匀变速直线运动的研究知识要点总结
- 格式:docx
- 大小:307.64 KB
- 文档页数:4
2.2 匀变速直线运动的一、匀变速直线运动1、定义:在变速直线运动中,如果在任意相等的时间内速度的改变相等,即加速度不变的运动。
2、v-t图象是一条倾斜直线3、匀加速直线运动:速度随时间均匀增加匀减速直线运动:速度随时间均匀减小二、速度与时间的关系式:1、v=v0+at只适用于匀变速直线运动速度.v-t图的斜率=a.2、通常取初速度v0方向为正方向,加速度a可正可负(正、负表示方向),在匀变速直线运动中a恒定.(1)当a与v0同方向时,a>0表明物体的速度随时间均匀增加,如下图.(2)当a与v0反方向时,a<0表明物体的速度随时间均匀减少,如下图3、速度公式是矢量式: v=v0+at (矢量式)注意:在具体运算中必须规定正方向来简化一直线上的矢量运算。
若初速度v0=0,则v=at三、v-t图1、v-t图象中一条倾斜直线表示匀变速直线运动,若是一条曲线则表示非匀变速直线运动。
2、若是曲线,则某点切线的斜率表示该时刻的加速度。
2.3匀变速直线运动的位移与时间的关系一、匀速直线运动的位移公式法:x=vt图像法:结论:匀速直线运动的位移等于v – t 图线与t 轴所夹的矩形“面积”面积也有正负,面积为正,表示位移的方向为正方向,面积为负值,表示位移的方向为负方向.匀变速直线运动的位移也可用图线与坐标轴所围的面积表示。
二、匀变速直线运动的位移1.位移公式:2.对位移公式的理解:⑴反映了位移随时间的变化规律。
⑵因为υ0、α、x 均为矢量,使用公式时应先规定正方向。
(一般以υ0的方向为正方向)若物体做匀加速运动,a 取正值,若物体做匀减速运动,则a 取负值. (3)若v 0=0,则x=(4)特别提醒:t 是指物体运动的实际时间,要将位移与发生这段位移的时间对应起来.2012x v t at=+221t 0v at x +=(5)代入数据时,各物理量的单位要统一.(用国际单位制中的主单位) 二.匀变速直线运动重要推论1.任意两个连续相等的时间间隔T 内的位移之差是一个恒量, s 2-s 1=s 3-s 2=… 即Δs=aT 22.在一段时间t 内,中间时刻的瞬时速度v 等于这段时间的平均速度3.一段时间t 内的平均速度等于这段时间的初、末速度的算术平均值3.位移与加速度、速度的关系2.4 匀变速直线运动的位移与速度的关系 匀变速直线运动位移与速度的关系:速度公式: v =v 0+at 和位移公式两式消去t,得(不涉及到时间t ,用这个公式方便)一、匀变速直线运动的规律(4基本公式) 1、速度公式:v =v 0+at2、位移公式:3、平均速度:4、位移与速度关系:匀变速直线运动的推论(3推论)ax v v 2202=-ax v v 222=-2tvv v +=txv v v =+=)(2101、中间时刻的瞬时速度:2>3、任意连续相等时间内的位移差相等:通式22ttv v xv vt+===232BDCx xv vT+==23123424BD AECx x x x x xv v vT T++++====2sv2tv2)(aTnmssnm-=-tvvt vx t2+==(5)代入数据计算时不用代单位,但最后结果要有单位,且运算过程需把其它单位转化成国际单位。
匀变速直线运动知识点匀变速直线运动是物理学中的一个重要概念,在力学中经常涉及到。
本文将从定义、运动方程、速度和加速度等方面详细探讨匀变速直线运动的知识点。
一、定义匀变速直线运动指的是物体在直线上以一定的加速度进行运动,且加速度保持不变。
这种运动的特点是速度的变化是匀速的,即速度随时间线性变化。
二、运动方程匀变速直线运动的运动方程可以用以下公式表示:s = ut + 1/2at^2其中,s表示物体的位移,u表示物体的初速度,a表示物体的加速度,t表示时间。
三、速度在匀变速直线运动中,速度是随时间变化的。
根据运动方程可以得到速度的表达式:v = u + at其中,v表示物体的速度。
四、加速度加速度是匀变速直线运动的一个重要参数,表示速度的变化率。
根据运动方程可以得到加速度的表达式:a = (v - u) / t其中,a表示物体的加速度。
五、位移与时间、初速度、加速度的关系根据运动方程可以看出,位移与时间、初速度和加速度之间存在一定的关系。
