《智能网联汽车导论》教学课件—05智能网联汽车与大数据
- 格式:ppt
- 大小:4.11 MB
- 文档页数:33
一智能网联汽车概述contents •智能网联汽车基本概念•智能网联汽车关键技术•智能网联汽车产业链分析•国内外典型案例分析•未来发展趋势预测与挑战分析•总结回顾与拓展思考目录定义与发展历程定义智能网联汽车是一种集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它运用大数据、云计算、人工智能等新技术,实现车与车、路、人、云等智能信息交换共享,具备复杂环境感知、智能决策、协同控制等功能。
发展历程智能网联汽车经历了从单一功能到多功能集成,从低级自动化到高级自动化的发展历程。
随着技术的不断进步,未来智能网联汽车将实现更高程度的自动化和智能化。
技术体系架构及特点技术体系架构智能网联汽车技术体系架构包括感知层、决策层、执行层和控制层四个层次。
感知层负责采集车辆周围环境信息,决策层根据感知信息进行决策规划,执行层控制车辆各部件执行决策指令,控制层对整个系统进行监控和调度。
特点智能网联汽车具有环境感知、智能决策、协同控制等特点。
它能够实时感知周围环境信息,并根据不同场景做出智能决策和协同控制,提高驾驶安全性和舒适性。
行业应用现状及前景行业应用现状目前,智能网联汽车已经在多个领域得到应用,如自动驾驶出租车、物流运输车、公共交通等。
同时,各国政府和企业也在积极推动智能网联汽车的发展,加大技术研发和基础设施建设投入。
前景随着技术的不断进步和应用场景的不断拓展,智能网联汽车将迎来更加广阔的发展前景。
未来,智能网联汽车将实现更高程度的自动化和智能化,提高交通效率和安全性,改变人们的出行方式和生活方式。
同时,智能网联汽车也将成为智能交通系统的重要组成部分,推动交通行业的转型升级和可持续发展。
通过发射激光束并接收反射回来的光信号,精确测量距离和角度,实现环境感知和障碍物检测。
激光雷达利用毫米波段的电磁波进行探测,具有穿透雾、霾、尘等恶劣天气的能力,适用于中远距离的目标检测。
毫米波雷达通过捕捉图像信息,实现车道线识别、交通信号识别、行人检测等功能。
智能网联汽车技术课件智能网联汽车是一种前瞻性技术,它的出现使得传统的机械式汽车和现代信息技术相结合,从而实现车与车、车与人、车与环境之间的互联互通。
智能网联汽车不仅能够提高交通效率,缓解交通拥堵,同时也能提高驾驶安全,降低驾驶员的疲劳程度和事故率。
本课件将全面介绍智能网联汽车技术,包括其基本原理、应用场景、研发趋势等方面。
智能网联汽车技术需要借助于多种通信技术,包括移动通信、卫星导航、短距离通信等。
通过这些通信技术,智能网联汽车能够实现车与车之间的互相通信,也能实现车与基础设施之间的通信。
在车辆内部,智能网联汽车通过多种传感器收集车辆内部和周边环境的信息,包括车速、路况、天气等。
这些信息通过通信网络传输,并经过处理和分析,在汽车内部得出最优的驾驶方案。
1.智能驾驶:智能驾驶是智能网联汽车技术的核心应用之一,是指车辆的智能自动驾驶系统。
智能驾驶系统可以通过车内和车外的传感器获取车辆和道路的信息,然后计算出最优的驾驶方案。
目前,国内外的汽车厂商正在大力研发智能驾驶技术,以满足用户对于更加安全、自由的驾驶需求。
2.车联网:车联网是指车辆与互联网之间的连接,通过车内的通信设备和互联网通信,在车内获取更多的信息资源。
车联网可以通过提供实时信息、导航服务、娱乐和音乐等,提升车载用户体验。
3.智能交通:智能交通是指通过智能网联技术,实现道路、交通、车辆信息的交互,以便更加高效地管理和运营交通系统。
智能交通可以提高交通效率,缓解交通拥堵,减少车辆排放,更好地管理道路和交通。
1.智能驾驶和可靠性的提升:智能驾驶是智能网联汽车技术的核心,随着技术的不断发展,汽车可以自主驾驶的能力将不断提高。
2.人工智能和车辆交互:随着人工智能技术的进步,智能网联汽车将不仅仅是一个自动驾驶的工具,更可以成为人类生活的智能助手。
比如,深度学习技术可以识别驾驶员的情绪和行为,车辆可以提供个性化的驾驶建议,更好地服务用户。
3.多元化的应用场景:智能网联汽车不仅仅局限于道路交通,例如智能网联水上交通、智慧物流等,智能网联汽车的应用场景已经开始被拓展到更多的领域。