角的两边的距离相等与三角形的面积公式. 17.如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【解答】0.8或2##2或0.8【提示】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BCBA =时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似, 则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQBA BC =时,BPQ BAC ∽, 即824816t t -=, 解得:2t =;当BP BQ BC BA =时,BPQ BCA △∽△,即824168t t-=, 解得:0.8t =;综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.18.如图,正方形ABCD 的边长为2,连接BD ,点P 是线段AD 延长线上的一个动点,45PBQ ∠=︒,点Q 是BQ 与线段CD 延长线的交点,当BD 平分PBQ ∠时,PD ______QD (填“>”“<”或“=”):当BD 不平分PBQ ∠时,PD QD ⋅=__________.【解答】 = 8【提示】①先证明△ABP ≌△CBQ,再证明△QBD ≌△PBD,即可得出PD=QD;②证明△BQD ∽△PBD,即可利用对应边成比例求得PD·QD. 【详解】解:①当BD 平分∠PBQ 时, ∠PBQ=45°,∴∠QBD=∠PBD=22.5°, ∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°,∠ABD=∠CBD=45°, ∴∠ABP=∠CBQ=22.5°+45°=67.5°, 在△ABP 和△CBQ 中,A C AB BCABP CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABP ≌△CBQ (ASA ), ∴BP=BQ ,在△QBD 和△PBD 中,BQ BP QBD PBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△QBD ≌△PBD (SAS ), ∴PD=QD;②当BD 不平分∠PBQ 时, ∵AB ∥CQ , ∴∠ABQ=∠CQB ,∵∠QBD+∠DBP=∠QBD+∠ABQ=45°, ∴∠DBP=∠ABQ=∠CQB ,∵∠BDQ=∠ADQ+∠ADB=90°+45°=135°,∠BDP=∠CDP+∠BDC=90°+45°=135°, ∴∠BDQ=∠BDP, ∴△BQD ∽△PBD ,∴BD QDPD BD =,∴PD·QD=BD2=22+22=8, 故答案为:=,8.【点睛】本题考查三角形的全等和相似,关键在于熟悉基础知识,利用条件找到对应三角形.三、解答题19.已知:D 、E 是△ABC 的边AB 、AC 上的点,AB =8,AD =3,AC =6,AE =4,求证:△ABC ∽△AED .【解答】见解析【提示】根据已知线段长度求出AB ACAE AD =,再根据∠A=∠A 推出相似即可. 【详解】证明:在△ABC 和△AED 中, ∵824AB AE ==,623AC AD ==,∴AB ACAE AD =, 又∵∠A =∠A ,∴△ABC ∽△AED .【点睛】本题考查了相似三角形的判定定理的应用,注意:有两边的对应成比例,且夹角相等的两三角形相似.20.已知:在△ABC 和△A′B′C′中, AB BC ACA B B C A C '''='''=.求证:△ABC ∽△A′B′C′.【解答】证明见解析【提示】先在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,然后证明△ABC ∽△ADE ,再△ADE ≌△A′B′C′即可.【详解】在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE . ∵AB ACA B A C ='''',AD=A′B′,AE=A′C′, ∴AB ACAD AE = 而∠BAC=∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE = 又AB BCA B B C ='''',AD= A′B′, ∴ AB BCAD B C ='' ∴BC BCDE B C =''∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.【点睛】本题考查了相似三角形的判定,三边对应成比例的两个三角形相似,灵活运用两边对应成比例且夹角相等的两个三角形相似,全等三角形的判定是解决本题的关键. 21.已知:如图,在ABC 和A B C '''中,,A A B B ∠=∠∠=∠''. 求证:ABC A B C '''∽△△.【解答】见解析【提示】在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,过点D 作AC 的平行线,交BC 于点F ,容易得到ADE ABC △△∽,然后证明ADE A B C '''≌,从而即可得到ABC A B C '''∽△△.【详解】证明:在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,则,ADE B AED C ∠=∠∠=∠,AD AEAB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).