粒子群优化算法
- 格式:doc
- 大小:815.50 KB
- 文档页数:32
第6章粒子群优化算法PSO算法的基本原理是通过模拟粒子在空间中的移动,从而找到最优解。
每个粒子代表一个可能的解,并根据自身的经验和群体的经验进行。
粒子的速度和位置的更新使用以下公式:v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 *rand( * (gbest - x(t))x(t+1)=x(t)+v(t+1)其中,v(t)代表粒子的当前速度,x(t)代表粒子的当前位置,w是惯性权重,c1和c2是学习因子,rand(是一个0到1之间的随机数,pbest 是粒子自身的最佳位置,gbest是整个群体的最佳位置。
PSO算法的过程如下:1.初始化粒子的位置和速度。
2.计算每个粒子的适应度值。
3. 更新每个粒子的pbest和gbest。
4.根据公式更新每个粒子的速度和位置。
5.重复步骤2到4,直到达到终止条件。
PSO算法有几个重要的参数需要设置:-群体大小:确定PSO算法中粒子的数量。
较大的群体大小可以增加整个空间的探索能力,但也增加了计算复杂度。
-惯性权重:控制粒子速度变化的因素。
较大的惯性权重可以增加粒子的飞行距离,但可能导致过程陷入局部最优解。
-学习因子:用于调节个体经验和群体经验的权重。
c1用于调节个体经验的权重,c2用于调节群体经验的权重。
较大的学习因子可以增加粒子的探索能力,但也可能增加时间。
PSO算法的优点是简单、易实现,收敛速度较快,对于多维、非线性、离散等问题具有良好的适应性。
然而,PSO算法也存在一些缺点,如易陷入局部最优解、对参数的敏感性等。
总之,粒子群优化算法是一种基于群体智能的优化算法,在求解复杂问题方面具有出色的性能。
它的基本原理是通过模拟粒子的移动来最优解,利用个体经验和群体经验进行自适应。
PSO算法在多个领域都有成功的应用,可以帮助解决实际问题。
粒子群优化算法介绍
粒子群优化算法(Particle Swarm Optimization,PSO)是一种
基于群体智能的优化方法,其中包含了一组粒子(代表潜在解决方案)在n维空间中进行搜索,通过找到最优解来优化某个问题。
在PSO的
过程中,每个粒子根据自身当前的搜索位置和速度,在解空间中不断
地寻找最优解。
同时,粒子也会通过与周围粒子交换信息来寻找更好
的解。
这种信息交换模拟了鸟群或鱼群中的信息交流行为,因此PSO
算法也被称为群体智能算法。
由于其并行搜索和对局部最优解的较好处理,PSO算法在多个领
域均得到了广泛应用。
其中最常用的应用之一是在神经网络和其他机
器学习算法中用来寻找最优解。
此外,PSO算法在图像处理、数据挖掘、机器人控制、电力系统优化等领域也有着广泛的应用。
PSO算法的核心是描述每个粒子的一组速度和位置值,通常使用
向量来表示。
在PSO的初始化阶段,每个粒子在解空间中随机生成一
个初始位置和速度,并且将其当前位置作为当前最优解。
然后,每个
粒子在每次迭代(即搜索过程中的每一次)中根据当前速度和位置,
以及粒子群体中的最优解和全局最优解,更新其速度和位置。
PSO算法的重点在于如何更新各个粒子的速度向量,以期望他们能够快速、准
确地达到全局最优解。
总之, PSO算法是一种群体智能算法,目的是通过模拟粒子在解
空间中的移动来优化某个问题。
由于其简单、有效且易于实现,因此PSO算法在多个领域得到了广泛应用。
粒⼦群优化算法粒⼦群优化算法属于群智能(swarm intelligence)优化算法。
群智能分两种,⼀种是粒群优化,另⼀种是蚁群优化。
群智能概念假设你和你的朋友正在寻宝,每个⼈有个探测器,这个探测器可以知道宝藏到探测器的距离。
你们⼀群⼈在找,每个⼈都可以把信息共享出去,就跟打dota时你可以有你队友的视野,你可以知道其他所有⼈距离宝藏的距离,这样,你看谁离宝藏最近,就向谁靠近,这样会使你发现宝藏的机会变⼤,⽽且,这种⽅法⽐你单⼈找要快的多。
这是⼀个群⾏为(swarm behavior)的简单实例,群中各个体交互作⽤,使⽤⼀个⽐单⼀个体更有效的⽅法求解全局⽬标。
可以把群(swarm)定义为某种交互作⽤的组织或Agent之结构集合,在群智能计算研究中,群的个体组织包括蚂蚁,⽩蚁,蜜蜂,黄蜂,鱼群,鸟群等。
在这些群体中,个体在结构上是很简单的,⽽它们的集体⾏为却可能变得相当复杂。
研究⼈员发现,蚂蚁在鸟巢和⾷物之间的运输路线,不管⼀开始多随机,最后蚂蚁总能找到⼀条最短路径。