位移随时间的平方成正比,与初速度成正比,与加速度的平方成正比。
六、加速度与运动方向的关系在匀变速直线运动中,加速度的正负与运动方向有关。
当加速度与速度方向一致时,加速度为正值;当加速度与速度方向相反时,加速度为负值。
七、匀变速直线运动的示例一个常见的示例是自由落体运动。
当物体自由下落时,加速度为重力加速度,速度随时间线性增加。
总结:匀变速直线运动是物理学中的一个重要概念,它可以用运动方程来描述物体的位移、速度和加速度。
在匀变速直线运动中,速度的变化是匀速的,加速度保持不变。
加速度与运动方向有关,当加速度与速度方向一致时,加速度为正值,反之为负值。
匀变速直线运动的一个示例是自由落体运动,物体自由下落时加速度为重力加速度。
通过研究匀变速直线运动,可以更好地理解物体在运动中的行为和规律。
匀变速直线运动的研究➢ 知识梳理一、匀变速直线运动的基本规律1.概念:沿着一条直线,且加速度不变的运动。
2.分类:①匀加速直线运动:加速度方向与初速度方向相同; ②匀减速直线运动:加速度方向与初速度方向相反。
❖ 无初速度时,物体做匀加速直线运动 3.条件:加速度方向与速度方向在同一条直线上。
4.基本公式:①速度与时间关系:at v v +=0 ②位移与时间关系:2021at t v x += ③速度与位移关系:ax v v 2202=-二、重要推论①任意两个连续相等时间间隔(T )内的位移之差相等:212312aT x x x x x x x n n =-==-=-=∆- ❖ 此性质还可以表示为:2)(aT m n x x m n -=-②一段时间内的平均速度等于这段时间中间时刻的瞬时速度,也等于这段时间初、末时刻速度矢量和的一半:202tv v v v t +== ③位移中点速度22202t x v v v +=❖ 不论是匀加速直线运动还是匀减速直线运动都有:22x t v v <三、初速度为零的匀加速直线运动的重要结论①1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比:n v v v v n ::3:2:1::::321 =②第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比:)12(::5:3:1::::321-=n x x x x n ③通过连续相等的位移所用时间之比:)1(::)23(:)12(:1::::321----=n n t t t t n 四、自由落体运动和竖直上抛运动 1.自由落体运动①定义:物体只在重力作用下从静止开始下落的运动,其初速度为零,加速度为g 。
②运动规律(1)速度公式:gt v = (2)位移公式:221gt h =(3)速度位移关系式:gh v 22= 2.竖直上抛②定义:将物体以一定初速度竖直向上抛出,只在重力作用下的运动。
匀变速直线运动的规律知识点总结与典例【知识点梳理】知识点一 匀变速直线运动的基本规律1.概念:沿一条直线且加速度不变的运动。
2.分类(1)匀加速直线运动:a 与v 方向相同。
(2)匀减速直线运动:a 与v 方向相反。
3.基本规律⎭⎪⎬⎪⎫1速度—时间关系:v =v 0+at 2位移—时间关系:x =v 0t +12at 23速度—位移关系:v 2-v 2=2ax ――――→初速度为零即v 0=0⎩⎪⎨⎪⎧v =atx =12at 2v 2=2ax知识点二 匀变速直线运动重要推论和比例关系的应用1.两个重要推论(1)中间时刻速度v t2=v =v 0+v 2,即物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半。
(2)位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2,即任意两个连续相等的时间间隔T 内的位移之差为一恒量。
可以推广到x m -x n =(m -n )aT 2。
2.初速度为零的匀变速直线运动的四个常用推论 (1)1T 末、2T 末、3T 末……瞬时速度的比为 v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n 。
