水生生物学水生植物2蓝藻门
- 格式:pptx
- 大小:640.98 KB
- 文档页数:22
第1章、蓝藻门Cyanophyta蓝藻Blue-green-algae是最原始、最古老的藻类,据考证,大约在34亿年前就已经在地球上出现,有人认为,大气中最早的氧气来自蓝藻的光合作用。
与其它的植物一样,蓝藻也能进行光合自养,但近代研究发现蓝藻没有细胞核、色素体、线粒体及内质网,且其细胞壁的主要组成也是粘缩肽,这些都与细菌相似,因而又被归入原核生物,称为蓝细菌(Cyanobacteria)。
蓝藻适应环境的能力很强,有的可生活在潮湿和干旱的土壤或岩石上、树干和树叶上、温泉中、冰雪上,甚至在盐卤池、岩石缝中都有它们的足迹,有些还可穿入钙质岩石或介壳中或土壤深层。
已发现有2000多种,大多数生活在淡水,少数生活在海水中,我国已有记载的900多种,其中海生的只有132种。
1.1、蓝藻的主要形态特征1)、蓝藻的基本体制蓝藻的植物体形态多样化,既有单细胞,也有群体及多细胞的丝状体,较高级的一般为由单列细胞组成的分枝丝状体,最高级的则由多列细胞组成的复杂丝状体,并明显分化为顶端和基部,细胞间有联系。
由单细胞组成的群体,一般是通过以藻丝(algal filament)和胶质鞘组成一种丝状体或多个细胞群体。
图1-1 蓝藻的形态-1 a.Oscillatoria sp b. Lyngbia sp. c. Microcoleus sp.图1-2 蓝藻的形态-2 Nostoc sp.2)、细胞结构细胞壁分为内外2层,外层由果胶酸和粘多糖(mucopolsaccharides)组成,有些种类的外层呈水解状,称胶被。
体形呈球状、片状和块状的种类,各个体的胶被还会互相溶合为一个公共胶被,有些公共胶被在各个体间有清楚的界限。
呈丝状体的种类胶被固化,称胶质鞘(Sheaths),某些种类的胶质鞘中还含有半纤维素,如伪枝藻科Scytonemataceae、胶须藻科Rivulariaceae以及颤藻科Oscillatoriaceae等。
蓝藻门的名词解释蓝藻门(Cyanobacteria),是一类原核生物,被认为是生命进化的重要门类之一。
蓝藻门因其细胞中存在的淀粉颗粒或藻蓝蛋白而得名。
蓝藻门生物广泛分布于地球上各个生态系统中,包括海洋、淡水、土壤和岩石表面等。
它们的存在时间非常长久,可以追溯到约35亿年前的地球上。
蓝藻门的特征在于其细胞兼具细菌和植物的某些特征。
它们具有细菌的原核细胞结构,没有核膜和细胞器,但同时也具有植物的光合作用能力。
这使得蓝藻门可以直接从光能中合成有机物质,同时产生氧气。
与其他种类的细菌相比,蓝藻门是一种非常古老的生物。
它们在地球上的存在早于真核生物,也早于多细胞生物的出现。
蓝藻门的出现正是生命进化中的一个重要转折点,因为它们首次将光合作用引入了地球的生态系统。
蓝藻门的体型形态多样,既有单细胞个体,也有多细胞的层叠结构。
其中一些形态特殊的蓝藻门生物,如科雷拉(Coleochaete)属,形成了比较复杂的多细胞结构,这在生命进化的历史上非常罕见。
科雷拉在水生环境中生活,其细胞排列成片状或管状,构成了一种类似于植物的体型。
这种多细胞结构为后来的植物演化提供了一个重要的基础。
除了在形态上的多样性,蓝藻门的代谢能力也非常丰富。
它们能够适应各种不同的环境条件,包括高盐度、高温度、低氧等。
一些蓝藻门生物甚至能在极端的环境中存活,如热泉、沼泽和冰川等。
这些特性使得蓝藻门成为研究生物适应极端环境的理想模型。
除了在生态学和演化生物学中的重要性,蓝藻门还具有许多实际应用价值。
一方面,蓝藻门在生物土壤结构的形成和固氮作用中发挥着重要的作用,有助于维持生物多样性和生态系统稳定性。
另一方面,蓝藻门还能够产生一些重要的化学物质,如蓝藻素、微囊藻素等。
这些物质在食品、药品和化妆品等行业具有广泛的用途。
虽然蓝藻门在生态学和应用研究中有着重要的地位,但它们也存在一些潜在的问题。
其中最突出的是蓝藻门生物的水华现象。
由于富营养化和环境污染等原因,蓝藻门生物的数量在某些情况下会极大增加,形成大规模的蓝藻水华。
