解: 设 x y z k ,则 x 2k, y 3k, z 4k. 234
原式= 2k 2 23k 2 34k 2 34k2 17 .
2k 3k 23k 4k 3 2k 4k 54k 2 27
当堂练习
1.下列分式约分后,等于 1
2x 1
的是
(
A
)
2x 1 A.
4x2 4x 1
(2)由(1)得 当x ≠-2时,分式有意义 ∴x = 2
当x是什么数时,分式 x 1 的值为零?
x 1
解:当分子等于零而分母不为零时,分式值为零.
即 x 1 0x 1
又 x 1 0 x -1 x 1
已知,当x=5时,分式 2x k 的值等于零,求k 3x 2
(1)当x ___0__时,分式 2 有意义.
分式定义
如果A、B都表示整式,且B中含有字母,那么
称 A为分式.其中A叫做分式的分子,B为分式的 分母B.
判断一个代数式是不是分式需要注意以下几点:
1.分式的分子分母都是整式,分式可以表示 成两个整式相除的商。例如:m n 可以表示成
mn
(m n) (m n)
2.分式的分母一定含有字母,分子可以有, 也可以没有。
抓紧时间整
理笔记和易错点;
• 3.上课认真听讲,课下独立完成作业。 • 4.晚上睡觉前回顾今天所学知识。
1.一项工程,甲队5天完成,甲队每天完成的工程量是
___1__,3天完成的工程量是__3___。若乙队a天完成, 乙队5 每天完成的工程量是__1___5,b(b<a)天完成的工程
量是__b___。
x+4
解:由分子 x -4=0,得x=±4
所以当x=±4时,分式 x -4