述微处理器中的各种程序和数据存储系统以及不同存储器类型的比较
- 格式:docx
- 大小:37.41 KB
- 文档页数:4
单片机的基本组成单片机是一种集成电路,具有微处理器、存储器、输入输出接口以及时钟电路等基本组成部分。
它被广泛应用于各种电子设备中,如手机、电视、汽车等。
本文将从以下几个方面介绍单片机的基本组成。
一、微处理器微处理器是单片机的核心部件,它负责处理各种指令和数据。
微处理器通常由控制单元和算术逻辑单元组成。
控制单元负责从存储器中获取指令,并根据指令控制执行的操作。
算术逻辑单元则负责执行各种运算和逻辑操作。
微处理器的性能通常由其主频、指令集和位数决定。
二、存储器存储器用于存储程序和数据。
单片机的存储器分为程序存储器和数据存储器两种。
程序存储器用于存储程序代码,常见的有闪存和EEPROM。
数据存储器则用于存储数据,包括RAM和寄存器。
RAM 是一种易失性存储器,用于临时存储数据。
而寄存器则是一种特殊的存储器,用于存储微处理器的状态和临时数据。
三、输入输出接口输入输出接口用于与外部设备进行数据交互。
单片机的输入输出接口可以连接各种传感器、执行器和其他外部设备。
常见的输入接口有模拟输入和数字输入,常见的输出接口有数字输出和模拟输出。
输入输出接口通常由引脚和相关电路组成,可以通过编程控制引脚的状态和电平,实现与外部设备的通信。
四、时钟电路时钟电路用于提供单片机的时钟信号,控制单片机的运行速度。
时钟信号可以是外部时钟源输入,也可以是内部时钟源产生。
时钟信号的频率决定了单片机的工作速度,常见的频率有8MHz、16MHz 等。
时钟电路还可以包括定时器和计数器,用于实现定时、计数等功能。
五、其他辅助电路除了上述基本组成部分,单片机还可能包括其他辅助电路,如复位电路、电源管理电路等。
复位电路用于在上电或复位时将单片机恢复到初始状态,以确保可靠的启动。
电源管理电路用于管理单片机的电源供给,包括电源开关、电源监测和电源管理等功能。
单片机的基本组成包括微处理器、存储器、输入输出接口、时钟电路以及其他辅助电路。
这些组成部分协同工作,实现了单片机的各种功能和应用。
数控系统的组成
1 数控系统的组成
数控系统是由多种元件组成的控制系统,其中最主要的元件包括微处理器、数据输入设备、数据输出装置、存储器和算法程序等。
1.1 微处理器
微处理器是数控系统的核心部件,它主要用来处理计算、控制和调整系统中的信息和数据。
它被设计用来分析系统中输入信号形成的数据,根据程序发出控制信号,实现各种机械设备的控制。
1.2 数据输入设备
数据输入设备由不同的传感器组成,它们能够收集机器的实时状态,输入到处理器中,用于数据分析和控制操作。
1.3 数据输出装置
数据输出装置是将处理器处理后的数据重新输出到机器环境中,进行显示和控制,保证机器的正常运行。
1.4 存储器
存储器主要负责存储系统中的各种程序指令和数据,将微处理器分析的数据和程序码存储起来,以便后续使用。
1.5 算法程序
算法程序是数控系统的关键要素,它由计算机控制所需的数学公式和语句所组成,其目的是实现机器系统控制所需的标准和特性。
总之,数控系统由上述五个元件组成,它们起到协调系统不同部件之间的功能,实现数控系统的基本功能。
课后题答案:第一章1.写出下列英文缩写的英文原文及中文含义。
RAM随机存储器 DRAM动态随机存储器 ROM只读存储器PROM可编程只读存储器 EPROM可插除可编程只读存储器 CANCAN总线RTOS实时操作系统 SOPC片上可编程系统 ICE硬件调试器 FI快速终端请求EEPROM电可插除可编程只读存储器 API应用程序接 DMA直接内存存取RISC精简指令集计算机 SPI串行万维指令 MMU存储管理单元UART异步接受发送装置 ARM先进RISC存储器 SWI软件终端指令2、什么是嵌入式系统? P3嵌入式系统是用于检测、控制、辅助、操作机械设备的装置。
