热量传递的基本方式
- 格式:ppt
- 大小:872.00 KB
- 文档页数:10
热量传递的三种基本方式热量传递是在物质中传递热能的过程。
在自然界中,热量会通过不同的方式在物体之间传递,从而调节温度和能量分布。
本文将介绍热量传递的三种基本方式:传导、对流和辐射。
1. 传导传导是热量通过直接接触的方式从一个物体传递到另一个物体的过程。
在传导中,热量从高温区域传递到低温区域,直到两个物体的温度达到平衡。
这种传递是通过物质内部分子间的碰撞和能量传递实现的。
导热性能是一个物质传导热量的重要性能指标。
导热性能取决于物质的热传导系数、形状和温度梯度等因素。
例如,金属具有良好的导热性能,因此常被用于传导热量的材料。
相比之下,绝缘材料的导热性能较差,能够阻碍热量的传递。
2. 对流对流是热量通过流体介质传递的方式。
在对流中,热量通过流体流动的方式从一个区域传递到另一个区域。
流体可以是气体或液体,其流动可以通过自然对流或强迫对流两种方式进行。
自然对流是指由于温度差异引起的流体流动。
当一个区域的温度升高,流体会膨胀变得轻,然后上升;而在另一个区域,流体则会冷却并变得密,然后下沉。
这样的循环运动将热量从热源传递到周围环境。
强迫对流是通过外部的力或设备施加到流体上,使其流动来传递热量。
例如,在散热器中,通过电风扇引导空气流动,加速热量的传递。
这种对流的传热速度通常比自然对流更快。
3. 辐射辐射是通过电磁波的传播而传递热量的方式。
辐射无需介质,可以在真空中传播。
在辐射中,热量以电磁波的形式从高温物体传递到低温物体,不需要任何介质来传递能量。
光和红外线是最常见的热辐射形式。
热辐射的传热能力受到物体的表面特性和温度的影响。
黑体是一种理想化的物体,它对所有入射辐射都能完全吸收,并能以相同的速率发射出辐射。
斯蒂芬-波尔兹曼定律描述了黑体辐射能量与其温度的关系,即辐射功率与温度的四次方成正比。
根据这个定律,温度越高的物体辐射的能量越多。
总结热量传递的三种基本方式分别是传导、对流和辐射。
传导通过物质内部的分子碰撞传递热量,对流通过流体介质的流动传递热量,而辐射则是通过电磁波的传播来传递热量。
1.热量传递的三种基本方式为热传导、热对流、热辐射。
2.热流量是指单位时间内所传递的热量,单位是W。
热流密度是指单位传热面上的热流量,单位W/m2。
3.总传热过程是指热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,它的强烈程度用总传热系数来衡量。
4.总传热系数是指传热温差为1K时,单位传热面积在单位时间内的传热量,单位是W /(m2·K)。
(传热温差为1K时,单位传热面积在单位时间内的传热量,W/(m2·K))5.导热系数的单位是W/(m·K);对流传热系数的单位是W/(m2·K);传热系数的单位是W/(m2·K)6.复合传热是指对流传热与辐射传热之和,复合传热系数等于对流传热系数与辐射传热系数之和,单位是W/(m2·K)。
7.单位面积热阻r t的单位是m2·K/W;总面积热阻R t的单位是K/W。
8.单位面积导热热阻的表达式为δ/λ9.单位面积对流传热热阻的表达式为1/h。
10.总传热系数K与单位面积传热热阻r t的关系为r t=1/K。
11.总传热系数K与总面积A的传热热阻R t的关系为R t=1/KA。
12.稳态传热过程是指物体中各点温度不随时间而改变的热量传递过程。
13.非稳态传热过程是指物体中各点温度随时间而改变的热量传递过程。
14.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为30W/(m2.K),对流传热系数为70W/(m2.K),其复合传热系数为100 W/(m2.K)15.由炉膛火焰向水冷壁传热的主要方式是热辐射。
16.由烟气向空气预热器传热的主要方式是热对流。
17.已知一传热过程的热阻为0.035K/W,温压为70℃,则其热流量为2kW。
18.一大平壁传热过程的传热系数为100W/(m2.K),热流体侧的传热系数为200W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁的厚度为5mm,则该平壁的导热系数为5 W/(m.K),导热热阻为0.001(m2.K)/W。
热量传递的方式热量传递属于物理学科中的热力学范畴,热量传递,简称传热,是一种复杂的现象,物体内部或物体之间,只要有温差的存在,就有热量自发地由高温处向低温处传递。
热量传递的三种基本方式分别是:即热传导、热对流、热辐射。
1.热传导物体或系统内的温度差,是热传导的必要条件。
热导热是指依靠物质的分子、原子和电子的振动、位移和相互碰撞而产生热量传递的方式。
在气态、液态和固态物质中都可以发生,但热量传递的机理不同。
固体以两种方式传递热量:晶格振动和自由电子的迁移。
