第1课时 实数的分类及性质.ppt
- 格式:ppt
- 大小:2.03 MB
- 文档页数:25
第1课时 实数【课标要求】1.有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。
④理解有理数的运算律,并能运用运算律简化运算。
⑤能运用有理数的运算解决简单的问题。
⑥能对含有较大数字的信息作出合理的解释和推断。
2.实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。
③了解无理数和实数的概念,知道实数与数轴上的点一一对应。
④能用有理数估计一个无理数的大致范围。
⑤了解近似数与有效数字的概念;解决实际问题中,能用计算器进行近似计算,并按问题要求对结果取近似值。
【知识要点】1.实数的分类:实数可分为: 和 ;也可以分为: 、 和 。
◆数轴上的点和 一一对应。
2.有理数:叫做有理数。
◆整数和分数统称为有理数。
3.无理数:叫做无理数。
◆常见的几种无理数:①根号型:如35,2等开方开不尽的数。
②三角函数型:如sin60°,cos45°等。
③圆周率π型:如2π,π-1等。
④构造型:如1.121121112…等无限不循环小数。
4.相反数、倒数和绝对值: (1)若a a =, 则:a 0; (2)若a a -=,则:a 0。
5.负指数幂、零指数幂:pp aa 1=-, ()010≠=a a6.平方根、算术平方根和立方根:(1)3的平方根表示为: ; (2)3的算术平方根表示为: ; (3)3的立方根表示为: 。
◆正数有两个平方根,这两个平方根互为相反数;0的平方根是它本身;负数没有平方根。
◆正数、0、负数都只有一个立方根,正数的立方根是正数;0的立方根是它本身;负数的立方根是负数。
6.2 实数第1课时 实数的概念及分类【教学目标】1.了解无理数和实数的概念,会对一组实数进行分类.2.知道实数与数轴上的点是一一对应的关系.【教学重点】无理数、实数的概念.【教学难点】无理数、实数的概念及实数与数轴上的点一一对应关系的理解. 教学过程一、组织教学,复习提问1.有理数是怎样分类的?有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数负整数零分类⎩⎪⎨⎪⎧正分数负分数或有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数2.把下列各数填在相应的括号里.-2,-34,-2.5,0,0.3·,1,43,227,34,12,-0.81··整数:{ }分数:{ }归纳:任何一个有理数,都可以化成有限小数或无限循环小数的形式.反之,任何一个有限小数或无限循环小数都可以写成一个分数的形式.因此,任何一个有理数都可以写成分数的形式.多媒体课件展示图1和图2及思考题:图1是由4条横线、5条竖线构成的方格网,它们相邻的行距、列距都是1.从这些纵横线相交得出的20个点(称为格点)中,我们可以选择其中4个格点作为顶点连接成一个正方形,叫做格点正方形.你能找出多少种面积互不相同的格点正方形?二、创设情境,引入新课1.创设情境.问题1:(1)有面积分别是1、4、9的格点正方形吗?分别有几个?边长是多少?(2)有面积是2的格点正方形吗?把它画出来,有几个?(3)有面积是5的格点正方形吗?把它画出来,有几个?师:请同学们认真观察、思考图1及思考题,可以互相讨论,然后回答问题.生1:面积是1的格点正方形有12个,边长是1;面积是4的格点正方形有6个,边长是2;面积是9的格点正方形有2个,边长是3.生2:如图2,四个边长为1的相邻正方形的对角线围成一个面积为2的格点正方形.师:为什么?生1:因为四个边长为1的相邻正方形的总面积为4,它们的对角线围成的格点正方形的面积是总面积的一半,所以四个边长为1的相邻正方形的对角线围成的格点正方形是一个面积为2的格点正方形.图1中有6个面积为2的格点正方形.生2:以一个面积为9的格点正方形相邻两边长的13点和23点的连线为边长依次围成的正方形是面积为5的格点正方形.师:为什么?生1:因为一个面积为9的格点正方形相邻两边长的13点和23点的连线为边长依次围成的正方形的面积等于9减去4个三角形的面积,而这4个三角形刚好拼成4个格点正方形,它们的面积为4,所以一个面积为9的格点正方形相邻两边长的13点和23点的连线为边长依次围成的正方形是面积为5的格点正方形.生2:我用面积为9的格点正方形纸,经过剪纸验证了这个格点正方形是面积为5的格点正方形.生3:可以画出4个面积为5的格点正方形.问题2:(1)一个面积为2的格点正方形边长是多少?(2)一个面积为5的格点正方形边长是多少?师:请同学们认真观察、思考,可以互相讨论,然后回答问题2.