过点D 作AC 的平行线,交BC 于点F ,则AD CFAB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB =. ∵//,//DE BC DF AC , ∴四边形DFCE 是平行四边形. ∴DE CF =.∴AEDEAC CB =. ∴ADAE DEAB AC BC ==.而,,ADE B DAE BAC AED C ∠=∠∠=∠∠=∠, ∴ADE ABC △△∽.∵,,A A ADE B B AD A B ∠=∠∠=∠=∠='''', ∴ADE A B C '''≌. ∴ABC A B C '''∽△△.【点睛】本题是教材上相似三角形的判定定理的证明,熟读教材是解题的关键. 22.如图,Rt ABC 中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△; (2)CBD ABC ∽△△. 【解答】(1)见解析;(2)见解析【提示】(1)根据有两组角对应相等的两个三角形相似进行证明即可. (2)根据有两组角对应相等的两个三角形相似进行证明即可. 【详解】证明:(1)∵CD 是斜边AB 上的高, ∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A , ∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高, ∴∠BDC =90°,∴∠BDC =∠ACB =90°, ∵∠B =∠B , ∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.23.如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4. 求证:(1)△ABD ∽△CBE ; (2)△ABC ∽△DBE .【解答】(1)证明见解析;(2)证明见解析;【提示】(1)根据有两组角对应相等的两个三角形相似可判断△ABD∽△CBE;(2)先利用得到∠1=∠2得到∠ABC=∠DBE,再利用△ABD∽△CBE得AB BDBC BE=, 根据比例的性质得到AB BCBD BE=, 然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ABC与△DBE相似.【详解】(1)相似.理由如下:∵∠1=∠2,∠3=∠4.∴△ABD∽△CBE;(2)相似.理由如下:∵∠1=∠2,∴∠1+∠DBC=∠2+DBC,即∠ABC=∠DBE,∵△ABD∽△CBE,∴=,∴=,∴△ABC∽△DBE.【点睛】本题考查了三角形相似的判定,熟练掌握三角形相似的判定方法是解题关键.24.已知如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【解答】(1)答案见解析;(2)答案见解析【提示】(1)根据两角相等,两个三角形相似即可得出结论;(2)根据(1)得到△BAF ∽△BCE ,再由相似三角形的对应边成比例,得到BF :BE=BA :BC ,由两边对应成比例,夹角相等两个三角形相似,即可得出结论. 【详解】(1)∵AF ⊥BC ,CE ⊥AB ,∴∠AFB=∠CEB=90°. ∵∠B=∠B ,∴△BAF ∽△BCE ;(2)∵△BAF ∽△BCE ,∴BF :BE=BA :BC . ∵∠B=∠B ,∴△BEF ∽△BCA .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,在△ABC 和△ADE 中,AB BC ACAD DE AE ==,点B 、D 、E 在一条直线上,求证:△ABD ∽△ACE .【解答】证明见解析;【提示】根据三边对应成比例的两个三角形相似可判定△ABC ∽△ADE ,根据相似三角形的性质可得∠BAC=∠DAE ,即可得∠BAD=∠CAE ,再由AB AC AD AE =可得AB ADAC AE =,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD ∽△ACE .【详解】∵在△ABC 和△ADE 中,AB BC ACAD DE AE ==, ∴△ABC ∽△ADE , ∴∠BAC=∠DAE , ∴∠BAD=∠CAE , ∵AB ACAD AE =, ∴AB ADAC AE =, ∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键. 26.如图,△ABC 与 △ADE 中,∠ACB=∠AED=90°,连接BD 、CE ,∠EAC=∠DAB.(1)求证:△ABC ∽△ADE ; (2)求证:△BAD ∽△CAE ;(3)已知BC=4,AC=3,AE=32.将△AED 绕点A 旋转,当点E 落在线段CD 上时,求 BD 的长.【解答】(1)详见解析;(2)详见解析;(3)BD=53.【提示】(1)由已知可得∠CAB=∠EAD ,∠ACB=∠AED=90°,则结论得证; (2)由(1)知AC AEAB AD =,∠EAC=∠DAB ,则结论得证; (3)先证△ABC ∽△ADE ,求出AE 、AD 的长,则BD 可求. 【详解】证明:(1)∵∠EAC=∠DAB , ∴∠CAB=∠EAD , ∵∠ACB=∠AED=90°, ∴△ABC ∽△ADE ;(2)由(1)知△ABC ∽△ADE , ∴AC AEAB AD =, ∵∠EAC=∠BAD , ∴△BAD ∽△CAE ;(3)∵∠ACB=90°,BC=4,AC=3,∴2222=43BC AC ++,∵△ABC ∽△ADE , ∴AC AB AE AD =, ∴AD=5=•2AB AE AC , 如图,将△AED 绕点A 旋转,当点E 落在线段CD 上时,∠AEC=∠ADB=90°,∴222255=()=3225AB AD--【点睛】本题考查相似三角形的判定和性质、旋转的性质等知识,解题的关键是熟练掌握基本知识.。