粒群优化概念粒群优化(particle swarm optimization,PSO)算法是⼀种基于群体搜索的算法,它建⽴在模拟鸟群社会的基础上。
粒群概念的最初含义是通过图形来模拟鸟群优美和不可预测的舞蹈动作,发现鸟群⽀配同步飞⾏和以最佳队形突然改变飞⾏⽅向并重新编队的能⼒。
这个概念已经被包含在⼀个简单有效的优化算法中。
在粒群优化中,被称为“粒⼦”(particle)的个体通过超维搜索空间“流动”。
粒⼦在搜索空间中的位置变化是以个体成功地超过其他个体的社会⼼理意向为基础的,因此,群中粒⼦的变化是受其邻近粒⼦(个体)的经验或知识影响的。
⼀个粒⼦的搜索⾏为受到群中其他粒⼦的搜索⾏为的影响。
由此可见,粒群优化是⼀种共⽣合作算法。
算法描述先通过⼀个形象的场景来描述⼀下:5只鸟觅⾷,每个鸟都知道⾃⼰与⾷物的距离,并将此信息与其他鸟共享。
⼀开始,5只鸟分散在不同的地⽅,假设没只鸟每秒钟更新⾃⼰的速度和⽅向,问题是怎么更新呢?每只鸟记下⾃⼰离⾷物最近的位置,称为pbest,pbest0,pbest1,..分别表⽰5只鸟的pbest,从这⾥⾯选⼀个gbest,组⾥最好的。
粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。
粒子群优化算法python粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,它模拟了鸟群觅食行为,通过不断更新粒子的位置和速度,来寻找最优解。
在本文中,我们将介绍粒子群优化算法的原理及其在Python中的实现。
一、粒子群优化算法原理粒子群优化算法的核心思想是通过模拟鸟群觅食行为来进行优化。
算法中的每个粒子都代表了搜索空间中的一个解,而粒子的位置和速度则代表了解的状态和搜索方向。
在算法开始时,每个粒子都会被随机初始化,并赋予一个随机的速度。
接着,粒子会根据自身当前位置和速度,以及全局最优解和个体最优解的信息,来更新自己的速度和位置。
粒子群优化算法中的速度更新公式如下所示:v(t+1) = w * v(t) + c1 * r1 * (pbest - x(t)) + c2 * r2 * (gbest - x(t))其中,v(t+1)表示粒子在下一时刻的速度,w是惯性权重,c1和c2分别是加速因子,r1和r2是[0,1]之间的随机数,pbest表示粒子的个体最优解,gbest表示全局最优解,x(t)表示粒子的当前位置。
粒子的位置更新公式如下所示:x(t+1) = x(t) + v(t+1)其中,x(t+1)表示粒子在下一时刻的位置,x(t)表示粒子的当前位置,v(t+1)表示粒子在下一时刻的速度。
通过不断迭代更新粒子的位置和速度,粒子群优化算法能够逐渐收敛到全局最优解。
二、粒子群优化算法的Python实现在Python中,我们可以使用numpy库来进行粒子群优化算法的实现。
下面是一个简单的示例代码:```pythonimport numpy as npdef objective_function(x):# 定义目标函数,这里以Rosenbrock函数为例return (1 - x[0])**2 + 100 * (x[1] - x[0]**2)**2def PSO(objective_function, num_particles, num_dimensions, max_iter):# 初始化粒子群particles = np.random.uniform(low=-5, high=5, size=(num_particles, num_dimensions))velocities = np.zeros((num_particles, num_dimensions))pbest = particles.copy()gbest = particles[np.argmin([objective_function(p) for p in particles])]# 设置参数w = 0.5c1 = 1c2 = 1# 迭代更新粒子位置和速度for _ in range(max_iter):for i in range(num_particles):r1 = np.random.uniform()r2 = np.random.uniform()velocities[i] = w * velocities[i] + c1 * r1 * (pbest[i] - particles[i]) + c2 * r2 * (gbest - particles[i])particles[i] = particles[i] + velocities[i]if objective_function(particles[i]) < objective_function(pbest[i]):pbest[i] = particles[i]if objective_function(pbest[i]) < objective_function(gbest):gbest = pbest[i]return gbest# 使用粒子群优化算法求解目标函数的最小值gbest = PSO(objective_function, num_particles=30, num_dimensions=2, max_iter=100)print("最优解:", gbest)print("最优解对应的目标函数值:", objective_function(gbest))```在上述代码中,我们首先定义了一个目标函数`objective_function`,这里以Rosenbrock函数为例。
粒子群优化算法基本原理粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于仿生学思想的优化算法,最早由美国加州大学洛杉矶分校(University of California, Los Angeles)的Eberhart和Kennedy于1995年提出。
该算法模拟了群体中个体之间的协作行为,通过不断的信息交流与迭代搜索,寻找最优解。
粒子群优化算法的基本思想是通过模拟鸟群或鱼群等生物群体在搜索空间中的行为,通过个体间的合作与信息共享来寻找最优解。
算法的核心是通过不断更新每个粒子的速度和位置,使其朝着全局最优解的方向进行搜索。
在粒子群优化算法中,每个粒子代表一个解决方案,并通过在搜索空间中移动来寻找最优解。
每个粒子都有一个位置向量和一个速度向量,位置向量表示当前粒子所在的位置,速度向量表示粒子在搜索空间中的移动方向和速度。
每个粒子还有两个重要的参数:个体最佳位置(Pbest)和全局最佳位置(Gbest)。
个体最佳位置表示粒子自身经历的最优位置,全局最佳位置表示整个粒子群中最优的位置。
算法的具体过程如下:1. 初始化粒子群的位置和速度,并为每个粒子设置初始的个体最佳位置。
2. 根据当前位置和速度更新粒子的位置和速度,并计算粒子的适应度值。
3. 更新粒子的个体最佳位置和全局最佳位置。
如果当前适应度值优于个体最佳适应度值,则更新个体最佳位置;如果当前适应度值优于全局最佳适应度值,则更新全局最佳位置。
4. 判断终止条件,如果满足停止条件,则输出全局最佳位置作为最优解;否则返回步骤2进行下一轮迭代。
5. 结束。
粒子群优化算法的优点在于简单易实现,不需要求导等额外计算,且具有全局搜索能力。
由于模拟了群体协作的行为,粒子群优化算法可以克服遗传算法等局部搜索算法容易陷入局部最优解的问题。
此外,算法的收敛速度较快,迭代次数相对较少。
然而,粒子群优化算法也存在一些缺点。
首先,算法对于问题的解空间分布较为敏感,如果解空间分布较为复杂或存在多个局部最优解,算法可能无法找到全局最优解。
粒子群优化算法原理粒子群优化算法(Particle Swarm Optimization,PSO)是一种被启发自鸟群觅食行为的群体智能优化算法。
它最早由Kennedy和Eberhart于1995年提出,通过模拟鸟群追踪食物的行为,以期得到问题的最优解。
PSO的原理如下:1.初始化粒子群的位置和速度:每个粒子代表问题的一个解,其位置和速度表示解的位置和移动方向。
粒子的初始位置和速度通常是在问题解空间中的随机位置和速度。
2.计算粒子的适应度值:根据问题的目标函数,计算出每个粒子的适应度值,用于评估解的好坏程度。
3.更新粒子的位置和速度:根据粒子当前位置、速度和当前最优解(全局最优解和个体最优解),更新粒子的下一个位置和速度。
粒子的速度受到当前速度、向当前最优解的距离和向全局最优解的距离的影响。
4.评估是否需要更新最优解:根据当前适应度值和历史最优适应度值,评估是否需要更新全局最优解和个体最优解。
5.重复更新直到达到停止条件:重复执行步骤3-4,直到达到预设的停止条件,如达到最大迭代次数、达到目标适应度值等。
在PSO算法中,粒子的移动被认为是通过相互合作和信息共享来实现全局的。
