6菱形及性质
- 格式:doc
- 大小:465.90 KB
- 文档页数:6
菱形的性质和判定教案一、教学目标1. 知识与技能:(1)理解菱形的定义和性质;(2)学会菱形的判定方法;(3)能够运用菱形的性质和判定方法解决实际问题。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力;(2)通过合作交流,提高学生的解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和美感;(2)培养学生勇于探索、积极进取的精神。
二、教学重点与难点1. 教学重点:(1)菱形的性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的证明;(2)菱形判定方法的灵活运用。
三、教学准备1. 教具准备:(1)菱形模型;(2)直尺、三角板。
2. 学具准备:(1)菱形纸片;(2)笔、本子。
四、教学过程1. 导入新课(1)教师展示菱形模型,引导学生观察;2. 探究菱形的性质(1)教师引导学生通过操作菱形模型,发现菱形的性质;3. 学习菱形的判定方法(1)教师引导学生思考如何判定一个四边形是菱形;(2)学生通过讨论,得出菱形的判定方法;(3)教师讲解判定方法的证明,学生跟随证明。
4. 巩固练习(1)教师给出菱形的相关题目,学生独立完成;(2)教师选取学生作业,进行讲解和评价。
五、课后作业1. 完成教材上的相关练习题;2. 制作菱形的判定方法的手抄报;3. 观察生活中的菱形,拍照或画图,下节课分享。
六、教学评价1. 学生能够准确地描述菱形的定义和性质;2. 学生能够灵活运用菱形的判定方法解决问题;3. 学生能够通过观察和操作,培养空间想象能力;4. 学生在合作交流中,提高解决问题的能力;5. 学生对数学产生兴趣,培养美感以及勇于探索、积极进取的精神。
七、教学反思本节课结束后,教师应认真反思教学效果,包括:1. 学生对菱形性质和判定方法的理解程度;2. 教学过程中是否存在不足或需要改进的地方;3. 学生参与度和积极性如何;4. 针对不同学生的学习情况,如何进行差异化教学。
八、教学拓展1. 邀请相关领域的专家或企业代表,进行专题讲座或实地考察,加深学生对菱形在实际应用中的理解;2. 组织学生进行数学竞赛或趣味活动,激发学生的学习兴趣;3. 开展小组合作项目,让学生研究菱形在其他领域的应用,如艺术设计、建筑等;4. 引导学生进行深入研究,如探索菱形与其他多边形的关系,拓展学生的知识体系。
数学菱形教案【优秀6篇】作为一位优秀的人民教师,时常会需要准备好教案,教案是教材及大纲与课堂教学的纽带和桥梁。
我们应该怎么写教案呢?下面是为大伙儿带来的6篇《数学菱形教案》,可以帮助到您,就是最大的乐趣哦。
数学菱形教案篇一一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。
二、重点、难点1.教学重点:菱形的两个判定方法。
2.教学难点:判定方法的证明方法及运用。
三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算。
这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成。
程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形。
转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形。
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直。
通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形。
数学菱形教案篇二重难点分析本节的重点是菱形的性质和判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。
第3讲菱形的性质目标导航知识目标:掌握菱形的概念及其特殊的性质。
能力目标:发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。
情感目标:经过自己的努力获得新知,形成基本的科学态度和理性精神。
知识精讲知识点01 菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.【即学即练1】1.下列说法中,错误的是()A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直D. 对角线互相垂直的四边形是菱形2.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直知识点02 菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分. (2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.【即学即练2】如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.能力拓展考法011.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是( )A.4B.8C.12D.162.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A .20B .15C .10D .53.如图,在菱形ABCD 中,AC 、BD 是对角线,若∠BAC=50°,则∠ABC 等于( )A .40°B .50°C .80°D .100°4.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A.1B. 2C.D.考法02 5.已知菱形的周长为40,两个相邻角度数之比为1∶2,则较长对角线的长为______.6.(南充)如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为 .7. 已知菱形ABCD 两对角线AC = 8, BD = 6, 则菱形的高为________.8. (内江)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC=8,BD=6,OE ⊥BC ,垂足为点E ,则OE= .23cm cm cm cm9. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =13,AC =10,过点D 作DE∥AC 交BC 的延长线于点E ,则△BDE 的周长为_____.考法0310.如图,在菱形ABCD 中,∠ABC =120°,E 是AB 边的中点,P 是AC 边上一动点,PB +PE的最小值是,求AB 的值.3题组A 基础过关练1. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°2.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm3.(青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°4. (枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.524B.512C.5D.45. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.3B.2C.3D.26.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______2cm.分层提分7.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.8. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.题组B 能力提升练10.如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.11.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.412.如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.题组C 培优拔尖练13.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.14、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE=18°.求∠CEF的度数.15、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.。
