同步发电机自动并列装置课程设计
- 格式:doc
- 大小:11.06 KB
- 文档页数:2
1第一章 发电机的自动并列第一节 概 述一、并列操作的意义电力系统运行中,任一母线电压瞬时值可表示为)sin(ϕω+=t U um 式中 ——电压幅值U m ——电压的角速度ω ——初相角ϕ 同步发电机组并列时遵循如下的原则:(1)并列断路器合闸时,冲击电流应尽的小,其瞬时最大值一般不超过1~2倍的额定电流。
(2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。
方法两种: 准同期并列(一般采用)、自同期并列。
二、准同期并列待并发电机组加励磁电流,其端电压G ,调节G 的状态参数使之符合并∙U ∙U 列条件。
图1-1准同期并列(a)电路示意;(b)相量图;(c)等值电路x∙)(a xU ∙DL×E ∙xE ∙x)(c21.设发电机电压G 的角速度为,电网电压x 的角速度为,它们∙U ωG ∙U ωx 间的相量差G —x 为s 。
∙U ∙U ∙U 2.要求DL 合闸瞬间的s 应尽可能的小,其最大值应使冲击电流不超过∙U 允许值。
最理想的情况是s 的值为零。
∙U 3.并且希望并列后能顺利进入同步运行状态,对电网无任何扰动。
4.理想条件为G ,x 的三个状态量全部相等。
∙U ∙U ()⎪⎭⎪⎬⎫=====,即相角差为零)(即电压幅值相等)(频率相等03,22,2,,)1(e X G X X G G X G U U f f f f δπωπω这时并列合闸的冲击电流等于零,并且并列后发电机G 与电网立即进入同步运行,不发生任何扰动现象。
5.三个条件很难同时满足。
(一)电压幅值差并列时:①频率=;f G f x ②相角差等于零;δe ③电压幅值不等:则冲击电流最大值为:()''ds''dx G ''maxh X U .X U U .i 552281=-=⋅式中 、——发电机电压、电网电压有效值;U G U x ——发电机直轴次暂态电抗X d "图1-2 准同期条件分析 (a)=0;(b) ≠0δe δe xU)(b ∙s∙G∙3从图1-2(a )可见,因为与夹角为90º,所以由电压幅值差max ⋅''h i GU 产生的冲击电流主要为无功冲击电流。
第一章同步发电机的自动并列1.1 同步发电机并列的现状和意义随着电力系统规模的不断扩大和电力负荷的快速增长,对电力系统高效可靠运行的要求也越来越高。
为了满足电力系统运行的需要,发电厂之间的电力互济和区域之间的电力调度越来越频繁。
而同步发电机并列技术的应用,为电力系统的互联互通打下了良好的基础。
同步发电机并列也被称为发电机组并联,意为把多台同步发电机连接到输电网上,通过协调发电机组输出电压、频率和相位来实现电力系统运行的稳定性和可靠性。
同时,同步发电机并列也具有经济效益。
通过并列多台同步发电机,可以将产生的电能平均分配到各个发电机上,从而降低单台发电机的负荷和损耗。
发电厂也可以利用并列技术来优化发电组合,最大限度地发挥各台发电机的功率,降低整个电力系统的运行成本。
1.2 自动并列技术的概述对于多个同步发电机并联的系统,如何实现发电机组的自动并列是一个重要的问题。
自动并列技术是一种通过自动控制来协调多个同步发电机组之间输出电压、频率和相位的方法,以实现电力系统运行的稳定性和可靠性。
传统的手动方法需要人工对发电机组的参数进行监控和调整,存在调整不及时、误差较大、人工劳动强度大等问题。
自动并列技术的应用,可以通过计算机实时监控电功率、电压、频率和相位等参数,对发电机组的控制进行自动化处理,从而提高电力系统运行的稳定性和可靠性。
自动并列技术主要包括电压控制、频率控制和相位控制三种方式。
电压控制通常采用电压调节器(AVR)来实现,可通过调整发电机的电势来控制发电机的输出电压。
频率控制通常采用频率变流器(FRT)实现,可通过调整发电机的转速来控制发电机的输出频率。
相位控制通常采用同步机充电器(SC)实现,可通过调整发电机的电势角来控制发电机的输出相位。
1.3 自动并列技术的实现方式自动并列技术的实现方式与发电机组的类型、控制系统和通信系统等因素有关。
目前主要有以下几种实现方式:1.3.1 基于PLC的自动并列控制系统基于可编程逻辑控制器(PLC)的自动并列控制系统,是一种针对小型发电机组的实现方式。