以应用为中心,一计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积和功耗等严格要求的专用计算机系统。
3、是比较嵌入式系统与通用PC的区别。
P3(1)嵌入式系统是专用的计算机系统,而PC是通用的计算机系统。
(2)技术要求不同,通用PC追求高速、海量的数据运算;嵌入式要求对象体系的智能化控制。
(3)发展方向不同,PC追求总线速度的不断提升,存储容量不断扩大;嵌入式追求特定对象系统的智能性,嵌入式,专用性。
4、嵌入式体统有哪些部分组成?简单说明各部分的功能与作用(1)硬件层是整个核心控制模块(由嵌入式微处理器、存储系统、通信模块、人机接口、其他I/O 接口以及电源组成),嵌入式系统的硬件层以嵌入式微处理器为核心,在嵌入式微处理器基础上增加电源电路、时钟电路、和存储器电路(RAM和ROM等),这就构成了一个嵌入式核心控制模块,操作系统和应用程序都可以固化在ROM中。
(2)中间层把系统软件与底层硬件部分隔离,使得系统的底层设备驱动程序与硬件无关。
一般包括硬件抽象层(Hardware Abstract Layer,HAL)和板级支持包(Board Support Package,BSP)。
(3)软件层由实时操作系统(Real Time Operating System,RTOS)、文件系统、图形用户接口(Graphical User Interfaces,GUI)、网络组件组成。
微型计算机及接口技术考核学问点依据高等教育自学考试教材《微型计算机及接口技术》杨全胜2022 版和微型计算机及接口技术〔课程代码04732〕考试大纲编写。
1.考核学问点1.1.微型计算系统概述1.1.1.微型计算机系统的组成局部微型计算机系统主要由硬件系统和软件系统组成。
其中,硬件系统包括主机和外设,软件系统包含系统软件和应用软件。
硬件系统在冯·诺依曼体系构造由运算器、掌握器、存储器、输入设备、输出设备5局部组成。
系统软件包括BIOS、操作系统和支撑软件。
1.1.2.总线在微型计算机中的作用微型计算机中各部件之间及微型计算机与设备之间通过总线相连,它是微型计算机系统中各部件或设备之间传送信息的公共导线,一般由地址总线、数据总线和掌握总线 3 组组成。
地址总线:一般是单向总线,传送CPU 发出的地址信息。
数据总线:是双向总线,既可以从 CPU 传送数据信息到外设和主存,也可以从主存和外设向 CPU 传送数据。
掌握总线:每根的方向是肯定的,它们分别传送掌握信息、时序信息和状态信息,这些信息掌握数据总线、地址总线的使用。
1.1.3.微型计算机系统主要性能指标通常承受下面一些常见的性能指标来衡量一台微型计算机的好坏。
字长:是指微型计算机系统中CPU 一次能处理的二进制数。
主频:CPU 工作时的节拍由计算机主时钟掌握。
主频就是主时钟不断产生的时钟脉冲的固定频率。
速度:每秒所能执行的指令条数。
主存容量和存取时间:主存容量是指微型计算机中内部存储器能存放数据的最大字节数。
32 根地址总线,最大主存容量是2 的32 次方=4GB。
微型计算机内主存完成一次读写所需要的时间称为存取时间。
兼容性:通常是指同一个软件不加修改就可在两台机器上运行。
1.1.4.程序如何转换成最终的电子信号一个高级语言描述的程序,需要经过编译、连接、执行,才能最终变成一个个电子的数据信号、地址信号或掌握信号,完成所需的工作。
无论是高级语言的程序还是汇编程序,最终都要转换成机器能识别的机器指令,这些机器指令再在CPU 的工作下转换成各类电子信号。
单片机原理及其接口技术单片机(Microcontroller)是一种集成了微处理器、存储器和输入输出功能的微型计算机系统,广泛应用于各种电子设备中。
它具有体积小、功耗低、成本低、易于编程等特点,因此在嵌入式系统中得到了广泛的应用。
本文将介绍单片机的基本原理及其接口技术。
首先,单片机的基本原理是指其内部的微处理器、存储器和输入输出功能。
微处理器是单片机的核心部件,负责执行各种指令和数据处理。