液体的结构介于气体和固体之间,分子可作幅度不大的位移,热量的传递既依靠分子的振动,又依靠分子间的相互碰撞。
2.热对流热对流指由于流体的宏观运动,冷热流体相互掺混而发生热量传递的方式。
这种热量传递方式仅发生在液体和气体中。
由于流体中的分子同时进行着不规则的热运动,因此对流必然伴随着导热。
根据流体与壁面传热过程中流体物态是否发生变化,可将对流传热分为无相变的对流传热和有相变的对流传热。
无相变的对流传热指流体在传热过程中不发生相的变化;而有相变的对流传热指流体在传热过程中发生相的变化,如气体在传热过程中冷凝成液体,或液体在传热过程中沸腾而转变为气体。
3.热辐射物体通过电磁波来传递能量的方式称为辐射。
辐射有多种类型,其中因热的原因而发出辐射能的现象称为热辐射。
自然界中各个物体都不停地向空间发出热辐射,同时又不断地吸收其他物体发出的热辐射。
拓展知识:与导热和对流换热相比,热辐射具有如下特点:A.辐射能可以通过真空自由地传播而无需任何中间介质;B.一切物体温度高于0K的物体均能够持续地发射出辐射能,同时也能持续地吸收来自其他物体的辐射能;C.热辐射不仅具有能量的传递,而且具有能量形式的转换。
发射时从热能转换为辐射能,而被吸收时又从辐射能转换为热能。
热量传递主要有三种基本方式及导热对流和什么
热量传递的三种基本方式:热传导,热对流和热辐射。
1.热传导:通常也称为导热,是物体内部或相互接触的物体表面之间,由于分子、原子及电子等微观粒子的热运动而产生的热量传递现象。
导热依赖两个基本条件:一是必须有温差,二是必须直接接触(不同物体)或是物体内部传递。
2.热对流:是指由于流体的宏观运动,致使不同温度的流体相对位移而产生的热量传递现象,对流只能发生于流体中,且一定伴随着流体分子的不规则热运动产生的导热。
对流换热按流动的起因不同(流动的驱动力不同)分为自然对流和强迫对流两种。
自然对流是由于温差引起的流体不同部分的密度不同而自然产
生上下运动的对流换热。
因此,有温差不一定能发生自然对流,还应考虑表面的相对位置是否能形成因温度差导致的密度差引起的流体
运动。
当固体表面的温度高于环境的空气温度时,该表面上方的空气受热后密度变小,自由上升,从而发生自然对流换热。
在表面下方,紧挨表面的空气受热后密度变小,由于受到阻挡积聚在表面底下,难以产生空气的自由运动,从而没有自然对流换热的发生。
而表面的下方,空气受冷后自由下沉,则可以发生自然对流换热。
强迫对流则是流体在外力的推动作用下流动所引起的对流换热。
强迫对流换热程度比自然对流换热剧烈得多,当流体发生相变的时候,对流换热则分别称为沸腾换热和凝结换热。
3.热辐射,热辐射不需要任何中间介质而远距离传播,并且在传播过程中有热能-辐射能-热能的能量形式转换。
建筑火灾蔓延过程中,热量传递的三种基本方式建筑火灾蔓延过程中,热量传递的三种基本方式在建筑火灾的蔓延过程中,热量传递的方式对火灾的发展起着至关重要的作用。
热量传递的三种基本方式分别是传导、对流和辐射。
本文将就这三种方式展开深入讨论,以帮助读者更好地理解建筑火灾蔓延的机理和特点。
1. 传导传导是指热量在固体介质内部传递的过程。
在建筑火灾中,建筑结构或物体的表面会受到火焰的热辐射作用,导致其表面温度升高。
随着时间的推移,高温表面上的热量会向内部传导,使得物体内部的温度也不断上升。
这种过程会导致建筑结构的破坏,加剧火势的蔓延。
传导还包括了传热系数的计算,可以帮助我们评估建筑材料的防火性能。
2. 对流对流是指热量通过流体介质的传递方式。
在建筑火灾中,空气是最常见的流体介质。
火灾将导致空气的流动,形成对流。
热空气会上升,冷空气会下沉,从而形成对流热量传递。
这种方式会导致火势快速蔓延,使得火灾范围不断扩大。
对流还会对人员逃生和消防作业产生影响,因此应当引起足够重视。
3. 辐射辐射是指热量在真空或介质间以电磁波的形式传递的过程。
在建筑火灾中,火焰释放的热辐射是主要的辐射形式。
辐射可以穿透空气,直接作用于建筑结构或物体的表面,使得其温度升高。
这种方式是火灾蔓延的主要原因之一,因为辐射可以快速传递热量,导致火势迅速升级。
建筑火灾蔓延过程中热量传递的三种基本方式——传导、对流和辐射,相互作用,共同推动着火势的蔓延。
要有效地遏制火灾的蔓延,我们需要全面理解这三种方式的特点和机理,并在预防和灭火工作中加以应用。
在个人观点方面,我认为加强对这三种方式的认识和研究,对防火和建筑安全具有重要意义。
只有深入理解火灾蔓延的机理,我们才能制定科学合理的防火措施,保障人们的生命财产安全。
总结回顾起来,本文从传导、对流和辐射三个方面对建筑火灾蔓延的热量传递方式进行了深入讨论。
通过对这些内容的了解,我们不仅能够更好地理解火灾蔓延的机理,还能够更有效地进行防火和灭火工作,从而保障人们的生命财产安全。
传热学主要知识点1.热量传递的三种基本方式。
热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。