第四童同步发电机自动并列装置第一节概述—、同期(并列)的概念:1、概念:同步发电机(包括同步调相机或另一系统)投入系统并列运行的操作过程称为同期(或并列)检查同期ZCH属于一种同期操作;发电机同期实质指合发电机出口DL2、意义:同期操作具有频繁性——正常运行(负荷大小-机组台数)事故情况(备用机组的投入)(1)提高供电可靠性和供电质量(2)减少备用容量(3)合理分配负荷,达到经济运行3、同期(并列)条件:系统母线电压u = U n, sin(6wr +其中:―、u)(fX <p——状态量理想条件:Us二0fs 二06=0 (合闸瞬间)实际允许条件:U s<5~10%U efsS0.2~0.5%fe 二0.1~0.25HZ6<10°二、同期方式:准同期自同期1、准同期(先励磁,后并车):概念:将待并发电机先行励磁,调节发电机电压、频率、相位,使匕、f“6符合并列条件,将发电机DL合上,并入系统运行优点:icH小,对系统影响不大缺点:同期时间长;手动误操作会引起非同期并列分类:按操作自动化程度一手动自动半自动(手动调频、调压,自动合闸)应用:大容量发电机一应尽量采用自动或半自动准同期以手动准同期作为备用2、自同期(先并车,后励磁)概念:将接近同步转速(n二95%% )而未加励磁的发电机投入系统,然后再加励磁,发电机借助电磁力矩被拉入同步(对4、6无要求,对fs要求亦较宽)优点:并列快;操作简单,避免误操作;事故下可迅速投入机组缺点:Lh大-威胁发电机线圈绝缘;振动大T影响机组端部固定应用:事故情况下投入水轮机组三、自动并列意义P38第二节自动准同期—、自动准同期装置功能①均频②均压③合闸(保证DL在6二0并列)半自动准同期:①、②手动,③自动二、脉动电压性质分析脉动电压:两个频率不同的电压向量差可用来检测fs、Us、81、脉动电压旋转向量分析4=几-5假设:①S不动,几则以3s ( co s=u)M-u)N=2nf s)相对几转动② 1% 1 = 1 久I 二Um则U s=2U m sin-2W廿-6 H &J丄3 Ie zk H 2x >1>k H 2<Jw -OO H OUSHOOO U T CUSH2um6H2TTU S H O尸竟常耳為卑亠冊«-©C 3-M"um ・NHUm®u o母、e l u e 2H 0.. £HUMSinooMiSN HUNSincoNtnUm (sincoMt —sincoNt )rcos+0N(50HZ )HusmCos3+$f 2(湘SH彗)、ffi fif ()击冃鬪、台®書。
1第一章 发电机的自动并列第一节 概 述一、并列操作的意义电力系统运行中,任一母线电压瞬时值可表示为)sin(ϕω+=t U um 式中 ——电压幅值U m ——电压的角速度ω ——初相角ϕ 同步发电机组并列时遵循如下的原则:(1)并列断路器合闸时,冲击电流应尽的小,其瞬时最大值一般不超过1~2倍的额定电流。
(2)发电机组并入电网后,应能迅速进入同步运行状态,其暂态过程要短,以减少对电力系统的扰动。
方法两种: 准同期并列(一般采用)、自同期并列。
二、准同期并列待并发电机组加励磁电流,其端电压G ,调节G 的状态参数使之符合并∙U ∙U 列条件。
图1-1准同期并列(a)电路示意;(b)相量图;(c)等值电路x∙)(a xU ∙DL×E ∙xE ∙x)(c21.设发电机电压G 的角速度为,电网电压x 的角速度为,它们∙U ωG ∙U ωx 间的相量差G —x 为s 。
∙U ∙U ∙U 2.要求DL 合闸瞬间的s 应尽可能的小,其最大值应使冲击电流不超过∙U 允许值。
最理想的情况是s 的值为零。
∙U 3.并且希望并列后能顺利进入同步运行状态,对电网无任何扰动。
4.理想条件为G ,x 的三个状态量全部相等。
∙U ∙U ()⎪⎭⎪⎬⎫=====,即相角差为零)(即电压幅值相等)(频率相等03,22,2,,)1(e X G X X G G X G U U f f f f δπωπω这时并列合闸的冲击电流等于零,并且并列后发电机G 与电网立即进入同步运行,不发生任何扰动现象。
5.三个条件很难同时满足。
