特殊的平行四边形复习总结课件
- 格式:doc
- 大小:177.00 KB
- 文档页数:8
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.2 特殊平行四边形知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例1-1】如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF.求证:四边形ABFC是矩形.A EFD CB利用对角线相等的平行四边形是矩形证明方法一:利用△ABE≌△FCE证平行四边形;证法二:利用△ABE∽△FCE证平行四边形考点聚焦一个角为直角对角线相等平行四边形平行四边形直角证明四边形ABCD 是矩形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的____________;【例1-2】如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( ) A.1 B.1.5 C.2 D.4AHGECBD F C 考点聚焦对边平行且相等四角都是直角对角线互相平分且相等矩形的性质(1)边:________________;(2)角:________________;(3)对角线:______________________.1.已知□ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.如图,矩形ABCD的对角线AC=10,P,Q分别为AO,AD的中点,则PQ=_____.3.如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为____.4.如图,矩形OCDE,矩形OFGH,矩形OMNP各有一边在半⊙O的直径AB上,D,G,N都在半⊙O上,比较EC,HF,MP的大小_________.B 2.514EC=HF=EP5.如图,在矩形ABCD中,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,设点P运动的时间为t秒,则当t=_______时,△PAE是以PE为腰的等腰三角形.6.如图,将矩形ABCD绕点B顺时针旋转,得到矩形EBFG,且点E落在CD上,过点C作FG的垂线,垂足为H,若FH=HG,则BC:AB的值为_______.7.如图,在Rt△ABC中,∠BAC=90º,BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小最为_____.M2.4知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例2-1】如图,在等腰△ABC中,AD平分顶角∠BAC,交底边BC于点H,点E在AD上,BE=BD,求证:四边形BDCE是菱形.考点聚焦证明四边形ABCD 是菱形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的________________平行四边形一组邻边相等平行四边形对角线互相垂直四边相等AH E DCB利用“三线合一”得出AD 垂直平分BC,从而得出四边相等。
第一讲 特殊的平行四边形题型分类: 无星代表普通高中 ★重点高中 ★★三大名校知识点1、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:矩形具有平行四边形的所有性质;(1)矩形的对边平行且相等; (2)矩形的四个角都相等,且都是直角; (3)矩形的对角线互相平分且相等.3.矩形的判定方法:(1)有一个角是直角的平行四边形是矩形(定义); (2)有三个角是直角的四边形是矩形; (3)对角线相等的平行四边形是矩形.4.面积公式: S=ab(a 、b 是矩形的边长).知识点二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:菱形具有平行四边形的所有性质; (1)菱形的对边平行,四条边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.3.菱形的判定方法:(1)有一组邻边相等的平行四边形是菱形(定义);(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.面积公式: S=ah(a 是平行四边形的边长,h 是这条边上的高)或s=mn(m 、n 是菱形的两条对角线长).知识点三、正方形1.正方形的定义:有一组邻边相等的矩形叫做正方形;或有一个角是直角的菱形叫做正方形.2.正方形的性质:正方形具有平等四边形、矩形、菱形的所有性质;(1)正方形的对边平行,四条边都相等;(2)正方形的四个角都是直角;(3)正方形的两条对角线相等,并且互相垂直平分;每条对角线平分一组对角;3.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形.4.面积公式:S=a2(a是边长)或s=b2(b正方形的对角线长).知识点四、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5. 等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).例题1.(2007义乌)在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形例题2.如图,矩形ABCD 中,AC 、BD 交于点O ,AE ⊥BD 于E ,DE = EO ,OF ⊥AB 于F ,OF = 3cm ,则BD = ________cm . 例题3.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 处,BF 交AD 于点E ,若∠EBD = 25º,则∠FDE = ________.【变式1】(2007大连)如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )。