1.1菱形的性质和判定【菱形的性质】1.菱形的定义有一组邻边相等的平行四边形叫做菱形.符号语言:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形 .温馨提示:①菱形必须满足两个条件:一是平行四边形;二是一组邻边相等;②菱形是特殊的平行四边形,即当一个平行四边形满足一组邻边相等时,该平行四边形是菱形,不能错误地认为有一组邻边相等的四边形就是菱形;③菱形的定义既提供了菱形的基本性质,也提供了基本判定方法。
2.菱形的性质(1)菱形具有平行四边形的所有性质.(2)菱形的四条边都相等.(3)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.(4)菱形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴.菱形又是中心对称图形,对角线的交点为对称中心.菱形中相等的线段:AB = CD = AD = BC.OA = OC ,OB = OD.菱形中相等的角:∠AOB = ∠DOC = ∠AOD = ∠BOC = 90°.∠ADC=∠ABC.∠DAB=∠DCB∠1 = ∠2 = ∠3 = ∠4,∠5 = ∠6 = ∠7 = ∠8.菱形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关菱形问题可转化为直角三角形或等腰三角形的问题来解决(转化思想).温馨提示:①菱形具有平行四边形的一切性质;②“菱形的对角线互相垂直”这一性质可用来证明两条线段互相垂直,“菱形的每一条对角线平分一组对角”这一性质可用来证明角相等;③菱形的两条对角线分菱形为四个全等的直角三角形。
1、下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形2.如图,菱形的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是。
3.菱形ABCD的两条对角线长分别为6和8,则它的周长和面积分别为()A. 28、48B.20、24C.28、24D.20、484.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A. 5B. 10C. 15D. 205.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A. 2B. 2C. 4D. 4第2题第3题第4题第5题6.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.7.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF .(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.8.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.【菱形的判定】1. 菱形的判定定理(1)定义法:有一组邻边相等的平行四边形是菱形.(2)对角线互相垂直的平行四边形是菱形 .(3)四边相等的四边形是菱形 .①证明一个四边形是菱形,一般情况下,先证明它是一个平行四边形,然后要么证明“一组邻边相等”,要么证明“对角线互相垂直”.若要直接证明一个四边形是菱形,只要证明“四条边相等”即可;②对角线互相垂直平分的四边形是菱形;③对角线平分一个内角的平行四边形是菱形。
菱形的判定6种方法
菱形是一种常见的几何形状,它有许多应用,比如在数学中用于判定某些条件是否成立。
下面我们来介绍一下菱形的判定方法。
1. 对角线相等法:如果一个四边形的对角线相等,那么它就是一个菱形。
这是最基本的判定方法。
2. 边长相等法:如果一个四边形的四条边相等,那么它就是一个菱形。
这个方法比较容易理解,但是实际应用中不太常见。
3. 顶角相等法:如果一个四边形的相邻两个顶角相等,那么它就是一个菱形。
这个方法也比较容易理解,但是需要注意的是,只有相邻的两个顶角相等才行。
4. 垂直平分线相等法:如果一个四边形的对角线互相垂直,并且它们的交点处的两条垂直平分线相等,那么它就是一个菱形。
这个方法比较复杂,需要一定的几何知识。
5. 对角线平分线相等法:如果一个四边形的对角线互相平分,并且它们的交点处的两条对角线平分线相等,那么它就是一个菱形。
这个方法也比较复杂,需要一定的几何知识。
6. 内角相等法:如果一个四边形的内角都相等,那么它就是一个菱形。
这个方法比较特殊,只有在某些特殊情况下才能使用。
以上就是菱形的六种判定方法,它们各有优缺点,可以根据实际情况选择合适的方法。
在实际应用中,我们通常会结合多种方法来判定一个四边形是否为菱形,以提高判定的准确性。
人教版初二数学下册第18章《平行四边形》讲义第11讲菱形及正方形1、定义:有一组邻边相等的平行四边形叫做菱形。
2、基本性质:〔1〕边:菱形的四条边都相等;〔2〕角:菱形的对角相等,邻角互补;〔3〕对角线:菱形的对角线相互垂直平分,且每一条对角线平分一组对角: 〔4〕对称性:菱形是轴对称图形,中心对称图形,对称轴有两条;〔5〕面积:S=21ab(其中a 、b 区分是菱形的两条对角线的长). 或 S=底×高。
〔1〕有一组邻边相等的平行四边形是菱形;〔2〕四边都相等的四边形是菱形;〔3〕对角线相互垂直平分的四边形是菱形;〔4〕对角线相互垂直的平行四边形是菱形.1、正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、基本性质:〔1〕边:正方形四条边都相等;〔2〕角:正方形的四个角都相等;〔3〕对角线:对角线相等且相互垂直平分,并且每条对角线平分一组对角; 〔4〕对称性:是中心对称图形,又是轴对称图形,对称轴有四条;〔1〕有一组邻边相等的矩形是正方形;〔2〕对角线相互垂直的矩形是正方形;〔3〕有一个角是直角的菱形是正方形;〔4〕对角线相等的菱形是正方形。
考点1、菱形的性质例1、菱形的一个内角是120°,一条较短的对角线的长为10,那么菱形的周长是________ 例2、如图,菱形ABCD 的两条对角线区分长6和8,点P 是对角线AC 上的一个动点,点M 、N 区分是边AB 、BC 的中点,那么PM +PN 的最小值是________.例3、菱形的一条对角线长为12cm ,面积为30cm 2,那么这个菱形的另一条对角线长为_______cm 。
例4、如图,菱形ABCD ,E ,F 区分是BC ,CD 上的点,∠B =∠EAF =60°,∠BAE =18°,求∠CEF 的度数。
例5、如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延伸线于点E .〔1〕证明:四边形ACDE 是平行四边形;〔2〕假定AC=8,BD=6,求△ADE 的周长.例6、如图,在菱形ABCD 中,F 为对角线BD 上一点,点E 为AB 延伸线上一点,DF=BE ,CE=CF.求证:〔1〕△CFD ≌△CEB ;〔2〕∠CFE=60°.例7、:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.〔1〕、假定CE=1,求BC 的长;〔2〕、求证:AM=DF+ME .1、菱形ABCD 中,∠A =60o ,对角线BD 长为7cm ,那么此菱形周长 cm 。