存储器用于存储程序和数据,包括只读存储器(ROM)和随机存储器(RAM)。
输入输出功能则包括各种接口和端口,用于与外部设备进行通信和控制。
单片机的接口技术是指单片机与外部设备进行通信和控制的方法和技术。
常见的接口技术包括并行接口、串行接口、模拟接口和数字接口等。
其中,并行接口可以同时传输多位数据,适用于高速数据传输;串行接口则逐位传输数据,适用于远距离通信和数据存储;模拟接口用于连接模拟传感器和执行模拟控制,而数字接口则用于连接数字设备和执行数字控制。
在实际应用中,单片机的接口技术通常需要根据具体的应用需求进行选择和设计。
例如,对于需要高速数据传输的应用,可以选择并行接口或者高速串行接口;对于需要远距离通信的应用,可以选择低速串行接口或者无线通信接口;对于需要连接模拟传感器和执行模拟控制的应用,可以选择模拟接口;对于需要连接数字设备和执行数字控制的应用,可以选择数字接口。
总之,单片机是一种集成了微处理器、存储器和输入输出功能的微型计算机系统,具有体积小、功耗低、成本低、易于编程等特点,广泛应用于各种电子设备中。
其接口技术包括并行接口、串行接口、模拟接口和数字接口等,需要根据具体的应用需求进行选择和设计。
希望本文能够对单片机的原理及其接口技术有所帮助。
习题一1.什么是程序存储工作方式?答:计算机的工作方式——存储程序工作方式。
即事先编写程序,再由计算机把这些信息存储起来,然后连续地、快速地执行程序,从而完成各种运算过程。
2.采用数字化方法表示信息有哪些优点?用数字化方法表示信息的优点:(1)抗干扰能力强, 可靠性高。
(2)依靠多位数字的组合,在表示数值时可获得很宽的表示范围以及很高的精度。
(3)数字化的信息可以存储、信息传送也比较容易实现。
(4)可表示的信息类型与范围及其广泛,几乎没有限制。
(5)能用逻辑代数等数字逻辑技术进行信息处理,这就形成了计算机硬件设计的基础。
3.如果有7×9点阵显示出字符A的图像,请用9个七位二进制代码表示A的点阵信息。
4.数字计算机的主要特点是什么?1.(1)能在程序控制下自动连续地工作;(2|)运算速度快;(3)运算精度高;(4)具有很强的信息存储能力;(5)通用性强,应用领域及其广泛。
5.衡量计算机性能的基本指标有哪些?答:衡量计算机性能的基本指标:(1)基本字长——参加一次运算的数的位数;(2)数据通路宽度——数据总线一次能并行传送的位数;(3)运算速度——可用①CPU的时钟频率与主频,②每秒平均执行指令数,③典型四则运算的时间来表示。
(4)主存储器容量——可用字节数或单元数(字数)×位数来表示。
(5)外存容量——常用字节数表示。
(6)配备的外围设备及其性能。
(7)系统软件配置。
7.系统软件一般包括哪些部分?列举你所熟悉的三种系统软件。
系统软件一般包括操作系统,编译程序、解释程序、各种软件平台等。
例如WINDOWS98操作系统,C语言编译程序等,数据库管理系统。
8.对源程序的处理有哪两种基本方式?对源程序的处理通常有两种处理方式:解释方式和编译方式。
习题二1.将二进制数(101010.01)2转换为十进制数及BCD码。
解:(101010.01)2 = (42.25)10 = (01000010.00100101)BCD2.将八近制数(37.2)8转换为十进制数及BCD码.解:(37.2)8 = (31.25)10 =(011001.010101)BCD3.将十六进制熟(AC.E)转换为十进制数及BCD码.解: (AC.E)16 =(174.875)10 = (000101110100.100001110101)BCD4.将十进制数(75.34)10转换为8位二进制数及八进制数、十六进制数。
微型计算机系统原理及应用一、微型计算机系统概述微型计算机系统又称为个人计算机系统(PC),是指以微处理器为中心,配合各种存储器、输入输出设备、系统软件等构成的计算机系统。
微型计算机系统具有体积小巧、价格低廉、方便携带、易于操作、功能强大、可编程性好等优点,因此受到广大人们的欢迎,成为现代生活不可或缺的一部分。