(2)1T 内、2T 内、3T 内……位移的比为 x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =12∶22∶32∶…∶n 2。
(3)第一个T 内、第二个T 内、第三个T 内……位移的比为x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1)。
(4)从静止开始通过连续相等的位移所用时间的比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)。
知识点三自由落体和竖直上抛运动自由落体运动运动条件(1)物体只受重力作用(2)由静止开始下落运动性质初速度为零的匀加速直线运动运动规律(1)速度公式:v=gt(2)位移公式:h=12gt2(3)速度—位移公式:v2=2gh竖直上抛运动(1)速度公式:v=v0-gt(2)位移公式:h=v0t-12gt2(3)速度—位移关系式:v2-v20=-2gh(4)上升的最大高度:H=v202g(5)上升到最高点所用时间:t=v0g1.竖直上抛运动的重要特性(如图)(1)对称性①时间对称:物体上升过程中从A→C所用时间t AC和下降过程中从C→A所用时间t CA相等,同理t AB =t BA。
匀变速直线运动的研究高一知识点总结匀变速直线运动是物理学中的一个重要概念,也是高中物理课程的一部分。
在这篇文章中,我将对匀变速直线运动进行研究和总结。
一、匀变速直线运动的定义匀变速直线运动是指物体在直线上运动时,速度的大小和方向都在变化的情况下,物体的位移与时间成正比的运动。
在匀变速直线运动中,物体的加速度是恒定的。
二、匀变速直线运动的特点1. 速度的变化:在匀变速直线运动中,物体的速度在运动过程中是不断变化的。
速度的变化可以是加速度增大,速度增加的情况,也可以是加速度减小,速度减小的情况。
2. 加速度的恒定:在匀变速直线运动中,物体的加速度是恒定的。
加速度可以是正值,表示物体在增加速度;也可以是负值,表示物体在减小速度。
3. 位移与时间的关系:在匀变速直线运动中,物体的位移与时间成正比。
即物体的位移随着时间的增加而增加,位移的变化速率与时间之间的比值是恒定的。
三、匀变速直线运动的公式1. 位移公式:物体的位移等于初速度与时间的乘积加上加速度与时间的平方的一半。
位移的公式可以用以下公式表示:S = ut +(1/2)at^22. 速度公式:物体的速度等于初速度加上加速度与时间的乘积。
速度的公式可以用以下公式表示:v = u + at3. 加速度公式:物体的加速度等于速度的变化量除以时间的变化量。
加速度的公式可以用以下公式表示:a = (v - u) / t四、匀变速直线运动的图像解析在匀变速直线运动中,我们可以通过绘制速度-时间图和位移-时间图来解析运动过程。
速度-时间图的斜率代表了加速度的大小,而位移-时间图的斜率代表了速度的大小。
五、匀变速直线运动的实际应用匀变速直线运动是我们日常生活中很常见的一种运动形式。
例如,汽车在加速和减速过程中就是匀变速直线运动。
此外,自由落体运动也可以看作是一种匀变速直线运动。
六、匀变速直线运动的重要性匀变速直线运动是物理学中最基本的运动形式之一,它可以帮助我们理解物体在直线上运动的规律和特点。
高中物理第二章匀变速直线运动的研究知识点梳理单选题1、若一质点从t=0开始由原点出发沿直线运动,其速度—时间图像如图所示,则该质点()A.t=1s时离原点最远B.t=2s时离原点最远C.t=3s时回到原点D.t=4s时回到原点,路程为20m答案:BABC.根据题意,由图可知,质点在0∼2s内沿正方向运动,在2∼4s内沿负方向运动,由图线围成的面积可知,两段时间内质点位移的大小相等,则在t=2s时离原点最远,t=4s时回到原点,故AC错误,B正确;D.根据v−t图像中图线围成的面积表示位移,由图可知,质点在在0∼2s内位移大小为x1=12×2×5m=5m则质点在2∼4s内位移大小为x2=5m则质点在0∼4s内运动的路程为s=x1+x2=10m故D错误。
故选B。
2、汽车在水平公路上运动时速度大小为108km/h,司机突然以5m/s2的加速度刹车,则刹车后 8s 内汽车滑行的距离为()A.50mB.70mC.90mD.110m答案:C汽车刹车后到停止运动所用的时间为t=v0a=305s=6s即汽车在6s时已停止运动,则刹车后8s内滑行的距离就是6s内的位移,由逆向分析可得x=v02t=302×6m=90m故选C。