2021年中考复习数学分类专题提分训练:菱形及其性质(二)1.如图,菱形ABCD中,对角线AC,BD交于点O,若AB=13,AC=10,则该菱形的面积为()A.65 B.120 C.130 D.2402.数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.甲的证法:∵四边形ABCD是菱形,∴AB=AD,OB=OD,又∵AO=AO,∴△AOB≌△AOD,∴∠AOB=∠AOD∵∠AOB+∠AOD=180°,∴∠AOB=90°,∴AC⊥BD.乙的证法:∵四边形ABCD是菱形,∴AB=AD,OB=OD,∴AO⊥OB,∴AC⊥BD.则关于两人的证明过程,说法正确的是()A.甲、乙两人都对B.甲对,乙不对C.乙对,甲不对D.甲、乙两人都不对3.如图,菱形ABCD中,∠A=50°,DE⊥AB于点E.则∠BDE的度数为()A.25°B.35°C.40°D.50°4.下列条件中,不能判定一个四边形是菱形的是()A.一组邻边相等的平行四边形B.一条对角线平分一组对角的四边形C.四条边都相等的四边形D.对角线互相垂直平分的四边形5.平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是菱形,那么这个条件是()A.AB=AC B.AC=BD C.AC⊥BD D.AB⊥BD6.如图,要使平行四边形ABCD成为菱形,需添加的条件是()A.AC=BD B.∠ABC=∠ADC C.∠ABC=90°D.AC⊥BD7.下列条件能判定四边形是菱形的是()A.对角线相等的四边形B.对角线互相垂直的四边形C.对角线互相垂直平分的四边形D.对角线相等且互相垂直的四边形8.下列命题正确的是()A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形9.如图,2条宽为1的带子以α角交叉重叠,则重叠部分(阴影部分)的面积为()A.sinαB.C.D.10.如图:把两张宽度都为1的长方形纸条重叠在一起,则重叠部分(阴影部分)的面积为()A.1 B.sinαC.D.11.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°,则图中阴影部分的面积是()A.B.C.2D.312.菱形的一边与两条对角线所构成的两角之比为5:4,则它的锐角度数为()A.30°B.45°C.60°D.80°=48,且AE=6,则菱形的边长为()13.如图,已知菱形ABCD中,AE⊥BC于E,若S菱形ABCDA.12 B.8 C.4 D.214.如图是一个边长为15cm的活动菱形衣帽架,若墙上钉子间的距离AB=BC=15cm,那么∠1的度数为()A.45°B.60°C.75°D.90°15.已知菱形ABCD中,对角线AC与BD相交于点O,E为BC边上的中点,AC=12cm,BD=16cm,则OE的长为()A.6cm B.5cm C.4cm D.2cm16.将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为()A.15 B.18 C.21 D.2417.如图,AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件不可能是()A.BD=DC B.AB=AC C.AD=BC D.AD⊥BC18.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是()A.2 B.C.1 D.19.如图,菱形ABCD的对角线AC与BD相交于点O,∠ABC=60°,AE⊥BC于E,交BD于F,已知AF=3,则BE=()A.B.C.D.20.如图,在平行四边形ABCD和平行四边形BEFG中,AB=AD,BG=BE,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A.B.C.D.参考答案1.解:∵四边形ABCD是菱形,∴OA=OC=AC=5,OB=OD,AC⊥BD,∴∠AOB=90°,∴OB===12,∴BD=2OB=24,∴菱形ABCD的面积=AC×BD=×10×24=120;故选:B.2.解:∵四边形ABCD是菱形,∴AB=AD,OB=OD,又∵AO=AO,∴△AOB≌△AOD(SSS),∴∠AOB=∠AOD∵∠AOB+∠AOD=180°,∴∠AOB=90°,∴AC⊥BD.即甲的证法正确;∵四边形ABCD是菱形,∴AB=AD,OB=OD,∴AO⊥OB,∴AC⊥BD.即乙的证法正确;故选:A.3.解:∵四边形ABCD是菱形,∠A=50°,∴AD=AB,∴∠ADB=65°,∵DE⊥AB,∴∠ADE=90°﹣50°=40°,∴∠BDE=65°﹣40°=25°,故选:A.4.解:A、∵一组邻边相等的平行四边形是菱形,∴选项A不符合题意;B、∵一条对角线平分一组对角的四边形不一定是菱形,∴选项B符合题意;C、∵四边相等的四边形是菱形,∴选项C不符合题意;D、∵对角线互相垂直平分的四边形是菱形,∴选项D不符合题意;故选:B.5.解:A、平行四边形ABCD中,AB=AC,不能推出平行四边形ABCD是菱形,故选项A不符合题意;B、∵平行四边形ABCD中,AC=BD,∴平行四边形ABCD是矩形,不一定是菱形,故选项B不符合题意;C、∵平行四边形ABCD中,AC⊥BD,∴平行四边形ABCD是菱形,故选项C符合题意;D、平行四边形ABCD中,AB⊥BD,不能推出平行四边形ABCD是菱形,故选项D不符合题意;故选:C.6.解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∠ABC=∠ADC,不能得出平行四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出,平行四边形ABCD是菱形,故本选项错误;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确;故选:D.7.解:根据菱形的判定定理:对角线互相垂直平分的四边形是菱形可直接选出答案,故选:C.8.解:A、错误,直角梯形中有邻角相等,但不是菱形;B、错误,只有一组邻边相等的平行四边形才是菱形;C、错误,筝形的对角线互相垂直,但不是菱形;D,正确,故选D.9.解:由题意可知:重叠部分是菱形,设菱形为ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,∴BC=AB=,∴重叠部分的面积即阴影部分的面积=BC•AE=.故选:B.10.解:如右图所示:过A作AE⊥BC,AF⊥CD于F,垂足为E,F,∴∠AEB=∠AFD=90°,∵AD∥CB,AB∥CD,∴四边形ABCD是平行四边形,∵纸条宽度都为1,∴AE=AF=1,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AB=AD,∴四边形ABCD是菱形.∴BC=AB,∵=sinα,∴BC=AB=,∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=,故选:C.11.解:如图,设BF交CE于点H,∵菱形ECGF的边CE∥GF,∴△BCH∽△BGF,∴CH:FG=BC:BG,即CH:4=2:6,解得CH=,所以,DH=CD﹣CH=2﹣,∵∠A=120°,∴∠ECG=∠ABC=180°﹣120°=60°,∴点B到CD的距离为2×=,点G到CE的距离为4×=2,∴阴影部分的面积=S△BDH +S△FDH,=×+×=故选:A.12.解:∵菱形对角线互相垂直平分,∴△ABO为直角三角形,∵5∠ABO=4∠BAO,∠ABO+∠BAO=90°,∴∠ABO=40°,∠BAO=50°,∵菱形的对角线即角平分线,∴∠ABC=2∠ABO=80°.故选:D.13.解:AE为菱形ABCDBC边上的高,且菱形的面积为S=BC×AE,已知S=48,AE=6,菱形ABCD∴BC=8,故菱形的边长为8,故选:B.14.解:因为菱形的边长为15cm,AB=15cm,∴三角形的顶点与点A、B连接成为等边三角形,∴∠1=60°,故选:B.15.解:如图,∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=8,OA=OC=AC=6,在Rt△OBC中,BC===10,∵E为BC边上的中点,∴OE=BC=5(cm).故选:B.16.解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线,这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.