每个粒子通过“记忆”当前得到的最优解和“经验”当前的方向,来更新下一次的位置和速度。
同时,粒子也通过“邻居”之间的信息共享来获得更多的能力。
PSO算法具有以下特点和优势:1.简单而高效:PSO算法的原理简单,易于理解和实现。
它不需要求解目标函数的梯度信息,可以应用于连续和离散优化问题。
2.全局能力强:PSO算法通过全局最优解和个体最优解的更新,能够有效地进行全局,在解空间中找到问题的最优解。
3.并行计算能力强:PSO算法的并行计算能力强,可以快速地处理大规模和高维问题。
4.适应度函数的简单性:PSO算法对问题的适应度函数的形式和计算复杂性没有要求,适用于各种类型的优化问题。
PSO算法已经被广泛应用于各种领域,如机器学习、神经网络、信号处理、图像识别、经济学、工程等。
粒子群优化算法综述粒子群优化(Particle swarm optimization, PSO)是一种以群体行为模型为基础的进化算法,它是模拟群体中每个体的行动及各种影响机制来找到最优解。
1995年,Eberhart和Kennedy提出了粒子群优化(PSO)算法。
这个算法被用于多维、非线性优化问题,并认为其结果要好于其他搜索算法。
一、粒子群优化算法介绍:1、算法框架:粒子群优化算法是一种迭代搜索算法,它模拟生物世界中群体行为的进化机制来寻找最优解,它的基本框架如下:(1)初始化参数:决定搜索空间的边界条件,确定粒子群的初始状态;(2)计算适应度函数:按照不同的情况确定适应度函数,计算粒子群种群体的适应度;(3)更新种群体:根据当前种群体的适应度情况,更新个体的位置和速度;(4)迭代搜索:重复以上步骤,等待算法收敛到最优解;(5)结果输出:输出算法收敛的最优解。
2、算法特点:粒子群优化算法具有以下优势:(1)算法易于实现;(2)参数少;(3)计算局部搜索和全局搜索并重;(4)利用简单的几何形式,可以用于多目标优化问题。
二、应用情况:粒子群优化算法在多种复杂场景中应用十分灵活,它可以用于以下几个应用场景:(1)最优控制问题:用于解决轨道优化、多种自控问题。
(2)另一个应用领域是多元函数的优化求解,例如多元函数拟合、计算仿真等。
(3)另一个重要应用领域是信息处理,包括图像处理、模式识别等。
三、发展趋势:粒子群优化算法具有很好的搜索能力、实现简单以及参数少等优点,由于其交叉搜索能力和准确度,越来越受到关注,并被采用到各个领域。
然而,近些年,粒子群优化算法也因其原始算法难以改进收敛精度方面存在一定限制,受到两方面限制:一是获得最优解的能力较弱;二是收敛速度较慢。
四、结论:粒子群优化算法是一种利用生物行为模型进行优化的新算法,它在最优控制技术、多元函数优化求解以及信息处理等多个方面具有很好的应用价值。
虽然存在一定的缺点,但是随着计算机能力和计算机科学的发展,粒子群优化算法仍然具有良好的发展前景。
本文由【中文word文档库】搜集整理。
中文word文档库免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会经济等word文档目录前言 (1)第一章概述 (2)1.1 引言 (2)1.2 研究背景 (2)1.2.1 人工生命计算 (2)1.2.2 粒子群算法与遗传算法 (3)1.2.3 人工神经网络与粒子群优化算法 (3)第二章粒子群优化算法 (5)2.1 基本粒子群优化算法 (5)2.2 算法流程 (5)2.3 基本粒子群优化算法的缺点及改进方法 (6)2.3.1 基本粒子群优化算法的缺点 (6)2.3.2 几种改进算法 (6)2.3.2.1 标准粒子群优化算法 (6)2.3.2.2 带有收缩因子的粒子群优化算法 (7)2.3.2.3 采用微分扰动的粒子群 (8)2.3.2.4 带有小生境拓扑结构的粒子群优化算法 (9)2.3.2.5 带有梯度加速因子的粒子群优化算法 (10)第三章基于多种群的粒子群优化算法 (11)3.1 算法基本改进方法 (11)3.2 算法伪代码 (11)第四章实验分析 (14)4.1 几种常用改进算法 (14)4.2 标准测试函数 (14)4.3 收敛速度实验分析 (15)4.3.1 实验设置 (16)4.3.2 实验结果 (16)4.4 收敛性能实验分析 (17)4.4.1 实验设置 (17)4.4.2 实验结果 (18)4.5 算法参数分析 (19)4.5.1 实验设置 (19)4.5.2 实验结果 (20)第五章基于多种群的粒子群优化算法的应用 (22)5.1生产计划问题描述 (22)5.2实例 (23)5.3运行结果 (24)第六章总结与展望 (25)6.1课题总结 (25)6.2后续研究展望 (25)参考文献 (26)致谢 (28)摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,得到广泛应用。