生1:正方形的面积等于边长的平方,我们已知正方形的面积,求边长,就是已知一个数的平方,求这个数.可以用开平方运算.生2:(1)设边长为x,则x2=2;因为x>0,所以x= 2.(2)设边长为x,则x2=5;因为x>0,所以x= 5.2.引入新课.问题3:2、5是怎样的数?师:请同学们结合问题1和问题2进行思考,可以互相讨论,然后回答问题3.2、5存在吗?2、5又是怎样的一个数?生:2、5分别是面积为2、5的格点正方形的边长,应当是存在的.师:下面我们来共同探究2是怎样的一个数.首先,请同学们想一想,2介于哪两个整数之间?生:因为1<2<4,所以1<2<4,即1<2<2.这说明2不能是整数.师:1和2之间的一位小数有1.1,1.2,…,1.9,那么2是其中的哪个小数呢?如何确定?生:在这九个数中找出平方最接近2的那两个小数,这两个小数是1.4和1.5.因为1.42=1.96,1.52=2.25,1.96<2<2.25,所以 1.96<2< 2.25,即1.4<2<1.5.师:这又有什么意义?生:2是介于1.4和1.5之间的一个两位小数.师:1.4和1.5之间的两位小数有1.41,1.42,…,1.49,那么2是其中的哪个小数呢?如何确定?生:同样是在这九个数中找出平方最接近2的那两个小数,这两个小数是1.41和1.42.因为1.412=1.988 1,1.422=2.016 4,1.988 1<2<2.016 4,所以 1.988 1<2< 2.016 4,即1.41<2<1.42.师:这又有什么意义?生:2是介于1.41和1.42之间的一个三位小数.师:类似地,可得1.414<2<1.415,……像上面这样逐步逼近,我们可以得到:2=1.414 213 5…它可以根据需要,想算到哪位,就可以算到哪位,即可无限继续算下去.因此,2是一个无限不循环小数,它不是有理数.同样5也是一个无限不循环小数,它也不是有理数,同学们课后可以用课本上同样的方法去探究.3.无理数的概念师:有理数包括哪些数?生:有理数包括整数和分数.师:整数和分数可以统一写成什么形式?生:整数可以看作分母为1的分数.因此,整数和分数可以统一写成分数的形式.师:这就是说,有理数总可以写成nm(m、n是正整数,且m≠0)的形式.分数能化成小数的形式吗?请同学们举例说明.有理数呢?生:3=31=3.0,12=0.5,13=0.3·,911=0.81··.分数都可以化为有限小数或无限循环小数.因此,任何有理数都可以化为有限小数或无限循环小数. 师:2=1.4142135…是无限循环小数吗?是有理数吗? 生:2不是无限循环小数,不是有理数,2是无限不循环小数. 师:今天引入一个新概念,我们把无限不循环小数叫做无理数.因此,2是无理数.此外,3=1.732050808…,33=1.44224957…,π=3.14159265…这些数都是无限不循环小数.许多开方开不尽的数都是无限不循环小数.圆周率π以及以后要学的自然对数的底等数虽然不用根号的形式表示,但它们也是无限不循环小数,它们都是无理数.师:有同学说无理数就是开方开不尽的数,对不对?生1:不对.如圆周率π不是开方开不尽的数,但它是无理数.生2:只能说开方开不尽的数是无理数,但不能说无理数就是开方开不尽的数,因为所有无限不循环小数都是无理数,不仅仅是开方开不尽的数才是无理数.师:类似的,无理数可分为正无理数与负无理数.如2、3、π是正无理数,-2、-3、-π是负无理数.4.实数的概念.师:有理数和无理数统称为实数.这样,我们认识的数的范围又扩大了.5.实数的分类.师:我们可以将实数按如下方式分类.(多媒体展示实数分类表)实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正有理数零负有理数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环小数三、例题分析1.教师出示课本第12页练习题.师:π、64、-38都是无理数吗?生:π是无理数,64=8、-38=-2都是有理数.师:因此,用根号形式表示的数并非都是无理数,必须先认真观察计算,不能一看见用根号形式表示的数就盲目认为是无理数.师:用根号形式表示的数与无理数是怎样的关系?生:用根号形式表示的数,不一定是无理数,无理数不一定是用根号形式表示的数.师:0.213··如何写成分数的形式?生:0.213··=213-2990=211990. 2.按大小对实数进行分类.(多媒体展示分类表)师:实数还可以如何分类?为什么?生:因为有理数、无理数都有正、负之分,所以实数也可以有正、负之分,可分为正实数、负实数和零.师:有同学说实数可分为正实数、负实数.对不对?为什么?生:不对,将0遗漏了.师:请同学们注意,实数按大小分类时,不能将0遗漏.3.