5.4打折销售
- 格式:ppt
- 大小:2.41 MB
- 文档页数:10
5.4 应用一元一次方程——打折销售1.某超市进了一批商品,每件进价为a元,若要获利25%,则每件商品的零售价应定为( ) A.25%a B.(1-25%)aC.(1+25%)a D.a1+25%2.某种家用电器的进价为800元,出售时标价为1 200元,后来由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A.六折B.七折C.八折D.九折3.某商品降价20%后出售,一段时间后欲恢复原价,则应在售价的基础上提高的百分数是( ) A.20% B.30%C.35% D.25%4.某商店将彩电先按原价提高50%,后在广告中写出“大酬宾,七折优惠”,结果每台彩电比原价多赚了100元,则每台彩电原价应是( )A.1 200元B.1 800元C.2 000元D.2 700元5.400元的九折是________;________的八五折是340元.6.如果某商品降价10%后的售价是a元,那么该商品的原价是________元.7.一商店把某商品九折出售仍可获得20%的利润率,该商品的进价是每件30元,则标价是每件________元.8.一件商品,每件成本50元,按成本增加25%销售后因库存积压减价,按售价的90%出售,每件还能赢利吗?________(填“能”或“不能”),赢利________元.9.某种彩电先按标价提高40%,然后在广告中写上“大酬宾八折优惠”,结果彩电反而赚了270元,求彩电的原标价.10.工艺商场按标价销售某种工艺品时,每件可获利45元,按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,求该工艺品每件的进价、标价分别是多少元.11.为促销某商场定下如下方案:一次性购物不超过100元不优惠;超过100元,但不超过300元,按九折优惠;超过300元的按八折优惠,其中的300元仍按九折优惠.某人两次购物分别用了75元和286元.(1)此人两次购物,若物品不打折,要付多少钱?(2)此人两次购物共节省了多少钱?(3)若将两次购物的钱合起来,一次购买相同的物品,是否更省钱?说明理由.(2015·烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价的10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.课后作业1.C 考查代数式的列法2.B 设至多可打x 折,则1200×x10-800800≥5%,x≥7.3.D 设商品原售价为1,提高的百分数为x ,则1×(1-20%)(1+x)=1,x =14,所以提高的百分数为25%.4.C 设彩电原价为x 元,则x(1+50%)×0.7-x =100,x =2 000. 5.360元 400元6.109a 设原价x 元.(1-10%)x =a.x =109a. 7.40 设标价为x 元.90%x -30=30×20%。
5.4 应用一元一次方程——打折销售 导学案班级: 课时: 时间:学、讲、练 导学 案随 笔学习目标1.能够通过具体实例解释日常生活中的打折、利润、利润率、售价、标价、成本等意义.2.会用公式:(1)利润=销售价-成本价,100%=⨯利润利润率成本;(2)打折后的售价=标价×折扣等来解决简单打折销售问题.学习重点 利用一元次方程解决简单打折销售问题.学 习 流 程一、课前预习1. 某商品的进价是15000元,售价是18000元,则商品的利润为________,利润率是_________.2. 一件商品的进价为100元,要想获利20元,售价应为________元.3. 一件商品的进价为100元,要想获利20%,售价应为_________元.4. 一件商品若以240元出售,可获利20%,则进价为_________元.5. 一件商品的标价为100元,若打九折出售,则售价为_________元.6.一家商店以125元 / 件的进价购进某种服装,计划按成本价提高40%后标价,再以8折(即按标价的80%)优惠卖出.(1).求这种服装的标价是多少元. (2).求这种服装的售价是多少元.(3).求这种服装收购出后,每件可获利多少元. 二、反馈交流1.课前预习题.2.187页引例(指导学生化解方程). 三、达标训练1. 某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为( )A.26元B.27元C.28元D.29元2.某商店销售一批服装,每件标价150元,打8折出售后,仍可获利20元,求这种服装的成本价为每件多少.四、总结提升“议一议”188页当 堂 检 测1.某商品进价是400元,标价是550元,按标价的8折出售时,该商品的利润率是__________.2.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为___________元. 3.小华的妈妈为爸爸买了一件衣服和一条裤子,共用了306元,其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,求裤子的标价为 多少元.4(选做).已知某种商品的售价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是( )A .133B .134C .135D .136 作 业 必做题 习题5.8“问题解决”1、2;“随堂练习”1 选做题 反 思收获 困惑 改进主编:韩建立 参编:郭建梅 刘婷。
5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。
难点:用列方程的方法解决打折销售问题。
【教学流程】一、知识链接。
1.引例一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。
看课本p141—142内容,解决提出的问题。
例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。
4 应用一元一次方程——打折销售1.商品销售中与打折有关的概念及公式(1)与打折有关的概念 ①进价:也叫成本价,是指购进商品的价格. ②标价:也称原价,是指在销售商品时标出的价格. ③售价:商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润. ⑤利润率:利润占进价的百分比. ⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 【例1】 (1)某商品成本100元,提高40%后标价,则标价为__________元;(2)500元的9折是__________元,__________元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________. 解析:(1)成本×(1+提高率)=标价,即100×(1+40%)=140(元);(2)九折即原价的十分之九,所以500元打9折,就是500×0.9=450(元),设x 的八折是340,所以有0.8x =340,解得x =425;(3)利润率=利润进价=售价-进价进价=70-4040=75%. 答案:(1)140 (2)450 425 (3)75%2.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系. ②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一.②解、答时必须写清单位名称. ③求出的方程的解要判断是否符合实际意义,即必须检验.【例2-1】 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?分析:利润=销售价×打折数-让利数-进价.解:设进价是x 元,依题意,得x ×20%=10×0.8-2-x .解得x =5.答:一个玩具赛车进价是5元.【例2-2】 某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?分析:本题的题情稍复杂,需要求四个未知量.可以先求出标价,然后再求进价.解:设甲种服装的标价为x 元,则进价为x 1.4元,乙种服装的标价为(210-x )元,进价为210-x 1.4元. 根据题意,得0.8x +0.9(210-x )=182.解得x =70.所以210-x =140.x 1.4=50,210-x 1.4=100.答:甲种服装的进价为50元,标价是70元;乙种服装的进价是100元,标价是140元.3.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数 利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润 根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.【例3-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%.解得x =7. 答:售货员最低可以打7折出售此商品.【例3-2】 某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.解:因为200×0.9=180(元)<212(元),所以购书超过了200元.设应该付x 元,根据题意,得200×0.9+(x -200)×0.8=212.解方程,得x =240. 答:若没有任何优惠,则李明应该付240元.。