(一)电压幅值差并列时:①频率=;f G f x ②相角差等于零;δe ③电压幅值不等:则冲击电流最大值为:()''ds''dx G ''maxh X U .X U U .i 552281=-=⋅式中 、——发电机电压、电网电压有效值;U G U x ——发电机直轴次暂态电抗X d "图1-2 准同期条件分析 (a)=0;(b) ≠0δe δe xU)(b ∙s∙G∙3从图1-2(a )可见,因为与夹角为90º,所以由电压幅值差max ⋅''h i GU 产生的冲击电流主要为无功冲击电流。
同步发电机的自动并列装置第三章同步发电机自动并列装置教学目的:了解同步的基本概念,自动准同步装置的构成教学目的:了解同步的基本概念,自动准同步装置的构成及作用,并列操作基本要求、方法及特点,及作用,并列操作基本要求、方法及特点,同步点设置及分类。
掌握准同步并列条件分析;分类。
掌握准同步并列条件分析;线性整步电压特点及导前时间获得原理、频差检测原理、频差方向鉴别原理、前时间获得原理、频差检测原理、频差方向鉴别原理、压差大小和方向鉴别原理;微机自动准同步并列装置的特点、差大小和方向鉴别原理;微机自动准同步并列装置的特点、构成原理。
构成原理。
准同步并列条件分析本章重点自动准同步装置原理微机自动准同步并列装置第一节并列操作简述一、电力系统并列操作的意义定义并列操作将同步发电机投入电力系统并列运行的操作(1)并列瞬间,发电机的冲击电流并列瞬间,不应超过规定的允许值。
不应超过规定的允许值。
并列操作的基本要求(2)并列后,发电机应能迅速进入同并列后,步运行。
步运行。
采用自动并列装置进行并列操作,采用自动并列装置进行并列操作,不仅能减轻运行人员的劳动强度,行人员的劳动强度,也能提高系统运行的可靠性和稳定性。
稳定性。
二、同步发电机并列操作的方法并列方法准同步并列先励磁后并列,先励磁后并列,并列时产生的冲击电流较小,不会使系统电压降低,电流较小,不会使系统电压降低,并列后容易拉入同步。
并列后容易拉入同步。
自同步并列先并列后励磁,操作简单、并列速度快,先并列后励磁,操作简单、并列速度快,在系统发生故障、频率波动较大时,系统发生故障、频率波动较大时,发电机组仍能并列操作并迅速投入电网运行,仍能并列操作并迅速投入电网运行,可避免故障扩大,有利于处理系统事故。
故障扩大,有利于处理系统事故。
三、准同步装置的分类定义(一 ) 手动准同步装置由运行操作人员手动调整发电机的电压和频率,并监视电压差、的电压和频率,并监视电压差、频率差和整步表,率差和整步表,靠经验判断合闸时操作断路器合闸。
同步发电机自动并列装置课程设计
同步发电机自动并列装置是电力系统中常用的电力设备,并列运行多台发电机可提高系统的稳定性和可靠性。
因此,设计一套可靠的同步发电机自动并列装置非常重要。
在同步发电机自动并列装置的课程设计中,首先需要了解同步发电机的工作原理和特性。
同步发电机是一种将机械能转化为电能的设备,它与电力系统中的负荷和其他发电机相互作用。
同步发电机的电压、频率和功率因数等参数需要在一定范围内控制和调节,以保持系统的平衡和稳定。
设计同步发电机自动并列装置的关键在于实现多台发电机的自动调
节和同步。
通过合理的控制策略和保护措施,可以实现发电机的启动、停机、负荷分配和断路器切除等功能。
此外,还需要考虑发电机之间的相互作用和调节过程中可能出现的不稳定现象,如振荡、电压跌落等。
为了完成同步发电机自动并列装置的课程设计,需要进行以下步骤:
1. 确定设计要求:根据系统的负荷需求和容量要求,确定需要并列运行的发电机数量和功率等级。
2. 选取控制硬件:选择合适的控制器、传感器和执行器等硬件设备,以实现发电机的自动调节和同步。
3. 设计控制策略:根据同步发电机的特性和工作原理,设计合理的控制策略,包括启动、停机、负荷分配和断路器切除等功能。
4. 进行仿真和实验:利用电力系统仿真软件进行仿真实验,验证设计方案的可行性和稳定性。
5. 进行参数调整和优化:根据仿真实验的结果,对控制策略进行参数调整和优化,以提高系统的稳定性和效率。
6. 撰写课程设计报告:总结设计过程和结果,撰写课程设计报告,包括设计原理、仿真实验结果和设计总结。
通过以上步骤的设计和实验,可以获得一套可靠的同步发电机自动并列装置。
这套装置可以实现多台发电机的自动调节和同步,并能保持系统的稳定性和可靠性,为电力系统的运行提供良好的支持。