故选:C.17.解:添加BD=CD,∵E、F分别是边AB、AC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.添加AB=AC,则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点再证明即可;添加AD⊥BC,再由AD是△ABC的角平分线可证明△ABD≌△ACD,进而得到BD=CD,再证明四边形ADEF 为菱形即可,故选:C.18.解:因为在直角三角形中30度角对应的直角边是斜边的一半,在题目中的菱形中,已知菱形的高为1,可得边长为2,所以面积为2.19.解:∵四边形ABCD为菱形,∴AB=BC,AC⊥BD,OA=AC∵∠ABC=60°,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,∵AE⊥BC,∴BE=CE=BC,∠CAE=∠BAC=30°,∴BE=AC=AO=AF•cos30°=3×,故选:B.20.解:延长GP交DC于点H,∵AB=AD,BG=BE,∴平行四边形ABCD和平行四边形BEFG都是菱形,∵P是线段DF的中点,∴FP=DP,由题意可知DC∥GF,∴∠GFP=∠HDP,∵∠GPF=∠HPD,∴△GFP≌△HDP,∴GP=HP,GF=HD,∵四边形ABCD是菱形,∴CD=CB,∴△CHG是等腰三角形,∴PG⊥PC,(三线合一)又∵∠ABC=∠BEF=60°,∴∠GCP=60°,∴=.故选:B.。
第六讲菱形的判定与性质(培优版)【版块一菱形的性质】【题型一】对角线互相垂直1.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A.5B.6.5C.10D.122.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S=48,则OH的长为()菱形ABCDA.4B.8C.D.63.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为.【题型二】线段和最小值问题(将军饮马模型)4.如图,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是.5.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D,E,F分别在AC、BC、AB上,且四边形ADEF为菱形,则菱形的边长为;若点P是AE上一个动点,则PF+PB的最小值为.【题型三】规律探究6.如图,在平面直角坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,将菱形OABC 沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2021次,点B的落点依次为B1,B2,B3,…,则B2021的坐标为()A.(1010,0)B.(1345,)C.(,)D.(1346,0)【题型四】动点问题7.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB 方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【题型五】奔驰模型8.如图,在菱形ABCD中,∠B=60°,对角线AC平分∠BAD,点P是△ABC内一点,连接P A、PB、PC,若P A=6,PB=8,PC=10,则菱形ABCD的面积等于.【题型六】做辅助线构造全等9.如图,在菱形ABCD中,∠B=60°,M、N分别为线段AB、BC上的两点,且BM=CN,AN、CM相交于点E (1)证明:△BCM≌△CAN.(2)求∠AED的度数.(3)证明:AE+CE=DE.【版块二菱形的判定】【题型一】邻边相等的平行四边形为菱形1.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【题型二】对角线互相垂直+平行四边形=菱形2.在矩形ABCD中,AB=3,AD=4,将△ABD沿着BD折叠,使点A与点E重合.(1)如图(1),对角线AC、BD相交于点O,连接OE,则线段OE的长=;(2)如图(2),过点E作EF∥CD交线段BD于点F,连接AF,求证:四边形ABEF是菱形;(3)如图(3),在(2)条件下,线段AE、BD相交于M,连接CE,求线段CE的长.【版块三菱形的性质与判定】【题型一】几何多项选择问题(综合)1.如图所示,分别以Rt△ABC的直角边AC,斜边AB为边向△ABC外构造等边△ACD和等边△ABE,F 为AB的中点,连接CF,DF,EF,∠ACB=90°,∠ABC=30°.有下列五个结论:①AC⊥DF;②DA+DF =BE;③四边形ADCF是菱形;④S四边形BCDE=6S△ACD;⑤四边形BCDF是平行四边形.其中正确的结论是(填序号)【变式】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F 为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④4FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【题型二】动点问题3.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能构成菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【题型三】构造直角三角形求线段长3.如图1,在▱ABCD中,AB=AD,AC=16,BD=12,AC、BD相交于点O.(1)求AB的长.(2)若CE∥BD,BE∥AC,连接OE,求证:OE=AD.(3)在(2)条件下如图2,设BC与OE相交于点P,连接DP,求DP的长.【巩固训练】1.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:其中正确的是()①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.A.①②③B.①③④C.①②⑤D.②③⑤2.如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形.3.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF,过点D作DG⊥CF于点G.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?(3)在(2)的条件下,若AB=6,BC=10,求DG的长.11。
专题06 菱形的性质和判定姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中,正确的是().A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形【答案】B【分析】根据菱形的性质,对各个选项逐个分析,即可得到答案.【解析】两邻边相等的平行四边形是菱形,故选项A不符合题意;一条对角线平分一个内角的平行四边形是菱形,故选项B符合题意;对角线垂直且一组邻边相等的平行四边形是菱形,故选项C不符合题意;对角线垂直的平行四边形是菱形,故选项D不符合题意;故选:B.【点睛】本题考查了命题、菱形的知识;解题的关键是熟练掌握菱形的性质,从而完成求解.2.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,点E,F分别为AO,DO的中点,则线段EF的长为()A.2.5 B.3 C.4 D.5【答案】A【分析】根据菱形的对角线互相垂直平分求出AD的长,再根据中位线定理即可求出EF的长.【解析】解:因为在菱形ABCD中,对角线AC=8,BD=6,∴AC⊥BD,AO=4,DO=3,∴AD=2222435AO DO+=+=,∵点E,F分别为AO,DO的中点,∴12.52==EF AD;故选:A.【点睛】本题考查的是菱形的性质和中位线的性质,注意到菱形的对角线互相垂直平分是解决本题的关键.3.