蓝藻门的主要特征蓝藻门是一类原核生物的分类单元,是原核生物中的一支重要分支。
下面将介绍蓝藻门的主要特征。
1. 细胞结构:蓝藻门的细胞结构比较简单,通常为单细胞或菌丝状。
细胞形态多样,有球形、椭圆形、长条形等。
细胞大小也有差异,从微米到数十微米不等。
2. 细胞壁:蓝藻门的细胞壁由多种物质组成,其中主要成分为多糖、蛋白质和脂质。
细胞壁的组成物质使得蓝藻门的细胞具有一定的稳定性和抗压性。
3. 叶绿体:蓝藻门的叶绿体类似于植物细胞中的叶绿体,是进行光合作用的主要器官。
叶绿体内含有叶绿素和其他光合色素,能够吸收太阳光能,并将其转化为化学能。
4. 色素:蓝藻门细胞内含有多种色素,其中最重要的是叶绿素a,它是进行光合作用的关键色素。
此外,蓝藻门还含有辅助色素如叶绿素b、类胡萝卜素等,这些色素能够吸收不同波长的光线,提供光合作用所需的能量。
5. 光合作用:蓝藻门能够通过光合作用将太阳能转化为化学能,产生有机物质。
光合作用是蓝藻门维持生命活动的重要途径,也是地球上能量循环的重要环节。
6. 氮固定:蓝藻门具有较高的氮固定能力,能够将大气中的氮气转化为植物可利用的氨或亚硝酸盐。
这对于生态系统的氮循环具有重要意义。
7. 嗜热性:蓝藻门中的一些物种具有较强的耐热性,能够在高温环境中存活和繁殖。
这使得蓝藻门在一些热泉、温泉等高温环境中广泛分布。
8. 硅藻酸壳:蓝藻门中的一些物种具有硅藻酸壳,能够形成独特的外壳结构。
这些硅藻酸壳在地质历史上有重要的意义,可以作为古环境的指示器。
9. 生态功能:蓝藻门在生态系统中扮演着重要的角色。
它们不仅是海洋和淡水中的重要原生生物,还能够与其他生物形成共生关系,如与珊瑚共生、与苔藓共生等,共同维持生态平衡。
10. 应用价值:蓝藻门在食品、医药、农业等领域具有广泛的应用价值。
蓝藻门中的一些物种可以作为食品添加剂,富含蛋白质、维生素和矿物质;另外,蓝藻门中的一些物种还具有抗氧化、抗菌、抗肿瘤等药理活性,被广泛用于药物研发和生物技术领域。
第二章藻类概述植物界-进化系统:低等植物(lower plant):又称叶状体植物细菌、藻类、黏菌、真菌、地衣高等植物(higher plant):又称茎叶体植物苔藓、蕨类和种子植物生活环境:陆生植物(terrestrial plant)水生植物(hydrophyte)包括从低等的细菌、藻类到高等的种子植物一、藻类主要特征1、藻类是低等植物,分布广,绝大多数生活于水中。
2、个体大小相差悬殊,小球藻3-4μm ,巨藻长60m。
3、具叶绿素chlorophy11,能进行光合作用的自养型生物autotrophic plant。
4、没有真正的根、茎、叶的分化,又称叶状体植物。
5、繁殖器官简单,以单细胞的孢子或合子进行繁殖,无胚,又叫孢子植物spore plant。
总之,藻类是无胚而具叶绿素的自养叶状体孢子植物。
二、形态构造藻类细胞的形态多种多样:球形、椭圆形、卵圆形、多角形、三角形、圆筒形、圆柱形、纺锤形、纤维形、棒形、弓形、新月形等。
藻体细胞结构都可分化为细胞壁和原生质体两部分。
后者包括细胞质和细胞核,原生质内有色素或色素体、蛋白核、同化产物等。
1.细胞壁细胞壁的有、无,化学成分和构造,各门类不尽相同裸藻、隐藻,少数甲藻和金藻无细胞壁绿藻门的主要由纤维素和果胶质(pectin)组成硅藻的主要成分为SiO2.nH2O红藻、褐藻等主要成分为纤维素和藻胶phycoeolloid无细胞壁的种类有以下几种类型:(1)体全裸露,表层不特化为周质体(Perplast,也叫表质),细胞可变形。
(2)藻体表层特化成为坚韧有弹性的周质体,藻体形态较稳定。
周质体表面平滑或具纵走条纹或具螺旋绕转的隆起,或附有硅质或钙质小板,有的硅质板上还有刺。
(3)某些藻类还具特殊的细胞壁状的构造——囊壳(Iorica)。
囊壳中常有钙或铁化合物的沉积,呈黄色、棕色甚至棕红色。
囊壳的形状、开孔、附属物(如棘、刺、疣状突起等)在分类上,尤其在属、种的鉴定甚至分科鉴定上具重要意义。