相似三角形的判定第1课时相似三角形的判定〔1〕【知识与技能】会说判定两个三角形相似的方法:两个角分别相等的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力.【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理1以及推导过程,并会用判定定理1来证明和计算.【教学难点】相似三角形的判定定理1的运用.一、情境导入,初步认识1.两个矩形一定会相似吗?为什么?2.如何判断两个三角形是否相似?根据定义:对应角相等,对应边成比例.△ABC与△A′B′C′会相似吗?为什么?是否存在判定两个三角形相似的简便方法?本节就是探索识别两个三角形相似的方法.二、思考探究,获取新知同学们观察你与你的同伴用的三角尺,及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样.这些三角形是相似的,我们就从平常所用的三角尺入手探索.〔1〕45°角的三角尺是等腰直角三角形,它们是相似的.〔2〕30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好似就会“相似〞.是这样吗?请同学们动手试一试:1.画两个三角形,使它们的三个角分别相等.画△ABC与△DEF,使∠A=∠D,∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?实际画图中,只画∠A=∠D,∠B=∠E,那么第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的.2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果.3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似.4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?这是由于三角形具有它特殊的性质.三角形有稳定性,而四边形有不稳定性.于是我们得到判定两个三角形相似的一个较为简便的方法:如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说,两角对应相等,两三角形相似.同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢?例1 如图,在两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似.解:相似,因为∠C=∠C′,∠A=∠A′,根据相似三角形的判定定理1可知△A′B′C′∽△ABC.例2 在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?解:由三角形的内角和定理知∠C′=180°-∠A′-∠B′=180°-50°-60°=70°,∴∠C′=∠B,又∵∠A=∠A′,∴△ABC∽△A′C′B′.【教学说明】教师注意引导学生分析∠B不一定与∠B′对应.例3 如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.证明:∵DE∥BC,∴∠AED=∠∵EF∥AB,∴∠CEF=∠A.∴△ADE∽△EFC三、运用新知,深化理解1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形.2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC 会相似,你怎样画这条直线?说明理由.和你的同伴交流作法是否一样.【答案】1.△ACD∽△CBD∽△ABC①过D点作DE∥BC,DE交AC于点E②以AD为一边在△ABC内部作∠ADE=∠C,另一边DE交AC于点E.【教学说明】第2题注意分类讨论.四、师生互动,课堂小结这节课你学到哪些判定三角形相似的方法?还有什么疑惑?说说看.1.布置作业:从教材相应练习和“习题”中选取.“课时作业〞局部.本课时从学生所熟悉的特殊三角板入手,通过学生动手操作探究相似三角形的判定定理1,从中感受学习几何的乐趣,从而激发学生学习兴趣,培养学生的几何推理能力.。
相似三角形的判定(一)一、判定(1)平行于三角形的一边的直线与两边相交,所截得的三角形与原三角形相似。
(2)平行于三角形一边的直线与另两边的延长线相交,所得的三角形与原三角形相似。
例一(1)如图,DE//BC,EF//AB,则图中有个相似三角形。
(2图中EF//GH//IJ∥BC,找出图中所有的相似三角形。
例二(1)如图,在∆ABC中,DE//BC,AD=EC,BD=1,AE=4,BC=5,则DE= 。
(2)如图,在∆ABC中,∠ACB的平分线交AB于D,DE//AC交BC于E,若AC=9,CE=3,则BE= 。
例三(1)如图,平行四边形ABCD中,E是BC边上的点,AE交BD于点F,如果BE:BC=2:3,求BF:FD。
(2)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,EF交AC于G,那么AG:GC的值是多少?(3)如图,已知AB//EF//CD,且AB=3,CD=2,求EF的值相似三角形的判定(二)一、如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