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为().A.3 B.2C.3D.32 2【答案】C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解析】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6-x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6-x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:23BC ,故选:C.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.4.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.23C.33D.6【答案】C【分析】首先连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,由在菱形ABCD中,AB=6,∠ABC=60°,易得△ACD是等边三角形,BD垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【解析】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=12AD=3,CM⊥AD,∴CM=22CD DM -=33,∴PA+PM=PC+PM=CM=33.故选C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键.5.如图在平面直角坐标系xOy 中若菱形ABCD 的顶点,A B 的坐标分别为(6,0),(4,0)-,点D 在y 轴上,则点C 的坐标是( )A .(6,8)B .(10,8)C .(10,6)D .(4,6)【答案】B【分析】 首先根据菱形的性质求出AB 的长度,再利用勾股定理求出DO 的长度,进而得到点C 的坐标.【解析】∵菱形ABCD 的顶点A 、B 的坐标分别为(-6,0)、(4,0),点D 在y 轴上,∴AB=AO+OB=6+4=10,∴AD=AB=CD=10,∴22221068DO AD AO =-=-=,∴点C 的坐标是:(10,8).故选:B .【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO 的长度. 6.如图,ABCD 中,AC 平分BAD ∠,若2,3AC AB ==ABCD 的面积为( )A .2B .22C .42D .82【答案】B【分析】 连接BD 交AC 于点O ,首先证明四边形ABCD 为菱形,然后求出BD 的长,最后根据菱形的面积公式解答.【解析】解:如图,连接BD 交AC 于点O ,在ABCD 中,//AD BC ,,DAC ACB ∴∠=∠AC 平分BAD ∠,DAC BAC ∴∠=∠,BAC BCA ∴∠=∠,AB BC ∴=,∴四边形ABCD 为菱形,11,2122AC BD OA AC ∴⊥==⨯=, 22312OB AB OA ∴=-=-222BD OB ==,ABCD ∴的面积为:112222222ABCD S AC BD =•=⨯⨯=故选B .【点睛】本题主要考查了平行四边形的性质、菱形的判定和性质以及勾股定理等知识,解题的关键是证得四边形ABCD 为菱形.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点C 作CE ⊥AD 于点E ,连接OE ,若OB =6,S 菱形ABCD =60,则OE 的长为( )A .23B .5C .5D .6【答案】C【分析】 先根据菱形的性质、面积公式可得AC 的长,再根据直角三角形斜边上的中线等于斜边的一半即可得.【解析】四边形ABCD 是菱形,6OB =,212BD OB ∴==,OA OC =,162ABCD BD AC S AC =⋅=菱形, 60ABCD S =菱形,660AC ∴=,解得10AC =,又OA OC =,CE AD ⊥,OE ∴是Rt ACE △斜边AC 上的中线,1110522OE AC ∴==⨯=, 故选:C .【点睛】本题考查了菱形的性质、直角三角形斜边上的中线等于斜边的一半,熟练掌握菱形的性质是解题关键.8.如图,在菱形ABCD 中,E F ,分别是BC CD ,的中点,设ABCD S S =四边形,1AEF S S ∆=,则( )A .112S S =B .112S S <C .112S S >D .152S S = 【答案】B【分析】利用三角形的中线得到12AECF S S =四边形,判断出A 、C 错误,B 符合题意,利用三角形中位线定理求得CEF 18S S =,通过计算得到183S S =,即可得到正确的答案. 【解析】连接BD 、AC ,∵E ,F 分别是BC ,CD 的中点, ∴ABE ABC ADF ACD 1122S S S S ==,, ∴A CD 1122AECF B S S S ==四边形菱形, ∵AEF AECF S S <四边形,即112S S <,故A 、C 错误,B 符合题意; ∵E ,F 分别是BC ,CD 的中点,∴EF=12BD ,EF ∥BD , ∴CEF CBD A CD 111488B S S S S ===菱形,∴1AEF CEF 113288AECF S S S S S S S ==-=-=四边形, 即183S S =,故D 错误,故选:B .【点睛】本题考查了菱形的性质,三角形中线有关的面积计算,三角形中位线与三角形的面积,熟练掌握菱形的性质是解决问题的关键.9.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,以A 为圆心,AB 为半径的弧交AD 于点F ,连接EF .若BF =6,AB =5,则四边形ABEF 面积是( )A .12B .24C .36D .48【答案】B【分析】 根据题意AB =AF ,利用角平分线和平行证明BA =BE ,用一组对边平行且相等证明四边形ABEF 为平行四边形,再用邻边相等证明它是菱形,最后用菱形面积公式计算面积.【解析】记AE 与BF 相交于O 点,如图,由作法得AB =AF =10,AE 平分∠BAD ,∴∠BAE =∠DAE ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠DAE =∠BEA ,∴∠BAE =∠BEA ,∴BA =BE ,∴AF =BE ,∵AF ∥BE ,∴四边形ABEF 为平行四边形,∵AB=AF,∴四边形ABEF为菱形,∴OA=OE,OB=OF=12BF=3,AE⊥BF,在Rt△AOB中,OA22534=-=,∴AE=2AO=8,∴四边形ABEF面积116824 22AE BF=⋅=⨯⨯=.故选:B.【点睛】本题考查角平分线的性质,菱形的判定和面积求解,解题的关键是根据题目中的角平分线和平行的条件能够证明等腰三角形,再根据菱形的判定和面积公式求四边形面积.10.如图,在菱形ABCD中,AE是菱形的高,若对角线AC、BD的长分别是6、8,则AE的长是()A.174B.245C.163D.5【答案】B【分析】由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【解析】解:四边形ABCD是菱形AC BD∴⊥,4BO DO==,3CO AO==225BC BO CO ∴=+=12ABCD S AC BD BC AE =⨯⨯=⨯菱形 245AE ∴=245AE ∴= 故选B .【点睛】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.11.如图,菱形ABCD 的边长为13,对角线AC 的长为24,延长AB 至E ,BF 平分CBE ∠,点G 是BF 上任意一点,则ACG 的面积为( )A .30B .60C .90D .120【答案】B【分析】 连接BD 交AC 于点O ,根据菱形的性质可得BD 与AC 互相垂直平分,再根据AC 平分∠DAB ,BF 平分∠CBE ,可以证明AC ∥FB ,根据平行线间的距离处处相等可得S △CBG =S △ABG ,进而可得S △ACG =S △ABC .