3、2021年8月3日,在东京奥运会跳水男子3米板决赛中,中国选手谢思埸夺得金牌!在某次比赛中,若将运动员入水后向下的运动视为匀减速直线运动,该运动过程的时间为7t。
设运动员入水后第一个t时间内的位移为x1,最后一个t时间内的位移为x2,则x1:x2为()A.7:1B.9:1C.11:1D.13:1答案:D将运动员入水后的运动逆过来可看作初速度为零的匀加速直线运动,根据初速度为零的匀加速直线运动的规律可知,连续相等的时间间隔内的位移之比为1:3:5:7:9:11:13⋅⋅⋅:(2n−1),所以x1:x2=13:1故选D。
4、短跑运动员完成100 m赛跑的过程可简化为匀加速直线运动和匀速直线运动两个阶段,一次比赛中,某运动员用11.00 s跑完全程。
《匀变速直线运动的研究》讲义一、匀变速直线运动的定义在物理学中,匀变速直线运动是一种非常重要的运动形式。
它指的是在直线运动中,物体的加速度保持不变的运动。
这意味着,在相等的时间间隔内,物体速度的变化量是相等的。
比如,一辆汽车在笔直的公路上以恒定的加速度加速行驶,或者一个自由落体的物体在竖直方向上的运动,都属于匀变速直线运动。
二、匀变速直线运动的特点1、加速度恒定这是匀变速直线运动最显著的特点。
加速度的大小和方向都不随时间改变。
2、速度均匀变化由于加速度恒定,所以物体的速度会随着时间均匀地增加或减少。
3、位移与时间的关系匀变速直线运动的位移与时间的关系不是简单的线性关系,而是一个二次函数关系。
三、匀变速直线运动的公式1、速度公式:v = v₀+ at其中,v 是末速度,v₀是初速度,a 是加速度,t 是运动时间。
这个公式告诉我们,在匀变速直线运动中,末速度等于初速度加上加速度与时间的乘积。
例如,一辆汽车以 10m/s 的初速度开始匀加速行驶,加速度为2m/s²,经过 5s 后的速度 v = 10 + 2×5 = 20m/s 。
2、位移公式:x = v₀t + ½at²这个公式表示,匀变速直线运动的位移等于初速度乘以时间加上二分之一加速度乘以时间的平方。
假设一个物体以 5m/s 的初速度做匀加速运动,加速度为 1m/s²,运动了 10s ,则位移 x = 5×10 + ½×1×10²= 100m 。
3、速度与位移的关系式:v² v₀²= 2ax这个关系式常用于已知初末速度和加速度,求位移的情况。
比如,一个物体的初速度为 3m/s ,末速度为 7m/s ,加速度为2m/s²,那么位移 x =(7² 3²) /(2×2) = 10m 。
四、匀变速直线运动的图像1、 v t 图像匀变速直线运动的 v t 图像是一条倾斜的直线。
1 匀变速直线运动1.匀变速直线运动:沿着一条直线,且加速度不变的运动. 2.基本规律 (1)两个基本公式 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.(2)常用的导出公式①速度和位移公式:v 2-v 02=2ax . ②平均速度公式:v =v t 2=v 0+v2.③位移差公式:Δx =x n +1-x n =aT 2.即任意两个连续相等时间内的位移差是一个恒量.1.匀变速直线运动公式的选用一般情况下用两个基本公式可以解决,当遇到以下特殊情况时,用导出公式会提高解题的速度和准确率:(1)不涉及时间,比如从v 0匀加速到v 后求位移x ,可用v 2-v 02=2ax .(2)平均速度公式的应用:纸带运用v t 2=xt =v 求瞬时速度;传送带问题、板块问题、追及问题运用x =v 0+v2t 求位移或相对位移;带电粒子在匀强电场中的运动运用类平抛运动两个方向的速度、位移联系,如x =v 0t ,y =v y2t ,根据x 、y 的大小关系,确定v y 和v 0的关系.(3)位移差公式的应用:纸带运用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度,已知4段、5段、6段位移用逐差法求加速度.研究平抛运动实验,利用平抛运动轨迹,根据y 2-y 1=gT 2求时间间隔或求重力加速度. (4)初速度为零的比例式:特别应记住运动开始连续相等时间内的位移之比为1∶3∶5∶7∶…. 2.