二、如果两个三角形中两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似。
例一:如图,E是平行四边形ABCD的对角线BD上一点,且,且AB/AE=AC/AD.∠1=∠2,求证:∠ABC=∠AED。
例二:如图,在等边∆ABC中,D、E分别在AC、AB上,且AD/AC=⅓,AE=BE,则有()A、∆ADE∽∆BEDB、∆AED∽∆CBDC、∆AED∽∆ABDD、∆BAD∽∆BCD例三:(1)如图,点D是△ABC内一点,连结BD并延长到E,连结AD、AE,若∠BAD=20°,AB /AD=BC/DE=AC/AE ,则∠EAC=。
(2)如图,在正方形ABCD中,P、Q分别是BC、CD上一点,且BP:CP=3:1,Q是CD的中点,求证:(1)∆ADQ∽∆QCP;(2)∆APQ∽∆QPC。
相似三角形的判定(三)如果两个三角形有两组对应角相等,那么这两个三角形相似。
基本内容相似三角形的判定(一)知识精要1、相似三角形:若一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的对应边成比例,那么这两个三角形叫做相似三角形.即:两个对应角相等,对应边成比例的三角形叫做相似三角形.说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边.2、相似比:两个相似三角形对应边的比k,叫做这两个相似三角形的相似比(相似系数).如:若△DEF与△ABC相似,则AB BC AC DE EF DF==.3、相似三角形的预备定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础.4、三角形相似的判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两三角形相似.三角形相似的判定定理2:如果一个三角形的两边与另一个三角形的两边对应相等,并且夹角相等,那么这两个三角形相似.可简单说成:两边对应成比例且夹角相等,两三角形相似.热身练习1、在△ABC中,E、F分别在AC、AB上,且AF AB AE AC⋅=⋅,则下列各式中正确的是()A.EF AFAC BC=;B.AF BCAE AB=;C.EF AEBC AC=;D.BC ABEF AE=.2、BD、CE是△ABC的两条高,BD、CE相交于点O.下列结论中不正确的是()A.△ADE∽△ABC;B.△DOE∽△COB;C.△BOE∽△COD;D.△BOE∽△BDE.3、下列各组有可能不相似的是()A .各有一个角是45︒的两个等腰三角形;B .各有一个角是60︒的两个等腰三角形;C .各有一个角是105︒的两个等腰三角形;D .两个等腰直角三角形.4、在Rt △ABC 中,90C ∠=︒,CD ⊥AB ,垂足D 在斜边AB 上,则下列四个结论中正确的是( )①2AC AD AB =⋅; ②2BC BD AB =⋅; ③2CD AD BD =⋅; ④AC BC AB CD ⋅=⋅. A .①②④; B .②③④; C .①③④; D .①②③④.5、已知点P 是△ABC 的边BC 的中点,过点P 作直线截△ABC ,使截得的三角形与原三角形相似,那么这样的直线最多有( )条A .5;B .4;C .3;D .2.精解名题例1、已知在△ABC 中,点D 是边AB 的中点,DE ∥BC ,DE 交AC 于点E , △ADE 与△ABC 有什么关系?例2、根据下列条件,判断△ABC 与△'''A B C 是否相似,并说明理由:(1)120A ∠=︒,7AB =cm ,14AC =cm ; '120A ∠=︒,''3A B =cm ,''6A C =cm . (2)4AB =cm ,6BC =cm ,8AC =cm ; ''12A B =cm ,''18B C =cm ,''21A C =cm .例3、四边形ABCD 的对角线AC 与BD 相交于点O ,1OA =,1.5OB =,3OC =,2OD =,求证:△OAD 与△OBC 是相似三角形.备选例题GF E DCBA例1、点D 是△ABC 的边AB 上的一点,且2AC AD AB =⋅,求证:△ACD ∽△ABC .例2、如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起, A 为公共顶点,90BAC AGF ∠=∠=︒, 它们的斜边长为2, 若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE m =,CD n =.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明. (2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.(3)以△ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD CE =,求出D 点的坐标,并通过计算验证222BD CE DE +=.(4)在旋转过程中,(3)中的等量关系222BD CE DE +=是否始终成立,若成立,请证明;若不成立,请说明理由.巩固练习1、下列命题中,不正确的是( )Gy xOFE DCBAA .如果两个三角形相似,且相似比为1,那么这两个三角形全等;B .等腰直角三角形都是相似三角形;C .有一个角为60︒的两个等腰三角形相似;D .有一个锐角相等的两个等腰三角形相似. 2、下列结论中,不正确的是( )A .有一个角相等,有两条边对应成比例的两个三角形相似;B .顺次连结三角形各边中点所得的三角形与原三角形相似;C .如果三角形两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似;D .两条边长分别是7、4和14、8的两个直角三角形相似. 3、△ABC ∽△'''A B C 且相似比为13错误!未找到引用源。