微型计算机系统的应用范围十分广泛,在工业、农业、文化、教育、军事、医疗等各个领域都有应用。
下面将详细说明微型计算机系统的原理及应用。
二、微型计算机系统组成微型计算机系统由中央处理器(CPU)、存储器、输入输出设备、总线及系统软件等几个部分组成。
1.中央处理器(CPU)中央处理器是微型计算机系统的核心部分,负责处理系统中的各种数据及控制信号。
CPU包含控制器、算术逻辑单元、寄存器及时钟等部分。
控制器负责程序的控制和执行,算术逻辑单元负责运算和逻辑处理,寄存器负责数据的存储和传输,时钟负责计算机系统中各个部分的同步操作。
2.存储器存储器主要分为随机存储器(RAM)和只读存储器(ROM)两种。
随机存储器用于存储临时数据,只读存储器用于存储程序和数据。
3.输入输出设备输入输出设备主要有键盘、鼠标、显示器、打印机等。
键盘、鼠标用于输入数据,显示器用于输出数据,打印机用于将数据输出到纸张上。
4.总线总线是微型计算机系统中各个部分之间进行数据传输的途径。
总线包括地址总线、数据总线和控制总线三种。
5.系统软件系统软件是微型计算机系统中运行的各种软件程序,包括操作系统、应用软件等。
三、微型计算机系统应用微型计算机系统在工业、农业、文化、教育、军事、医疗等各个领域都有应用。
1.工业应用微型计算机系统在工业中的应用主要体现在生产自动化和控制系统中。
生产自动化和控制系统是利用现代技术对生产过程进行管理和控制的一种手段,可以提高生产效率,降低生产成本。
微型计算机系统在控制系统中可以实现对生产自动化的控制和管理,提高生产效率。
简述微处理器的基本功能微处理器是一种集成电路芯片,是计算机系统中的核心部件。
它具有多种基本功能,包括数据处理、控制指令、存储器管理、输入输出等。
本文将从这些方面进行详细阐述。
微处理器的基本功能之一是数据处理。
它能够执行各种算术和逻辑运算,如加减乘除、比较、移位等。
微处理器内部包含算术逻辑单元(ALU),可以对数据进行各种运算。
通过执行不同的指令,微处理器可以完成不同的数据处理任务,实现复杂的计算功能。
微处理器还具备控制指令的功能。
控制指令是指微处理器执行不同操作的命令,例如跳转、循环、分支等。
通过控制指令,微处理器可以根据不同的条件选择不同的执行路径,实现程序的流程控制。
控制指令的执行是由微处理器内部的控制单元完成的,它能够按照指令的要求将数据从内存中读取出来并进行处理。
微处理器还具有存储器管理的功能。
存储器是计算机系统中用于存储数据和程序的设备,它包括主存储器和辅助存储器。
微处理器通过存储器管理功能,能够将数据和程序从存储器中读取出来,并将处理结果写回存储器。
此外,微处理器还能够进行存储器的地址映射和管理,确保数据和程序能够正确地被访问和处理。
除了以上功能,微处理器还具备输入输出的能力。
输入输出是计算机系统与外部设备之间进行数据交换的过程。
微处理器通过输入输出功能,能够从外部设备中读取数据,并将数据输出到外部设备中。
输入输出功能使得计算机系统能够与外部世界进行交互,实现各种应用需求。
微处理器的基本功能是通过指令集来实现的。
指令集是微处理器能够理解和执行的指令的集合。
不同的微处理器有不同的指令集,这决定了它们能够执行的操作和功能。
指令集包括数据处理指令、控制指令、存储器管理指令和输入输出指令等,通过这些指令,微处理器能够完成各种不同的任务。
微处理器作为计算机系统的核心部件,具有多种基本功能。
它能够进行数据处理、控制指令、存储器管理和输入输出等操作,通过指令集来实现这些功能。
微处理器的功能和性能直接影响着计算机系统的性能和应用能力,因此对微处理器的研发和优化具有重要意义。
简述微型计算机系统的组成
微型计算机系统是一种用于完成特定任务的小型计算机系统。
它由处理器、存储器、输入输出设备及其他电子电路元件组成,能够按照预先编程程序完成特定任务。
由于它的小巧紧凑,普及率较高,微型计算机系统在企业、政府机构、学校和家庭中很常见。