三种常见的方法:(1)全过程法:全过程中若加速度不变,虽然有往返运动,但可以全程列式,此时要注意各矢量的方向(即正负号).如竖直上抛运动、沿光滑斜面上滑等.(2)逆向思维法:对于末速度为零的匀减速直线运动,可以采用逆向思维法,倒过来看成是初速度为零的匀加速直线运动.如一个人投篮球垂直砸到篮球板上,这是一个斜抛运动,也可以运用逆向思维当作反向的平抛运动.(3)图象法:比如带电粒子在交变电场中的运动,可借助v -t 图象分析运动过程. 3.分析匀变速直线运动的技巧:“一画、二选、三注意” 一画:根据题意画出物体运动示意图,使运动过程直观清晰; 二选:选用合适的方法和公式;三注意:列方程前首先选取正方向,且所列的方程式中每一个物理量均需对应同一个物理过程.4.一个二级结论如图1,两段匀变速直线运动,先从静止匀加速再匀减速,若经相同时间,又回到原位置. 根据x 2=-x 1,可得到a 2=-3a 1.图1示例1 (平均速度法)(2016·上海卷·14)物体做匀加速直线运动,相继经过两段距离为16 m 的路程,第一段用时4 s ,第二段用时2 s ,则物体的加速度是( ) A.23 m/s 2 B.43 m/s 2 C.89 m/s 2 D.169m/s 2 答案 B解析 物体做匀加速直线运动,t 时间内的平均速度等于中间时刻的瞬时速度,在第一段内中间时刻的瞬时速度为:v 1=x t 1=164 m /s =4 m/s ;在第二段内中间时刻的瞬时速度为:v 2=xt 2=162 m /s =8 m/s ;则物体加速度为:a =v 2-v 1Δt =8-43 m/s 2=43 m/s 2,故选项B 正确. 示例2 (逆向思维法)(2019·全国卷Ⅰ·18)如图2,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图2A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5答案 C解析 本题应用逆向思维法求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动的逆运动,所以第四个H4所用的时间为t 2=2×H 4g ,第一个H4所用的时间为t 1=2H g-2×34H g ,因此有t 2t 1=12-3=2+3,即3<t 2t 1<4,选项C 正确. 示例3 (全过程法)如图3所示,一个可视为质点的滑块从倾角为30°的光滑固定斜面底端A 以10 m /s 的初速度上滑,斜面足够长,求:(g =10 m/s 2)图3(1)滑块从A 点开始又回到A 点所用的时间; (2)滑块到达距A 点7.5 m 处的B 点时所用的时间. 答案 (1)4 s (2)1 s 或3 s解析 (1)设滑块在斜面上的加速度为a . 由牛顿第二定律:mg sin θ=ma得a =g sin 30°滑块上滑、下滑过程中加速度不变 由全过程法分析,位移x 1=0由x 1=v 0t 1-12at 12,得t 1=4 s(另一解不符合题意,舍去)(2)滑块由A 至B ,位移x 2=7.5 m , 由x 2=v 0t -12at 2得t =1 s 或t =3 s.示例4 (初速度为零的比例式)两块足够大的平行金属极板水平放置,如图4甲所示,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向).在t =0时刻,由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E 0、磁感应强度B 0、粒子的比荷q m 均已知,且t 0=2πm qB 0.粒子在0~t 0时间内运动的位移为L ,且在5t 0时刻打在正极板上(在此之前未与极板相碰).求:图4(1)两极板之间的距离;(2)粒子在两极板之间做圆周运动的最大半径. 答案 (1)9L (2)4πmE 0qB 02解析 在0~t 0时间内粒子只受电场力作用,做初速度为零的匀加速直线运动.在t 0~2t 0时间内粒子只受洛伦兹力作用做匀速圆周运动,因为t 0=2πmqB 0,所以t 0~2t 0时间内粒子完成完整的圆周运动,在0~5t 0时间内粒子的运动轨迹如图所示.(1)粒子在电场中做直线运动的三段位移之比为x1∶x2∶x3=1∶3∶5,又x1=L所以两板距离d=x1+x2+x3=9L(2)t0末粒子的速度v1=at0=qE0m t0,3t0末粒子的速度v2=a·2t0=qE0m·2t0由q v B0=m v2r ,得r=m vqB0,则r1=E0t0B0,r2=2E0t0B0,r2>r1,所以粒子最大半径为r2,由于t0=2πmqB0则粒子最大半径r2=4πmE0qB20.。