《相似三角形的判定(1)》教学设计作者:刘艳菊来源:《学校教育研究》2017年第13期一、教材分析本节学习内容是《相似三角形的判定》,它是在学生学习了全等三角形的性质和判定方法和相似三角形的概念基础上,通过类比的方法进一步研究三角形相似的条件,同时本节内容也是研究其他判定定理的基础。
二、教学目标知识与技能:1.初步掌握两角对应相等的两个三角形相似的判定方法,并且能够运用它们进行简单的证明及计算2.通过习题的引申练习,培养学生解决问题的能力过程与方法:经历相似三角形与全等三角形的类比过程,进一步体验类比思想、特殊与一般的辨证思想情感态度与价值观:积极参与数学活动,体验数学活动充满探索与创造,形成实事求是的态度及独立思考的习惯三、教学重点及难点重点相似三角形判定定理(1)难点能正确运用判定定理(1)解决数学问题。
四、教学方法与手段1.教学方法:直观演示验证法自主、合作、探究式2.教学手段:借助于多媒体课件演示及学生动手操作确认发现新知。
五、教学过程【创设情提出问题境】(学生回答)【板书课题】《相似三角形的判定(1)》【自主探究,感受新知】(1、学生亲手实践2、学生理解3、边听讲边思考)1.教师活动:一个角对应相等的两个三角形是否一定相似?学生活动:画图试试看(每人画一个∆ABC,使得∠BAC=60°,看所画的三角形是否相似。
)2.教师活动:两个角对应相等的两个三角形相似吗?学生活动:完成课本40页实验与探究。
3.教师活动如果两个三角形有若干个角对应相等,那么至少有几个角对应相等就能保证这两个三角形相似?学生活动:小组合作交流,共同探究,得出结论【挑战自我】.完成课本41页挑战自我,写出解答过程。
【课时小结】教师活动通过这节课的学习,你能获得哪些收获?也可以对本堂课进行质疑。
学生活动分小组交流后个别回答,使知识系统化(1)知识上的收获(2)数学思想方法的领悟(3)能力上的提高(4)谈谈学习过程的体验和感受【当堂测试】学生活动1.判断题:(1)两个顶角相等的等腰三角形是相似的三角形. ()(2)两个等腰直角三角形是相似三角形. ()(3)底角相等的两个等腰三角形是相似三角形. ()(4)两个直角三角形一定是相似三角形. ()(5)一个钝角三角形和一个锐角三角形有可能相似. ()(6)有一个角相等的两个直角三角形是相似三角形. ()(7)有一个锐角相等的两个直角三角形是相似三角形. ()(8)连接三角形的三边中点所围成的三角形与原三角形相似.()(9)所有的正三角形都相似. ()(10)两个等腰三角形只要有一个角对应相等就相似. ()2.填空:(填上“不”、“不一定”或“一定” )两个等腰三角形都有一个角为45°,这两个等腰三角形_______相似;如果都有一个角为95°,这两个等腰三角形_______相似.3.已知△ABC如右图,则下列4个三角形中,与△ABC相似的是()4.小明正在攀登一个如图所示的攀登架,DE和BC是两根互相平行的固定架,DE=10m,BC=18m,小明从底部固定点B开始攀登,攀行8m,遇上第二个固定点D,小明再攀行多少米就可以到达这个攀登架的顶部A?【教学反思】本节课主要是探究两个三角形相似的判定方法,因此在教学设计中突出了探究的过程,从而给学生以深刻的数学学习体验。
(一)类似三角形1.界说:对应角相等,对应边成比例的两个三角形,叫做类似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做类似三角形,即界说中的两个前提,缺一不成;②类似三角形的特点:外形一样,但大小不必定相等;③类似三角形的界说,可得类似三角形的基赋性质:对应角相等,对应边成比例.2.类似三角形对应边的比叫做类似比.①全等三角形必定是类似三角形,其类似比k=1.所以全等三角形是类似三角形的特例.其差别在于全等请求对应边相等,而类似请求对应边成比例.②类似比具有次序性.例如△ABC∽△A′B′C′的对应边的比,即类似比为k,则△A′B′C′∽△ABC的类似比,当它们全等时,才有k=k′=1.③类似比是一个主要概念,后继进修时消失的频率较高,其本质它是将一个图形放大或缩小的倍数,这一点借助类似三角形可不雅察得出.3.假如两个边数雷同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做类似多边形.4.类似三角形的准备定理:平行于三角形的一条边直线,截其它双方地点的直线,截得的三角形与原三角形类似.①定理的根本图形有三种情形,如图其符号说话:∵DE ∥BC,∴△ABC ∽△ADE;(双A型)②这个定理是用类似三角形界说推导出来的三角形类似的剖断定理.它不单本身有着普遍的应用,同时也是证实类似三角形三个剖断定理的基本,故把它称为“准备定理”;③有了准备定理后,在解题时不单要想到 “见平行,想比例”,还要想到“见平行,想类似”.(二)类似三角形的剖断1.类似三角形的剖断:剖断定理1:假如一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形类似.可简略说成:两角对应相等,两三角形类似.例1.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2.如图,E.F 分离是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.剖断定理2:假如三角形的两组对应边的比相等,并且响应的夹角相等,那么这两个三角形类似. AB CD E F 第4简略说成:双方对应成比例且夹角相等,两三角形类似.