微型计算机系统组成:
(1)中央处理器(CPU):
CPU是微型计算机系统的核心,用于处理系统中的所有计算任务。
它能够接收程序指令,根据这些指令处理数据,从而完成任务。
(2)存储器:
存储器是微型计算机系统的记忆单元,用于存储程序指令和数据。
其中,主存储器(主存)是CPU的直接工作单元,而从属存储器(从存)则为CPU提供额外的数据存储空间。
(3)输入输出设备:
输入输出设备是微型计算机系统中与外界进行信息交互的重要
元件。
它们接收外部输入信号,并将计算机处理后的结果输出到外界。
常见的输入输出设备有键盘、鼠标等。
(4)控制器:
控制器是微型计算机系统中的主要控制元件,用于协调各种设备之间的工作。
它能够根据程序指令把正确的信号和数据发送给各种部件,从而协调其它元件对数据进行处理。
(5)其他电子电路元件:
微型计算机系统中还包括其他一些电子电路元件,如定时器、比较器、变换器等,它们用于协调处理器、存储器、输入输出部件之间的工作。
以上就是微型计算机系统的主要组成。
微型计算机系统的程序和数据通过专用软件编写,经过编译和链接后,可以存储到存储器中,然后CPU可以调用它完成特定的任务。
微型计算机系统的组成结构非常清晰,易于检修和维修,这也是它流行的一个重要原因。
简述微型计算机硬件结构并说明各部件的主要功能
微型计算机硬件一般由微处理器、内存储器、外存储器、系统总线、接口电路、输入输出设备等部件组成。
其中,微处理器是微型计算机的核心部件,负责统一协调、管理和控制系统中的各个部件有机地工作。
内存储器用来存放计算机工作过程中需要的操作数据和程序,可分为随机存储器 RAM 和只读存储器 ROM。
随机存储器 RAM 存放当前参与运行的各种程序和数据,特点是信息可读可写,存取方便,但信息断电后会丢失;ROM 用于存放各种固定的程序和数据,特点是信息固定不变,关机后原存储的信息不会丢失。
系统总线是 CPU 与其它部件之间传送数据、地址和控制信息的公共通道。
接口电路完成微型计算机与外部设备之间的信息交换。
主机板由 CPU 插座、芯片组、内存插槽、系统 BIOS、CMOS、总线扩展槽、串行/并行接口、各种跳线和一些辅助电路等硬件组成。
外存储器使用最多的是磁盘存储器 (软盘、硬盘和光盘存储器)。
输入输出设备是微型计算机系统与外部进行通信联系的主要装置,常用的有键盘、鼠标、显示器、打印机和扫描仪等。
软件部分包括操作系统以及应用系统软件及驱动程序。
操作系统是微机的系统软件,提供人机输入及操作界面,负责管理硬件资源,并为应用软件提供支持和服务。
应用系统软件是为实现特定功能而设计的软件,包括文字处理软件、电子表格软件、数据库管理软件、图像处理软件、网络应用软件等。
驱动程序是操作系统中软件组件之一,用于实现硬件设备与操作系统的接口,负责硬件设备的操作和管理。
单片机原理与应用一、引言单片机作为一种高度集成的微型计算机系统,具有体积小、成本低、功能强、可靠性高等优点,广泛应用于工业自动化、智能仪器、消费电子、家用电器等领域。
本文将详细介绍单片机的原理及其在各行各业中的应用。
二、单片机原理1.单片机概述单片机(MicrocontrollerUnit,MCU)是一种将微处理器、存储器、定时器/计数器、输入/输出接口等集成在一块芯片上的微型计算机系统。
它具有处理能力强、体积小、功耗低、成本低等特点,便于应用于各种嵌入式系统。
2.单片机结构单片机主要由中央处理器(CPU)、存储器(包括程序存储器和数据存储器)、输入/输出接口(I/O口)、定时器/计数器、中断系统等组成。
其中,CPU负责执行程序和数据处理,存储器用于存储程序和数据,I/O口负责与外部设备通信,定时器/计数器用于实现定时和计数功能,中断系统用于处理各种中断请求。
3.单片机工作原理单片机的工作原理可以分为取指令、译码、执行、存储等阶段。
在取指令阶段,CPU从程序存储器中读取指令;在译码阶段,CPU对指令进行解码,确定操作类型和操作数;在执行阶段,CPU根据指令执行相应的操作;在存储阶段,CPU将执行结果存储到数据存储器中。