本文首先描述了基本粒子群优化算法及其几种改进算法的基本原理,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,提出了一种基于多种群的粒子群优化算法。
在5个标准优化函数上与基本粒子群优化算法及几种改进算法进行了比较,实验结果表明本文算法在优化多模式函数时性能明显要优于其它算法。
本文算法应用于生产计划安排问题上也获得了较好的性能。
最后对本文进行了简单的总结和展望。
关键词:粒子群优化,适应度,群智能AbstractIn the field of artificial intelligence, most problems belong to the category of optimization. The classical algorithms in common use are usually limited by certain optimizing problems such as the object optimization function, which has to be a continuous one. As bionic algorithm imitates the intellective actions of life free from the limits resulting from the optimizing problems, this kind of algorithm is commonly used.At first place, this dissertation, basing on the particle swarm optimization, illustrates the fundament of this algorithm. This paper also places emphasis on the analysis of parameter that may affect the performance of the algorithm. Also an introduction of improved algorithms and popular advanced improving strategies is shown, as well as the mastery of basic researching process and methods. According to the result of the analysis, the author put forward a new multi-swarms PSO algorithm to overcome the defects of the original. Through the simulation, the results show that, compared with other PSO variants, the algorithm proposed by the author has attained a better solution to the same problems. Finally, the paper gave some further expectations concerning the PSO algorithm research.Keywords:Particle Swarm Optimization, Fitness , Group Intelligence前言优化是个古老的问题,其研究的问题是在众多方案中寻找最优方案。
长期以来,优化问题一直受到广泛关注, 是研究的热点问题。
早在17世纪,英国Newton和德国Leibnitz 发明的微积分就蕴涵了优化的内容。
而法国数学家Cauchy则首次采用最速梯度下降法解决了无约束优化问题。
后来针对约束优化问题又提出了Lagrange乘数法。
人们关于优化问题的研究工作,随着历史的发展不断深入。