【解析】解:如图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,∴BD 与AC 互相垂直平分,∴OA=OC=12,∴OB=OD=221312=5,∵DA∥CB,∴∠DAB=∠CBE,∵AC平分∠DAB,∴∠CAB=12∠DAB,∵BF平分∠CBE,∴∠FBE=12∠CBE,∴∠CAB=∠FBE,∴AC∥FB,∴S△CBG=S△ABG,∴S△ACG=S△ABC=12×AC•OB=12×24×5=60,则△ACG的面积为60.故选:B.【点睛】本题考查了菱形的性质、三角形的面积,解决本题的关键是掌握菱形的性质.12.两张全等的矩形纸片ABCD,AECF按如图方式交叉叠放在一起,AB=AF,AE=BC.若AB=1,BC=3,则图中重叠(阴影)部分的面积为().A.2 B3C.53D.43【答案】C【分析】证得四边形AGCH是平行四边形,由△ABG≌△CEG(AAS),证得四边形AGCH是菱形,设AG=CG=x,则BG=BC-CG=3-x,在Rt△ABG中,由勾股定理得出方程,解方程求得CG的长,即可求出菱形AGCH的面积.【解析】设BC 交AE 于G ,AD 交CF 于H ,如图所示:∵四边形ABCD 、四边形AECF 是全等的矩形,∴AB=CE ,∠B=∠E=90°,AD ∥BC ,AE ∥CF ,∴四边形AGCH 是平行四边形,在△ABG 和△CEG 中,AGB CGE B EAB CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABG ≌△CEG (AAS ),∴AG=CG ,∴四边形AGCH 是菱形,设AG=CG=x ,则BG=BC-CG=3-x ,在Rt △ABG 中,由勾股定理得:12+(3-x)2=x 2,解得:x=53, ∴CG=53, ∴菱形AGCH 的面积=CG ⋅AB=55133⨯=, 即图中重叠(阴影)部分的面积为53. 故选:C . 二、填空题(本大题共6小题,每小题3分,共18分)13.菱形的周长为12cm ,一个内角等于120︒,则这个菱形的面积为_________2cm . 932【分析】作AE ⊥BC 于E ,由直角三角形的性质求出菱形的高AE ,再运用菱形面积公式=底×高计算即可.【解析】解:作AE⊥BC于E,如图所示:∵四边形ABCD是菱形,周长为12cm,∠BCD=120°,∴AB=BC=3cm,∠B=60°,∵AE⊥BC,∴∠BAE=30°,∴BE=12AB=32cm,AE=3BE=332cm,∴菱形的面积=BC•AE=3×332932cm2);932【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、菱形的面积等知识;熟练掌握菱形的性质,求出菱形的高是解决问题的关键.14.己知菱形ABCD的边长是3,点E在直线AD上,DE=1,联结BE与对角线AC相交于点M,则AMMC的值是______.【答案】23或43【分析】首先根据题意作图,注意分为E在线段AD上与E在AD的延长线上,然后由菱形的性质可得AD∥BC,则可证得△MAE∽△MCB,根据相似三角形的对应边成比例即可求得答案.【解析】解:∵菱形ABCD的边长是3,∴AD=BC=3,AD∥BC,如图①:当E在线段AD上时,∴AE=AD-DE=3-1=2,∴△MAE∽△MCB,∴23 MA AEMC BC==;如图②,当E在AD的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE∽△MCB,∴43 MA AEMC BC==.∴MAMC的值是23或43.故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E在线段AD 上与E在AD的延长线上两种情况,小心不要漏解.15.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF 并延长与AB的延长线相交于点G,则EG =____.【答案】10;【分析】连接菱形的另一条对角线,利用菱形性质特征和勾股定理可求BD长;利用三角形中位线定理可得EF长;在利用三角形全等可证EF GF=即可得解.【解析】连接BD 交AC 与点O ,在菱形ABCD 中 ∵111222AC BD OC OA AC OD OB BD ⊥=====,,, 在RT DOC △中 222213125OD DC OC =-=-=,∴10BD =,∵点E 、F 分别是边CD 、BC 的中点,∴152EF BD ==, ∵//AB CD ,∴BGF CEF GBF ECF ∠=∠∠=∠,,又∵CF BF =,∴BGF CEF ≅△△,∴5EF GF ==,∴10EG =.故答案为:10.【点睛】本题主要考查菱形的性质特征、三角形的中位线定理、平行线性质、勾股定理以及全等三角形等.中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.运用三角形中位线定理求线段长的方法:当题中有中点,特别是一个三角形中出现两边中点时,我们常常考虑运用三角形的中位线来解决问题,首先证明出它是三角形的中位线,然后利用中位线构造线段这间的关系,并由此建立待求线段与已知线段的联系,从而求出线段的长.16.在数学必修拓展课上,小兰利用一张直角三角形纸片折出了一个菱形AFDE ,如图所示,若∠ACB =90°,AC =3cm ,BC =4cm ,则折痕EF 的长为______.【答案】354【分析】过点D 作DH ⊥AB 于 H ,连结AD 、EF ,设CD=x ,则DH=x ,BD=4−x ,由勾股定理求得x 的值,设CF=y ,则 AF=3−y=FD ,由勾股定理求得y 的值,由菱形的性质得AD 与EF 垂直平分,进而求得EF 的长.【解析】解:如图,过点D 作DH ⊥AB 于 H ,连结AD 、EF ,∵菱形AFDE ,∴AD 平分∠BAC ,∵∠ACB=90°,∴CD=DH ,∴AH=AC=3,设CD=x ,则DH=x ,BD=4−x ,∵2222345AC BC +=+=,∴HB=5−3=2,在Rt △DBH 中,()22222242BD DH BH x x =+-=+,,∴x=1.5,即CD=1.5,设CF=y ,则AF=3−y=FD ,在Rt △CDF 中,()222222321.534CF CD FD y y y +=+=-=,,, 即CF=324,∴AF=3−324, 在Rt △ACD 中,2222363 1.5AC CD +=+=, ∴AO=136362=,由菱形的性质得AD 垂直平分EF ,OF=22223236353448AF AO ⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴EF=2OF= 3535284⨯=, 故答案为35. 【点睛】本题考查菱形的性质,勾股定理,角平分线的性质.17.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH AB ⊥于点H ,连接OH ,若20DHO ∠=︒,则HDB ∠的度数是______.【答案】20︒【分析】先根据菱形的性质得OD =OB ,而DH ⊥AB ,所以OH 为Rt △DHB 的斜边DB 上的中线,得到OH =OD ,利用等腰三角形的性质得∠HDB =∠DHO .【解析】∵四边形ABCD 是菱形,∴OD =OB ,∵DH ⊥AB ,∴∠DHB =90°,∴OH 为Rt △DHB 的斜边DB 上的中线,∴OH =OD ,∴∠HDB =∠DHO =20°,故填:20°.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.已知:如图,点P 是边长为2的菱形ABCD 对角线AC 上的一个动点,点M 是AB 边的中点,且60BAD ∠=︒,则MP PB +的最小值是_______.【答案】3 【分析】 找出B 点关于AC 的对称点D ,连接DM ,则DM 就是PM+PB 的最小值,求出即可.