三、单片机应用1.工业控制单片机在工业控制领域具有广泛的应用,如PLC(可编程逻辑控制器)、温度控制器、电机控制器等。
通过编程,单片机可以实现复杂的逻辑控制和运算功能,提高生产效率和产品质量。
2.智能仪器单片机在智能仪器领域中的应用包括数字电压表、数字频率计、示波器等。
利用单片机的处理能力和I/O口功能,可以实现对各种信号的采集、处理、显示和控制。
3.消费电子单片机在消费电子领域中的应用包括方式、电视、洗衣机、空调等。
通过编程,单片机可以实现各种功能,如用户界面控制、信号处理、通信等。
4.家用电器单片机在家用电器领域中的应用包括微波炉、电饭煲、豆浆机等。
利用单片机的控制功能,可以实现温度控制、定时控制、故障检测等功能。
单片机与微处理器的区别与联系近年来,随着电子技术的不断发展,单片机和微处理器已逐渐成为人们生活中不可或缺的一部分。
虽然它们在一些方面非常相似,但它们各有特色。
本文将深入探讨它们的区别与联系,帮助读者更好地了解这两种电子元器件。
1.定义单片机是具有存储器、计时器、通信端口和控制单元等基本模块的集成电路系统,其通常用于嵌入式系统中。
而微处理器是一个单独的芯片,主要用于控制台式计算机和笔记本电脑中。
2.结构单片机与微处理器的结构也不同。
单片机通常具有一些特殊的外设接口,使其可以与其他外设进行通信。
此外,单片机还具有一个存储器单元,用于存储程序和数据。
而微处理器则通常有一个中央处理器单元,用于执行计算机程序。
3.应用单片机和微处理器的应用也有所不同。
单片机通常用于嵌入式系统中,例如智能家居、智能电表和手机等。
而微处理器则主要应用于控制台式计算机和笔记本电脑的中央处理器中,使得这些设备可以运行各种软件程序。
4.内存另一个区别是单片机和微处理器的内存。
对于单片机,其内存通常由RAM(随机存储器)和ROM(只读存储器)组成。
而微处理器则通常具有更大的内存,包括缓存内存、随机存储器和只读存储器。
5.指令集单片机和微处理器的指令集也有所不同。
虽然它们都使用汇编语言进行编程,但单片机的指令集非常有限,而微处理器的指令集则非常丰富,可以执行更多的指令。
6.功耗最后一个区别是功耗。
由于单片机通常用于低功耗的嵌入式系统中,所以其功耗通常比微处理器低,因为微处理器通常需要更多的功率来运行各种软件程序。
虽然单片机和微处理器在某些方面存在着差异,但它们也是相互联系的。
事实上,单片机与微处理器都是基于相同的计算机体系结构设计的。
这导致它们在某些方面具有相似性,例如它们都使用二进制数进行计算和存储数据。
总之,本文深入探讨了单片机和微处理器的区别和联系。
虽然它们的应用和用途有所不同,但它们之间也存在很多相似之处。
我们希望本文可以帮助读者更好地了解这两种电子元器件,并且在实际应用中做出更为明智的选择。
DSP 、单片机以及嵌入式微处理器都是嵌入式家族的一员。
最大区别是DSP能够高速、实时地进行数字信号处理运算。
数字信号处理运算的特点是乘/加及反复相乘求和(乘积累加)。
为了能快速地进行数字信号处理的运算,(1)DSP设置了硬件乘法/累加器,(2)能在单个指令周期内完成乘/加运算。
(3)为满足FFT、卷积等数字信号处理的特殊要求,目前DSP大多在指令系统中设置了“循环寻址”及“位倒序”寻址指令和其他特殊指令,使得寻址、排序的速度大大提高。
DSP完成1024复点FFT的运算,所需时间仅为微秒量级。
高速数据的传输能力是DSP高速实时处理的关键之一。
新型的DSP设置了单独的DMA总线及其控制器,在不影响或基本不影响DSP处理速度的情况下,作并行的数据传送,传送速率可达每秒百兆字节。
DSP内部有流水线,它在指令并行、功能单元并行、多总线、时钟频率提高等方面不断创新和改进。
因此,DSP与单片机、嵌入式微处理器相比,在内部功能单元并行、多DSP核并行、速度快、功耗小、完成各种DSP算法方面尤为突出。