例1.△ABC中,点D在AB上,假如AC2=AD•AB,那么△ACD与△ABC类似吗?说说你的来由.例2.如图,点C.D在线段AB上,△PCD是等边三角形.(1)当AC.CD.DB知足如何的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.剖断定理3:假如三角形的三组对应边的比相等,那么这两个三角形类似.简略说成:三边对应成比例,两三角形类似.强调:①有平行线时,用准备定理;②已有一对对应角相等(包含隐含的公共角或对顶角)时,可斟酌应用剖断定理1或剖断定理2;③已有双方对应成比例时,可斟酌应用剖断定理2或剖断定理3.但是,在选择应用剖断定理2时,一对对应角相等必须是成比例双方的夹角对应相等.2.直角三角形类似的剖断:斜边和一条直角边对应成比例,两直角三角形类似.例1.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q 是CD的中点.求证:△ADQ∽△QCP.例 2.如图,AB⊥BD,CD⊥BD,P为BD上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P点在BD上由B点向D点活动时,PB的长知足什么前提,可以使图中的两个三角形类似?请解释来由.例3.如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中类似三角形的对数有对.例 4.已知:AD是Rt△ABC中∠A的等分线,∠C=90°,EF是AD的垂直等分线交AD于M,EF.BC的延伸线交于一点N.求证:(1)△AME∽△NMD(2)ND2=NC·NB①因为直角三角形有一个角为直角,是以,在剖断两个直角三角形类似时,只需再找一对对应角相等,用剖断定理1,或两条直角边对应成比例,用剖断定理2,一般不必剖断定理3剖断两个直角三角形类似;②如图是一个十分主要的类似三角形的根本图形,图中的三角形,可称为“母子类似三角形”,其应用较为普遍.(直角三角形被斜边上的高分成的两个直三角形的与原三角形类似)③如图,可简略记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD ∽△ACD.④填补射影定理.特别情形:第一:顶角(或底角)相等的两个等腰三角形类似.第二:腰和底对应成比例的两个等腰三角形类似.第三:有一个锐角相等的两个直角三角形类似.第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形类似.第五:假如一个三角形的双方和个中一边上的中线与另一个三角形的双方和个中一边上的中线对应成比例,那么这两个三角形类似.三角形类似的剖断办法与全等的剖断办法的接洽列表如下:类型斜三角形直角三角形全等三角形的剖断SAS SSS AAS(ASA)HL类似三角形的剖断双方对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例二.重点难点疑点冲破1.查找类似三角形对应元素的办法与技能准确查找类似三角形的对应元素是剖析与解决类似三角形问题的一项根本功.平日有以下几种办法:(1)类似三角形有公共角或对顶角时,公共角或对顶角是最显著的对应角;类似三角形中最大的角(或最小的角)必定是对应角;类似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)类似三角形中,一对最长的边(或最短的边)必定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.(3)对应字母要写在对应的地位上,可直接得出对应边,对应角.2.罕有的类似三角形的根本图形:进修三角形类似的剖断,要与三角形全等的剖断比拟较,把证实三角形全等的思惟办法迁徙到类似三角形中来;对一些消失频率较高的图形,要擅长归纳和记忆;对类似三角形的剖断思绪要擅长总结,形成一整套完全的剖断办法.如:(1)“平行线型”类似三角形,根本图形见前图.“见平行,想类似”是解这类题的根本思绪;(2)“订交线型”类似三角形,如上图.个中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的双方成比例”是解这类题的根本思绪;(3)“扭转型”类似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可算作把第一个图中的△ADE 绕点A扭转某一角度而形成的.从根本图形入手能较顺遂地找到解决问题的思绪和办法,能帮忙我们尽快地找到添加的帮助线.以上“平行线型”是罕有的,这类类似三角形的对应元素有较显著的次序,“订交线型”识图较艰苦,解题时要留意从庞杂图形平分化或添加帮助线结构出根本图形.演习:1.如图,下列每个图形中,存不消失类似的三角形,假如消失,把它们用字母暗示出来,并扼要解释识此外依据.2.如图27-2-1-12,在大小为4×4的正方形方格中,△ABC的极点A,B,C在单位正方形的极点上,请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(类似比不为1),且点A1,B1,C1都在单位正方形的极点上.图27-2-1-121.查找类似三角形的个数例 1.(吉林)将两块完全雷同的等腰直角三角形摆成如图的样子,假设图形中所有点.线都在统一平面内,答复下列问题:(1)图中共有若干个三角形?把它们一一写出来;(2)图中有类似(不包含全等)三角形吗?假如有,就把它们一一写出来.