【解析】解:连接DE 交AC 于P ,连接BD ,BP ,由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,则PD=PB ,∴PE+PB=PE+PD=DE ,即DM 就是PM+PB 的最小值,∵∠BAD=60°,AD=AB ,∴△ABD 是等边三角形,∵AE=BE ,∴DE ⊥AB (等腰三角形三线合一的性质)在Rt △ADE 中,DM=22AD AM -=2221=3-.故PM+PB 的最小值为3.故答案为:3.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O .过点B 作AC 的平行线,过点C 作BD的平行线,两线相交于点P .(1)求证:四边形OBPC 是菱形.(2)已知3AB =,5BC =,求四边形OBPC 的面积.【答案】(1)证明过程见解析;(2)152OBPC S =四边形 【分析】(1)根据平行四边形的判定证得四边形OBPC 是平行四边形,再根据矩形的性质可知OB=OC ,然后根据菱形的判定即可证得结论;(2)根据菱形的性质和三角形的中线将三角形面积平分可证得四边形OBPC 的面积等于三角形ABC 的面积,利用直角三角形的面积公式即可解答.【解析】(1)∵//BP OC ,//CP OB ,∴四边形OBPC 是平行四边形,在矩形ABCD 中,AC BD =,且AC 与BD 互相平分,∴OB OC =,∴'平行四边形OBPC 是菱形.(2)∵四边形OBPC 是菱形,∴OBC BCP S S =△△,又∵AO OC =,∴AOB BOC S S =△△,∴OBC BCP AOB S S S ==△△△,∴四边形OBPC 的面积等于三角形ABC 的面积, ∴11522ABC S AB BC =⋅=△, ∴152OBPC S =四边形. 【点睛】本题考查了矩形的性质、平行四边形的判定、菱形的判定与性质、三角形的中线与面积关系、三角形的面积公式,属于基础题型,难度适中,解答的关键是熟练掌握菱形的判定与性质的应用.20.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.【答案】(1)见解析;(2)BD=2【分析】(1)根据菱形的性质和平行线的性质得到AB=BC,∠A=∠CBF,结合垂直的性质得到△AEB≌△BFC,根据三角形全等的性质即可证明;(2)首先证明BE是AD的垂直平分线,然后根据垂直平分线的性质即可求解.【解析】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=2【点睛】本题考查了菱形的性质,三角形全等的证明,垂直平分线的性质,关键是要利用好菱形的性质求解.,连接CE.21.如图,在菱形ABCD中,E为对角线BD上一点,且AE DE(1)求证:DE CE =.(2)当EA AB ⊥于点A ,1AE ED ==时,求菱形的边长.【答案】(1)见解析;(2)3【分析】(1)根据SAS 证明△ADE ≌△CDE ,从而得到AE =CE ,再根据AE =DE ,再得出结论;(2)连接AC 交BD 于H ,由菱形的性质可得AB=AD ,AC ⊥BD ,BH=DH ,AH=CH ,由等腰三角形的性质和三角形内角和定理可求∠DAE=∠ADE=∠ABD=30°,利用直角三角形的性质可求解即可.【解析】(1)∵四边形ABCD 是菱形,∴AD =DC ,∠ADE =∠CDE ,在△ADE 和△CDE 中,AD DC ADE CDE DE DE ⎧⎪∠∠⎨⎪=⎩== ,∴△ADE ≌△CDE (SAS ),∴AE =CD ,又∵AE=DE ,∴DE CE =;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AB=AD ,AC ⊥BD ,BH=DH ,AH=CH ,∴∠ABD=∠ADB ,∵AE═ED=1,∴∠DAE=∠EDA ,∴∠DAE=∠ADE=∠ABD ,∵∠DAE+∠ADE+∠BAE+∠ABD=180°,∴∠DAE=∠ADE=∠ABD=30°,∴BE=2AE=2,∴BD=BE+DE=3,∴BH=DH=32, ∵∠ABD=30°,AH ⊥BD ,∴AB=2AH ,BH=3 AH ,∴AH=3,AB=2AH=3, ∴菱形的边长为3.【点睛】考查了菱形的性质、全等三角形的判定和性质、直角三角形的性质,解题关键是灵活运用其性质. 22.如图,ABC ∆中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA 和BC 的平行线,两线交于点E ,且DE 交AC 于点O ,连接AE .(1)求证:四边形ADCE 是菱形;(2)若60B ∠=︒,6BC =,求四边形ADCE 的面积.【答案】(1)证明见解析;(2)S 菱形ADCE 183=【分析】(1)先证明四边形ADCE 为平行四边形,再证明AC ⊥DE 即可证明;(2)根据勾股定理得到AC 的长度,由含30度角的直角三角形的性质求得DE 的长度,然后由菱形的面积等于对角线乘积的一半即可求.【解析】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°,∴AC⊥DE,∴ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得AC=63.∵四边形DBCE是平行四边形,∴DE=BC=6.∴S菱形ADCE6361832AC ED⋅⨯===.【点睛】本题主要考查菱形的性质和判定以及面积的计算,含30°角的直角三角形.(1)掌握菱形的判定定理并能灵活运用是解题关键;(2)中理解菱形的面积等于对角线的乘积的一半是解题关键.23.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是菱形;(2)当AC=6时,求出四边形OCED的周长.【答案】(1)详见解析;(2)12【分析】(1)首先由CE∥BD,DE∥AC,可证得四边形OCED是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形OCED是菱形,(2)求出OC=OD=3,由菱形的性质即可得出答案.【解析】(1)∵CE∥BD,DE∥AC,∴四边形OCED为平行四边形,又∵四边形 ABCD 是矩形,∴OD=OC,∴四边形OCED为菱形;(2)∵四边形 ABCD 是矩形,∴OC=OD=12 AC,又∵AC=6,∴OC=3,由(1)知,四边形OCED为菱形,∴四边形OCED的周长为=4OC=4×3=12.【点睛】本题考查了矩形的性质、菱形的判定与性质等知识,熟练掌握菱形的判定方法是解题的关键.24.如图,四边形ABCD中,60B︒∠=,连接对角线AC,AC BC=,点E在AB上,将CE绕点C顺时针旋转60︒得到CF,且点F在AD上.(1)求证:AF BE=;(2)若AE DF=,求证:四边形ABCD是菱形.【答案】(1)证明见解析;(2)证明见解析【分析】(1)证明ABC ∆是等边三角形,由旋转的性质得出CE CF =,60ECF ︒∠=,通过证明ACF BCE ∆≅∆进行求证;(2)由已知条件可求出AD BC =,由(1)可证//AD BC ,进而可得出四边形ABCD 是平行四边形,最后根据邻边相等的平行四边形是菱形进行求证.【解析】证明:(1)∵60B ︒∠=,AC BC =,ABC ∆∴是等边三角形,60ACB ︒∴∠=,AB AC BC ==, CE 绕点C 顺时针旋转60︒得到CF ,CE CF ∴=,60ECF ︒∠=,∵ACB ACE ECB ∠=∠∠+,ECF ACE ACF ∠=∠∠+,BCE ACF ∴∠=∠,在ACF 和BCE 中AC BC ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,()ACF BCE SAS ∴∆≅∆,AF BE ∴=;(2)AE DF =,AF BE =,DF AF AE BE ∴+=+,即AB AD =,又AB BC =,AD BC ∴=,由(1)知BCE ACF ∆∆≌,60B CAF ︒∴∠=∠=,60ACB CAF ︒∴∠=∠=,//AD BC ∴,∴四边形ABCD 是平行四边形,又AB AD =,∴四边形ABCD 是菱形.【点睛】本题考查全等三角形的判定与性质,旋转的性质,平行四边形与菱形的判定,由已知条件证明BCE ACF ∆∆≌是解题的关键.。
菱形概念及性质
强立新
教学目的:
1.掌握菱形概念,知道菱形与平行四边形的关系.