单片机也称微控制器或嵌入式控制器,它是为中、低成本控制领域而设计和开发的。
单片机的位控能力强,I/O接口种类繁多,片内外设和控制功能丰富、价格低、使用方便,但与DSP相比,处理速度较慢。
DSP具有的高速并行结构及指令、多总线,单片机却没有。
DSP处理的算法的复杂度和大的数据处理流量更是单片机不可企及的。
嵌入式微处理器的基础是通用计算机中的CPU(微处理器)。
是嵌入式系统的核心。
为满足嵌入式应用的特殊要求,嵌入式微处理器虽然在功能上和标准微处理器基本是一样的,但在工作温度、抗电磁干扰、可靠性等方面一般都做了各种增强。
与工业控制计算机相比,嵌入式微处理器具有体积小、质量轻、成本低、可靠性高的优点,但是在电路板上必须包括ROM、RAM、总线接口、各种外设等器件,从而降低了系统的可靠性,技术保密性也较差。
在应用设计中,嵌入式微处理器及其存储器、总线、外设等安装在专门设计的一块电路板上,只保留和嵌入式应用有关的母板功能,可大幅度减小系统的体积和功耗。
微机原理知识点微机原理是计算机科学中的一个重要领域,涉及到计算机硬件和软件的基本原理和工作方式。
在本文中,我们将逐步介绍微机原理的一些关键知识点。
一、计算机结构计算机结构是微机原理的基础,它包括了计算机的主要组成部分和其工作原理。
计算机结构包括中央处理器(CPU)、内存、输入输出设备和总线等。
其中,CPU是计算机的大脑,负责执行指令和控制计算机的操作。
内存用于存储数据和指令,而输入输出设备则用于与外部世界进行数据交互。
总线则是这些组件之间进行数据传输的通道。
二、二进制和逻辑门在微机原理中,二进制是一种基础的数据表示方式。
二进制由0和1组成,可以表示计算机中的各种数据和指令。
逻辑门是构成计算机的基本电子元件,它们根据输入信号的逻辑关系,产生相应的输出信号。
常见的逻辑门包括与门、或门和非门等。
通过逻辑门的组合,可以实现各种复杂的逻辑运算。
三、指令和程序指令是计算机中的基本操作命令,它们告诉计算机如何执行特定的任务。
指令可以执行算术运算、逻辑运算、数据传输等操作。
而程序则是由一系列指令组成的,用于实现特定的功能。
程序可以通过编程语言编写,并由编译器或解释器转换为机器语言,供计算机执行。
四、存储器和寻址存储器是计算机中用于存储数据和指令的设备。
在微机原理中,存储器分为主存储器和辅助存储器两种。
主存储器通常是内存条,用于存储当前运行的程序和数据。
辅助存储器包括硬盘、光盘等,用于长期存储数据和程序。
存储器的访问是通过地址进行的,每个存储单元都有一个唯一的地址。
计算机可以通过寻址来访问特定的存储单元。
五、中断和异常处理中断是计算机中常见的一种事件,它可以打断当前的程序执行,并转而执行其他任务。
中断可以来自外部设备,如键盘输入、鼠标点击等,也可以来自内部的异常情况,如算术溢出、除零错误等。
计算机需要正确处理中断,并保证程序的正确执行。
六、输入输出和外部设备输入输出是计算机与外部世界进行数据交互的方式。
计算机通过输入设备接收外部数据,如键盘、鼠标、摄像头等。
1.如何区别存储器和寄存器?两者是一回事的说法对吗?解:存储器和寄存器不是一回事。
存储器在CPU 的外边,专门用来存放程序和数据,访问存储器的速度较慢。
寄存器属于CPU 的一部分,访问寄存器的速度很快。
2.存储器的主要功能是什么?为什么要把存储系统分成若干个不同层次?主要有哪些层次?解:存储器的主要功能是用来保存程序和数据。
存储系统是由几个容量、速度和价存储系统和结构各不相同的存储器用硬件、软件、硬件与软件相结合的方法连接起来的系统。
把存储系统分成若干个不同层次的目的是为了解决存储容量、存取速度和价格之间的矛盾。
由高速缓冲存储器、主存储器、辅助存储器构成的三级存储系统可以分为两个层次,其中高速缓存和主存间称为Cache -主存存储层次(Cache 存储系统);主存和辅存间称为主存—辅存存储层次(虚拟存储系统)。
3.什么是半导体存储器?它有什么特点?解:采用半导体器件制造的存储器,主要有MOS 型存储器和双极型存储器两大类。