2.导热的特点。
a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。
3.对流(热对流)(Convection)的概念。
流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。
4对流换热的特点。
当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。
[]W )(∞-=t t hA Φw []2m W )( f w t t h AΦq -==6. 热辐射的特点。
a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的4次方。
7.导热系数, 表面传热系数和传热系数之间的区别。
导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。
表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。
影响h因素:流速、流体物性、壁面形状大小等。
传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。
常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:;空气:;保温材料:<;水垢:1-3;烟垢:。
8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。
9.复杂传热过程Upside surface: adiabaticDownside surface: adiabatic xai LL2L A/A/A/第一章导热理论基础1傅立叶定律的基本表达式及其中各物理量的意义。
热传递基本方式热传递是指热量从一个物体传递到另一个物体的过程。
热传递是自然界中普遍存在的现象,它在我们生活中起着重要的作用。
热传递的基本方式有三种,分别是热传导、热对流和热辐射。
第一种基本方式是热传导。
热传导是指在物体内部,热量通过分子间的碰撞和传递来进行的。
当物体的一部分受热时,分子的热运动会引起周围分子的热运动,从而使热量传递到周围区域。
热传导的速度取决于物体的导热性能和温度梯度。
导热性能越好,温度梯度越大,热传导的速度就越快。
常见的导热性能好的物质有金属和石英等。
第二种基本方式是热对流。
热对流是指在液体或气体中,热量通过流体的运动来传递的过程。
当一部分流体受热时,它的密度会变小,从而形成一个上升的热对流流动。
这种流动会使热量从高温区传递到低温区。
热对流的速度取决于流体的性质和温度差。
流体的热导率越大,温度差越大,热对流的速度就越快。
常见的热对流现象有自然对流和强迫对流。
第三种基本方式是热辐射。
热辐射是指物体通过发射和吸收电磁辐射来传递热量的过程。
所有物体在温度不为零时都会发射热辐射,其强度和温度的四次方成正比。
热辐射的传递不需要介质,可以在真空中传播。
热辐射的速度不受物质性质和温度差的影响,只取决于温度的高低。
辐射传热的速度最快,是三种方式中传热速度最快的。
在实际应用中,这三种基本方式的热传递同时存在,并相互影响。
例如,在一个加热过程中,热对流可以加快热传递的速度,而热传导和热辐射则起到补充作用。
不同的物体和环境条件下,三种方式的相对重要性也有所不同。
总结起来,热传递是热量从一个物体传递到另一个物体的过程,其基本方式包括热传导、热对流和热辐射。
热传导是在物体内部通过分子间的碰撞传递热量,热对流是在流体中通过流体的运动传递热量,热辐射是通过发射和吸收电磁辐射来传递热量。
在实际应用中,这三种方式同时存在,并相互影响。
热传递的研究对于我们了解物体的热性质和能量转换过程具有重要意义。
热量传递的主要三种基本方式热量传递的三种方式:热传导、热辐射和热对流。
热传导:传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。
热传导是固体中热传递的主要方式。
在气体或液体中,热传导过程往往和对流同时发生。
各种物质都能够传导热,但是不同物质的传热本领不同。
善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。
热辐射:辐射热由物体沿直线向外射出,叫做辐射。
用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。
地球上得到太阳的热,就是太阳通过辐射的方式传来的。
热对流:对流靠液体或气体的流动来传热的方式叫做对流。
对流是液体和气体中热传递的主要方式,气体的对流现象比液体更明显。
利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。
一般情况下,热传递的三种方式往往是同时进行的。