2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、重点、难点
重点:菱形的性质1、2.
难点:菱形的性质及菱形知识的综合应用
三、考点分析:
在近几年的中考中,四边形与三角形占有很大的比重,常以中等难度的题型出现,题型也比较活。
而菱形这部分内容,更是四边形中重要的一环,主要考查菱形的判定和性质。
教学过程
一、复习创情导入
我们已经学习了矩形的性质:
性质有:定理1,矩形的四个角都是直角;
定理2,矩形的对角线相等;
推论,直角三角形斜边的中线是斜边的一半。
其中矩形的判定方法有:定义:有一个角是直角平行四边形
定理1:三个角是直角的四边形
定理2:对角线相等的平行四边形
二课堂引入
1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形
知识点一:菱形有一组邻边相等的平行四边形叫做菱形.
知识点二:菱形的性质
要点诠释:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:
1.菱形的四条边相等。
2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
平行四边形的面积法则适用于求菱形的面积。
菱形的面积=两条对角线的乘积的一半。
说明:要判定四边形是菱形的方法:
法一:先证出四边形是平行四边形,再证出有一组邻边相等。
(这是定义证明)。
法二:先证出四边形是平行四边形,再证出对角线互相垂直。
(这是判定定理3)法三:只需证出四边都相等。
(这是判定定理2)
4.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴
典型例题
例3:已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E。
求证:∠AFD=∠CBE。
2)解题思路:欲证∠AFD 与∠CBE 相等,但找不到∠AFD 与∠CBE 所在的三角形全等,这时我们可以找一个角与∠AFD 与∠CBE 相等。
解答过程: ∵四边形ABCD 是菱形, ∴CB=CD ,CA 平分∠BCD 。
∴∠BCE=∠DCE 。
又CE=CE , ∴△BCE ≌△DCE (SAS )。
∴∠CBE=∠CDE 。
∵在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC (∠CDE ) ∴∠AFD=∠CBE 。
解题后的思考:此题为巩固菱形的性质而设置,同学们要熟练掌握菱形的性质。
例4:如图是菱形花坛ABCD ,它的边长为20m ,∠ABC =60°,沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积。
A
D
C
O
B
思路分析: 1)题意分析:本题考查菱形的性质、菱形的面积及直角三角形的性质。
2)解题思路:因为菱形的面积等于两条对角线的乘积的一半,所以应把此题转化为解直角三角形的问题从而求出AC 、BD 的长。
解答过程:∵在菱形ABCD 中, ∠ABC =60°,AB=20m
2
32002
1
320,20310,10302
1
m BD AC S m
BD m AC m BO m AO BD AC ABC ABD ABCD =⋅===∴==∴⊥︒=∠=
∠∴菱形
解题后的思考:这是一道合用菱形知识与直角三角形知识来求菱形面积的实际应用问题。
此题除可用以巩固菱形性质外,还可用不同的方法来计算菱形的面积,要学会熟练、灵活地运用知识。
例5:如图,四边形ABCD 是菱形。
对角线AC =8㎝,DB =6㎝,DH ⊥AB 于H 。
求DH 的长。
A
B
D
C
O H
思路分析: 1)题意分析:本题考查了菱形的面积及用等积法求高的知识。
解答过程:∵四边形ABCD 是菱形,对角线AC =8㎝,DB =6㎝。
∴菱形ABCD 的面积为24cm 2
BD BD DA CD BC AB ===
ABD ∆≌BCD ∆
ABD ∆面积等于菱形ABCD 面积的一半,为12cm 2
4=OA cm ,3=OD cm ,5=∴AD cm
5
241221=∴=⨯DH DH AB cm 解题后的思考:此题有一定的灵活性,同学们应在做题时积累经验,以能灵活正确地解题。
明白用等积法求高较为便捷。
针对训练;已知:菱形ABCD 中,对角线AC=16cm ,BD=12cm ,BE ⊥DC 于点E ,求菱形ABCD 的面积和BE 的长.
答案:解:菱形ABCD 的面积S=×16×12=96, ∵AC ⊥BD ,∴AB=10, ∴CD=AB=10, ∴ ×CD ×BE=48, ∴BE= cm ,
所以菱形ABCD 的面积为96cm 2
,BE 的长为 cm .
解析:由菱形的性质知,菱形的面积等于它的两条对角线的乘积的一 扩展
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.
2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.
3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.
5.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.
6如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求
(1)对角线AC的长度;(2)菱形ABCD的面积.。