半导体存储器具有容量大、速度快、体积小、可靠性高等特点。
半导体随机存储器存储的信息会因为断电而丢失。
4.SRAM 记忆单元电路的工作原理是什么?它和DRAM 记忆单元电路相比有何异同点?解:SRAM 记忆单元由6个MOS 管组成,利用双稳态触发器来存储信息,可以对其进行读或写,只要电源不断电,信息将可保留。
DRAM 记忆单元可以由4个和单个MOS管组成,利用栅极电容存储信息,需要定时刷新。
5.动态RAM 为什么要刷新?一般有几种刷新方式?各有什么优缺点?解:DRAM 记忆单元是通过栅极电容上存储的电荷来暂存信息的,由于电容上的电荷会随着时间的推移被逐渐泄放掉,因此每隔一定的时间必须向栅极电容补充一次电荷,这个过程就叫做刷新。
常见的刷新方式有集中式、分散式和异步式3种。
集中方式的特点是读写操作时不受刷新工作的影响,系统的存取速度比较高;但有死区,而且存储容量越大,死区就越长。
分散方式的特点是没有死区;但它加长了系统的存取周期,降低了整机的速度,且刷新过于频繁,没有充分利用所允许的最大刷新间隔。
述微处理器中的各种程序和数据存储系统以及不同存储
器类型的比较
微处理器中的各种程序和数据存储系统以及不同存储器类型的比较
微处理器是计算机的重要组成部分,它主要负责计算机的数据和指令
处理。
为了实现高效的处理,微处理器不仅需要具备强大的运算能力
和良好的电子传输,还需要可靠的数据存储系统。
这里我们来探讨一
下微处理器中的各种程序和数据存储系统以及不同存储器类型的比较。
I. 程序和数据存储系统
在微处理器中,程序和数据存储系统主要有以下几种:
1. 内存(RAM)
内存是微处理器中最重要的存储器之一,它能快速地读取和写入数据,存储器中的数据可随时修改。
内存通常是计算机中的主存,所有程序
和数据都需要经过内存进行传输和处理。
内存可以分为DRAM和SRAM两种类型。
它们的不同在于DRAM需要定期刷新,而SRAM
则不需要。
2. 只读存储器(ROM)
只读存储器是一种不可修改的存储器,其中的数据和程序通常预先存储好,用于启动系统和其他必要的操作。
只读存储器包括ROM、EPROM和EEPROM等几种类型,其中ROM是最常见的,它一般用于存储操作系统和 BIOS 等数据。
3. 快闪存储器(Flash Memory)
快闪存储器是一种非易失性存储器,拥有快速存取速度、高存储密度和长期的数据保存能力。
它通常用于存储操作系统、固件和嵌入式系统等数据。
4. 磁盘存储器
磁盘存储器是一种使用磁性记录技术,能够存储非常大量的数据的外部存储器。
常见的磁盘存储器包括硬盘和软盘。
磁盘存储器虽然存储能力很大,但存取速度相对较慢,且易受损坏和数据丢失等问题,目前正在逐步被固态存储器所取代。
II. 不同存储器类型的比较
不同存储器类型拥有各自的特点和优劣,在实际应用中需要根据需求
进行选择和搭配使用。
1. 存储容量
内存的存储容量通常比其他存储器小得多,但它可以随意读写,而且处理速度快,能够满足计算机的实时处理需求。
读写型存储器相对容量较大,但通常不能随意修改,适合存储程序、操作系统和数据等常用的固定数据。
2. 读取速度
内存和SRAM的读取速度非常快,能够提供高速的数据访问和处理,ROM和Flash Memory的读取速度相对较慢。
而磁盘存储器最慢,需要较长的读取时间。
3. 是否易失性
内存和SRAM是易失性存储器,所存储的数据会在断电时丢失,需要提供电源维持其存储状态。
快闪存储器和磁盘存储器都是非易失性存储器,所存储的数据可以长时间保存,即使断电也不会丢失。
4. 抗干扰性
只读存储器、ROM和Flash Memory等存储器通常能够承受一定程度的干扰和磁场影响,而内存和SRAM比较容易受到电子噪声、电磁干扰等干扰影响,需要特别注意抗干扰和防静电保护措施。
总体来说,在微处理器中,不同的存储器类型各具特点,需要根据实际需求综合考虑各方面的因素进行选择和搭配使用,以实现更加优秀的数据存储和运算处理能力。