如图,△ABC 中,点D.E 分离在边AB.AC 上,衔接并延伸DE 交BC 的延伸线于点F,衔接DC.BE,若∠BDE +∠BCE =180°.⑴写出图中3对类似三角形(留意:不得添加字母和线)⑵请在你所找出的类似三角形中拔取1对,解释它们类似的来由.1.如图,在正方形网格上有6个三角形:①ABC ∆,②BCD ∆,③BDE ∆,④BFG ∆,⑤FGH ∆,⑥EFK ∆,个中②-⑥中与①类似的是.2.画相符请求的类似三角形例1.(上海)在大小为4×4的正方形方格中,△ABC 的极点A.B.C 在单位正方形的极点上,请在图中画出一个△A 1B 1C 1,使得△A 1B 1C 1∽△ABC(类似比不为1),且点A 1.B 1.C 1都在单位正方形的极点上.3.类似三角形的剖断例1.(1)如图,O 是△ABC 内任一点,D.E.F 分离是OA.OB.OC 的中点,FE D B A C求证:△DEF ∽△ABC;(2)如图,正方形ABCD 中,E 是BC 的中点,DF=3CF,写出图中所有类似三角形,并证实.例2.如图,在△ABC 中,DF 经由△ABC 的重心G,且DF∥AB,DE∥AC,衔接EF,假如BC=5,AC=2AB.求证:△DEF∽△ABC4.直角三角形中类似的剖断例1.如图,△ABC 中,∠BAC =90°,AD ⊥BC 于D ,DE 为AC 的中线,延伸线交AB 的延伸于F ,求证:AB ·AF=AC ·DF .例2.已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D,E 是AC 上一点,CF ⊥BE 于F.求证:EB ·DF=AE ·DB5.类似三角形的分解应用例1.如图,CD 是Rt △ABC 斜边AB 上的中线,过点D 垂直于AB 的直线交BC 于E,交AC 延伸线于F .求证:(1)△ADF ∽△EDB;(2)CD 2=DE·DF.例 2.如图,AD 是△ABC 的角等分线,BE ⊥AD 于E,CF ⊥AD 于F . 求证:. 例3.如图,在正方形ABCD 中,M.N 分离是AB.BC 上的点,BM=BN,BP ⊥MC 于点P .求证: PN ⊥PD .6.类似三角形中帮助线的添加(1).作垂线C B AF ED G3.如图从 ABCD极点C向AB和AD的延伸线引垂线CE和CF,垂足分离为E.F,(2).作延伸线例1. 如图中,CD为斜边AB上的高,E为CD的中点,AE 的延伸线交BC于于G,求证:(3).作中线例1. 如图,AB⊥AC,AE⊥BC于E,D在AC边上,若BD=DC=EC=1,求AC.演习:是AB上一点,Q是PC上一点(不是中点),MN过Q且MN⊥CP,交AC.BC于M.N,求证:2.. 来由?3.(2009年湖北武汉)如图1,,(1(2,如图2,;(3,BBA ACEDDECOF图1 图2F。
24.3.2 相似三角形的判定(1)
【知能点分类训练】
知能点1 角角识别法
1.如图1,(1)若OA
OB
=_____,则△OAC∽△OBD,∠A=________.
(2)若∠B=________,则△OAC∽△OBD,________与________是对应边.
(3)请你再写一个条件,_________,使△OAC∽△OBD.
2.如图2,若∠BEF=∠CDF,则△_______∽△________,△______∽△_______.
(1) (2) (3) 3.如图3,已知A(3,0),B(0,6),且∠ACO=•∠BAO,•则点C•的坐标为________,•AC=_______.4.已知,如图4,△ABC中,DE∥BC,DF∥AC,则图中共有________对相似三角形.5.下列各组图形一定相似的是().
A.有一个角相等的等腰三角形 B.有一个角相等的直角三角形
C.有一个角是100°的等腰三角形 D.有一个角是对顶角的两个三角形
6.如图5,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于().
A.45° B.60° C.75° D.90°
(4) (5) (6)
7.如图6,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________.
8.如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.
9.如图,D ,E 是AB 边上的三等分点,F ,G 是AC 边上的三等分点,•写出图中的相似三角形,并求出对应的相似比.
10.如图,在直角坐标系中,已知点A (2,0),B (0,4),在坐标轴上找到点C (1,0)•和点D ,使△AOB 与△DOC 相似,求出D 点的坐标,并说明理由.
【综合应用提高】 11.已知:如图是一束光线射入室内的平面图,•上檐边缘射入的光线照在距窗户2.5m 处,已知窗户AB 高为2m ,B 点距地面高为1.2m ,求下檐光线的落地点N•与窗户的距离NC .
12.如图,等腰直角三角形ABC 中,顶点为C ,∠MCN=45°,试说明△BCM ∽△ANC .
13.在
ABCD 中,M ,N 为对角线BD 的三等分点,连接AM 交BC 于E ,连接EN 并延长交
AD 于F .(1)试说明△AMD ∽△EMB ;(2)求
FN
NE
的值.
14.在△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似,•试说明满足条件的直线有几条,画出相应的图形加以说明.
15.高明为了测量一大楼的高度,在地面上放一平面镜,镜子与楼的距离AE=27m,他与镜子的距离是2.1m时,刚好能从镜子中看到楼顶B,已知他的眼睛到地面的高度CD为1.6m,结果他很快计算出大楼的高度AB,你知道是什么吗?试加以说明.