A .4B .3C .2D .1【变式2】矩形一个角的平分线分矩形一边成2cm 和3cm ,则这个矩形的面积为__________.二、菱形例题1:如图,在菱形 ABCD 中,E 、F 分别是AD 、BD 的中点,如果EF=2,那么菱形ABCD的周长是( )A. 4 B .8 C .12 D .16例题2:能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角变式练习1:已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为 ( )A. 45°, 135°B. 60°, 120°C. 90°, 90°D. 30°, 150°★变式练习2:如图,菱形ABCO 的边长为2,∠AOC=45°,则点B 的坐标为___________.EF第2题图 第3题图三、正方形:例题1:如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个★★例题2:图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?变式练习:【变式1】下列选项正确的是( )A.四边相等的四边形是正方形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.四角相等的四边形是正方形【变式2】正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于______cm.【变式3】(1)顺次连结任意四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形三、梯形:例题1:等腰梯形中,,cm,cm,,则梯形的腰长是_________cm.★★★例题2:如图,在梯形ABCD中,AD∥BC,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是( )(A)24(B)20(C)16(D)121m 的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为( ) A .30m 2 B .33m 2 C .38m 2 D .40m 22.如图,矩形ABCD 被分成7个全等的小矩形,已知矩形ABCD 的周长为68,则矩形ABCD 的面积为( )A .136B .240C .280D .2043.如图,菱形ABCD 的对角线交于点O ,AC = 8cm ,BD = 6cm ,则菱形的高为( )A .485cm B .245 cmC .125 cm D.105cm4.如果菱形的边长为a ,一个内角为60º,那么菱形较长的对角线长等于( )A .12a B .a C .2a D 5.如图,在正方形ABCD 中,两对角线交于点O ,∠BAC 的平分线交BD 于E ,正方形ABCD 的周长为16,则DE 等于( ) A .8 B .6 C .4 D .6、在平行四边形ABCD 中,∠B=110O ,延长AD 至F,延长CD 至E,连接EF,则∠E+∠F=( )A 、110OB 、30OC 、50OD 、70O7、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A.3:4B.5:8C.9:16D.1:28、矩形ABCD 的长AD=15cm ,宽AB=10cm ,∠ABC 的平分线分AD 边为AE 、ED两部分,这AE 、ED 的长分别为( )A .11cm 和4cmB .10cm 和5cmC .9cm 和6cmD .8cm 和7cm9、四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )ABC DE F第6题图形C 第7题图A .AB=CDB .AD=BC C .AB=BCD .AC=BD10、如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEBO ( )A. 10° B .15° C .20° D .12.5°11、如图,在菱形 ABCD 中,E 、F 分别是AD 、BD 的中点,如果EF=2,那么菱形ABCD 的周长是( ) A. 4 B .8 C .12 D .1612、已知正方形ABCD 对角线AC ,BD 相交于点O ,•且AC=•16cm ,•则DO=•_____cm ,•BO=____cm ,∠OCD=____度.13、在平面直角坐标系中,四边形ABCD 是菱形,∠ABC=60°,且点A 的坐标为(0,2),则点B 坐标( ),点C 坐标为( ),点D 坐标为( )。
(三)解答题:14、如图,四边形ABCD 是菱形 ,∠ACD=30°,BD=6,求:(1)∠BAD,∠ABC 的度数; (2)边AB 及对角线AC 的长。
15、如图:AE ∥BF ,AC 平分∠BAD ,且交BF 于点C ,BD 平分∠ABC ,且交AE 于点D ,连接CD ,求证:四边形ABCD 是菱形。
16、如图,E 、F 、M 、N 分别是正方形ABCD 四条边上的点,且AE=BF=CM=DN ,求证,四边形EFMN 是正方形 。
E FABCDOF1.(2008烟台)红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2.cm2.(2008宁德)如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF=4厘米,则边AD 的长是___________厘米.3.已知,如图,正方形ABCD 的边长为4,M 在DC 上,且DM = 1,N 是AC 上一动点,则DN+MN 的最小值为____________.4.如图,已知四边形ABCD 中,AC=BD ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是菱形.5. E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G.求证:FGAE .6﹑已知:如图ABCD 中,平行于对角线AC 的直线MN 分别交DA ﹑ DC 的延长线于点M ﹑N,交BA ﹑BC 于点PQ,求证:MQ=NP.五、课后作业B F CDE G第3题图 AD C BEG F(第5题)ABNQCP M7、(2007常州)如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等. (1)设菱形相邻两个内角的度数分别为m 和n ,将菱形的“接近度”定义为m n -,于是,m n -越小,菱形越接近于正方形.①若菱形的一个内角为70,则该菱形的“接近度”等于 ;(2)设矩形相邻两条边长分别是a 和b (a b ≤),将矩形的“接近度”定义为a b -,于是a b -越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.anm。