思考,每一个有理数都可用数轴上的一个点来表示,那无理数也能用数轴上的点表示吗?如2呢?用多媒体展示:师:以数轴上的单位长度为边作一个正方形,以原点为圆心,这个正方形对角线长为半径画弧,以数轴正半轴的交点记作A,与数轴负半轴的交点记作A′,图中点A、点A′两点分别表示什么数?生1:因为图中正方形可以看成是面积为1的格点正方形,它的对角线长就是面积为2的格点正方形的边长,因此,对角线长应是2,也就是点A表示的数是 2.生2:因为A′点在数轴负半轴上,OA′的长也是对角线长,所以A′点表示的数是- 2.师:通过以上演示,同学们发现了什么?生:无理数2、-2都能用数轴上的点来表示.师:一般地,与有理数一样,每个无理数也都可以用数轴上的一个点来表示;反过来,数轴上的点不是表示无理数就是表示有理数.所以实数和数轴上的点一一对应.四、提升练习问题:直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点A由原点到达A′,点A′表示的是什么数?师:要求出点A′表示的是什么数,同学们是怎么想的?生1:要求出点A′表示的是什么数,只要求出点A从原点沿数轴向右滚动一周到点A′的路程长度就行了.生2:我知道,就是圆的周长,圆的周长等于直径乘以π.生3:点A′表示的数是π.师:由此,无理数π也可以用数轴上的点来表示.五、课堂小结1.无理数与有理数的区别是什么?2.实数可以怎样分类?3.实数与数轴上的点有怎样的对应关系?学生回答,教师评价.。
第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A.33--=B.3)31(1-=-C3=±D3=-例)A.B C.2-D.2例3.2的平方根是()A.4 B C.D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.107.2610⨯元B.972.610⨯元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 例6.(改编题)有一个运算程序,可以使: a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( ) A .16 B .16- C .18 D .18- 2.2-的倒数是( ) A .12- B .12 C .2 D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<<4.已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -5.2-的相反数是( )A .2B .2-C .12D .12- 6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则“”内应填的实数是( ) A .32 B . 23 C .23- D .32-第2课时 实数的运算第4题图0 例5图【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】 例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________例4.下列运算正确的是() 9 0 -4 国际标准时间(时)-5 例2图 ……例3图A .523=+B .623=⨯C .13)13(2-=-D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-.【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.如图,数轴上点P 表示的数可能是( )AB. C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))10112-⎛⎫--+ ⎪⎝⎭第3课时 整式与分解因式第4题图【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n a a 1=-(a≠0,n 为正整数);2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.(2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= .【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = .3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =-=,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.。