【开放探索创新】
16.在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=30°,∠B′=20°.•试分别在△ABC和△A′B′C′中画一条直线,使分得的两个三角形相似.在下图中分别画出符合条件的直线,并标注有关数据.
【中考真题实战】
17.(上海)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,与△ABC相似的三角形是().
A.△DBE B.△ADE C.△ABD D.△BDC
18.(天津)如第17题图,已知等腰三角形ABC中,顶角∠A=36°,BD平分∠ABC,•则AD AC
的值为().
A .
12 B .11
.12
2
C D 19.(安徽)如图,△ABC 和△DEF 均为正三角形,D ,E 分别在AB ,BC 上,请找出一个与△DBE 相似的三角形并证明.
20.(广东)如图,四边形ABCD 是平行四边形,点F 在BA 的延长线上,连接CF 交AD•于点E .
(1)求证:△CDE ∽△FAE .(2)当E 是AD 的中点且BC=2CD 时,求证:∠F=∠BCF .
答案: 1.(1)
OC
OD
∠B (2)∠A ,OA 与OB 或OC 与OD 或AC 与DB (3)∠C=∠D 或AC ∥BD .
2.△FEB ∽△FDC △ABD ∽△ACE
3.(0,
3
2
AC =
4.4 点拨:两条直线平行时,有相应的角相等.
5.C 点拨:在等腰三角形有角相等时,要注意,该角所在的位置. 6.D 点拨:∵AB=AC ,∠B=90°,∴∠1=45°.
设AB=BC=CD=DE=1,则CE=2,
∴
2CD AC AC CE ===
,∴△ACE ∽△DCA ,∴∠2=∠CAE . ∵∠1=∠CAE+∠3=∠2+∠3,
∴∠1+∠2+∠3=90°.
7.△ACD ∽△ABC ∠ADC=∠ACB
8.△AFD ∽△CFE △AEB ∽△CDB △AFD ∽△ABE , △CFE ∽△CBD ,△ADF ∽△CDB ,△CEF ∽△AEB 理由:有两个角对应相等的三角形相似. 9.△ADF ∽△AEG ∽△ABC
△ADF ∽△AEG ,相似比为1:2; △AEG ∽△ABC ,相似比为2:3; △ADF ∽△ABC ,相似比为1:3. 10.(0,
12)或(0,-1
2
) 理由:若△AOB 与△DOC 相似:
∠B=∠OCD ,∴
1,42OC OD OD OB OA ==即,∴D (0,1
2), 同理:D (0,-1
2
).
11.∵AM ∥BN ,∴∠A=∠NBC , ∠C=∠C ,△NBC ∽△MAC ,
,1.215
,.3.2 2.516
BC NC
AC MC
NC NC m ∴
===即
12.∵△ACB 是等腰直角三角形,
∴∠A=∠B=45°. 又∵∠MCN=45°,
∴∠ACM+∠NCB=45°,
∠CNA=∠B+∠BCN=45°+∠BCN , ∠MCB=∠MCN+∠NCB=45°+∠BCN . ∴在△BCM 和△ANC 中,∠A=∠B . ∴∠CNA=∠MCB ,∴△BCM ∽△ANC . 13.(1)∵ABCD 是平行四边形,
∴AD ∥BC ,∠ADB=∠DBC , ∠AMD=∠BME , ∴△AMD ∽△EMB .
(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴△FND ∽△ENB ,
∴
FN DN NE BN ==1
2
. 14.两条.
15.利用反射角等于入射角,可得∠BEA=∠DEC . 又∵AB ⊥AC ,DC ⊥AC , ∴△ABE ∽△CDE ,∴
2.7144
,,2.1 1.67
AE AB AB AB EC CD ==∴=即m . 16.
17.B D
18.B 点拨:由△BCD ∽△ABC 得BC CD
AC BC
=,即BC 2=CD·AC . 又∵AD=BD=BC , ∴AD 2=CD·AC ,
即AD 是AC 的黄金分割点.
∴
AD AC =
. 19.△GAD 或△ECH 或△GFH ,证△GAD ∽△DBE .
证明:∵△ABC ,△DEF 是等边三角表,
∴∠A=∠B=∠FDE=60°, ∴∠BDE+∠GDA=120°, 又∵∠BDE+∠DEB=120°, ∴∠ADG=∠DEB , ∴△GAD ∽△DBE . 20.(1)ABCD 中,CD ∥AB ,∴∠D=∠DAF .
又∵∠DEC=∠AEF , ∴△CDE ∽△FAE .
(2)当E 是AD 中点时,△DEC ≌△AEF (SAS ). ∴CD=FA ,BF=2CD . 又∵BC=2CD ,∴BF=BC , ∴∠F=∠BCF .。