但是,任何科学的进步都要受到历史条件的限制,直到二十世纪四十年代,由于科学技术突飞猛进的发展,尤其是高速数字计算机日益广泛应用,使得优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。
因此,优化理论和算法迅速发展起来,成为一门新的学科。
至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划等许多分支。
这些优化技术在实际应用中正发挥越来越大的作用。
随着人们生存空间的扩大, 这些常规的优化方法已经无法处理人们所面对的复杂问题。
因此,高效的优化算法成为科学工作者的研究目标之一。
本文研究的粒子群优化算法(particle swarm optimization,简称PSO)是Kennedy和Eberhart源于群体智能和人类认知学习过程而发展的一种智能优化算法。
它与遗传算法(GA)同属群体优化技术,但PSO 比GA更简单、操作更方便。
因此,PSO算法从诞生起,就引起了国内外学者的广泛关注,并掀起了该方法的研究热潮,且在诸多领域得到了成功应用。
但是,PSO的发展历史尚短,在理论基础与应用推广上都还存在一些问题,如早熟,种群单一化等,有待于解决。
针对上述的问题,本文通过对PSO算法原理进行分析,在深入理解几种PSO改进算法的基础上,对PSO存在的问题提出了新的改进方法,并将改进的算法应用于实际优化问题中。
本文主要通过MA TLAB7系列作为工作环境,实现算法以及相应的问题模拟。
全文共分五章。
第一章概述,主要介绍PSO算法研究背景。
第二章粒子群优化算法,主要介绍PSO算法基本原理,简要分析PSO主要缺陷,并介绍几种常用的改进PSO方法。
第三章基于多种群的粒子群优化算法,针对PSO的主要缺陷提出相应改进策略,并给出伪代码。
第四章实验分析,为了检测本文算法性能,选择了三种常用改进PSO算法与本文算法进行了实验比较, 并对实验结果进行了简要分析。
同时对本文算法中主要参数设置方法进行了实验分析,以给出算法参数设置指导思想。
第五章基于多种群粒子群优化算法的应用,本文算法被用于优化生产计划问题并得出结果。
第六章对课题进行总结,并对未来的改进进行展望。
第一章概述1.1 引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
它广泛的存在于农业,国防,工程,交通,金融,能源,通信,材料等诸多领域。
最优化技术在上述领域的应用已经产生了巨大的经济效益和社会效益。
国内外的实践证明,在同样条件下,经过优化技术的处理,对系统效率的提高,能耗的降低,资源的合理利用及经济效益提高均有显著的效果,而且随着处理对象规模的增大,这种效果也更加显著。
但随着处理对象规模的增大,优化问题也越来越复杂,而经典的优化技术对问题的约束比较大,如梯度下降法要求优化函数是可导等,因此,对于新型优化算法的研究具有重要的意义。
1.2 研究背景1.2.1 人工生命计算人们从生命现象中得到启示,发明了许多智能的优化方法来解决复杂优化问题。
现在已有很多源于生物现象的计算技巧。
例如,人工免疫[1]模拟生物免疫系统的学习和认知功能,人工神经网络[2-6]是简化的大脑模型, 遗传算法[7]是模拟基因进化的过程。
在计算智能(computational intelligence)领域有两种基于群体智能swarm intelligence[8-13]的算法,粒子群优化算法(particle swarm optimization)[14]和蚁群算法(ant colony optimization) [9][13][15]。
蚁群优化算法模拟了蚂蚁群体在路径选择和信息传递方面的行为,而粒子群优化算法模拟群居动物觅食迁徙等群体活动中个体与群体协调合作的工作过程。
这类借鉴了模拟生命系统行为功能和特性的科学计算方法称为人工生命计算。
人工生命计算包括两方面的内容,研究如何利用计算技术研究生物现象和研究如何利用生物技术研究计算问题。
人工神经网络,粒子群优化算法,遗传算法,蚁群优化算法等都属于人工生命计算的范畴。
本文详细介绍的粒子群优化算法是其中的一种新兴计算方法。
它同遗传算法类似,同属随机迭代优化工具。
同遗传算法等其他人工生命计算相比,粒子群算法概念简单,容易实现,调节参数较少。
目前粒子群算法越来越引起人们的关注。
1.2.2 粒子群算法与遗传算法大多数迭代优化技术都有相似的流程:1.种群元素随机初始化。
2.计算种群个体位置适应值(fitness value)。
适应值体现与最优解的差异。
3.种群依适应值进行相应演化。