匀变速直线运动的研究知识点总结《匀变速直线运动的研究知识点总结》
嘿,朋友们!今天咱来聊聊匀变速直线运动那些事儿。
就说我上次骑自行车吧,我从家出发一路加速,这就很像匀加速直线运动呀。
那速度是越来越快,就像被一股神秘力量推着走。
咱先说说匀变速直线运动的速度公式哈,v = v₀ + at。
这就好比我骑车一开始的速度 v₀,然后加上随着时间变化而增加的速度 at,这可不就是最终的速度 v 嘛。
还有位移公式 x = v₀t + 1/2at² 呢,这就好像我骑车的过程中,随着时间推移,我走过的路程。
时间越长,我移动的距离就越远。
再说说平均速度,那可是很重要的哦。
它就像我骑车这一段路的整体表现一样。
还有重要的推论呢,比如速度位移公式v² - v₀² = 2ax。
这就好像我到了一个地方,回头看看我出发时和现在的速度以及走过的距离之间的关系。
在研究匀变速直线运动时,我们要仔细观察呀。
就像我骑车时,感受着速度的变化,留意着自己走过的路。
哎呀,其实这些知识点就像生活中的小细节,只要我们用心去体会,就能发现它们无处不在。
就像我那次骑车的经历,让我对匀变速直线运动有了更深刻的理解。
以后再看到类似的情况,我就能一下子想到这些知识点啦。
总之呢,匀变速直线运动的知识点很实用,大家可得好好掌握哦。
下次你们也可以在生活中找找类似的例子,感受一下物理的奇妙之处!哈哈,就说到这啦,拜拜咯!。
匀变速直线运动的研究
知识要点总结
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
第二章 《匀变速直线运动的研究》知识要点总结
一. 匀变速直线运动的基本公式
1. 匀变速直线运动:速度随时间均匀变化,即加速度大小与方向均不变的直线运动。
2. 速度时间公式:a
v t at v t
v a v v v 0
00
-=
⇒+=⇒-=
3. 三个位移公式:)(2(21)(22
02
200
t a
V a t a t v x v v t v v 无)=无无-+=+=
4. 应用以上公式时:匀加速直线运动、a 取正值;匀减速直线运动、a 取负值。
匀减速直线运动也可看成加速度大小不变的反向匀加速直
线运动。
5. 自由落体运动:00=v ,s
m
g a 2
8.9==的匀加速直线运动。
常用公式:gt v =,g g h v t 2212
2
== 常用方法:位移相差法
例如自由落体总时间为t ,则最后1秒的位移
)1(2212
1
21--=
-=
∆-t t x x g g x t t 二. 匀变速直线运动的两个推论 1. 中间时刻的速度等于平均速度:
2
2v v x
v
v C
A
AC
AC
B
T
+=
==
中间位置的速度总大于中间时刻的速度 2. 两相邻相等时间间隔内的位移差相等:
①:S6-S5=S5-S4=S4-S3=S3-S2=S2-S1=T a 2
②:S5-S2=T a 23 S6-S1=T a 25 Sm -Sn=T a n m 2
)(-
③:(S4+S3)-(S2+S1)=)2(2
T a (S4+S5+S6)-(S3+S2+S1)=)3(2
T a 三.速度时间t v -图像与位移时间t x -图像 1.两种图像都只能描述直线运动,不能描述曲线运动。
2. t v -图像:
①:图像中v 的正负值表示方向,
v 为正值表示物体运动方向与人为选定的正方向相同,
v 为负值表示物体运动方向与人为选定的正方向相反; ②:图像的斜率表示加速度;
③:图像与时间轴所围的面积表示这段时间内物体的位移; ④:图像中的倾斜直线表示匀加或匀减速直线运动。
请求出0-6S 内物体运动的位移为_____________米,路程为__________米;0-4s________匀变速直线运动,2-6s________匀变速直线运动(填“是”或“不是”).
3.X -t 图像:描述物体位置(直线坐标系描述)随时间变化关系. ①:图像斜率表示速度;
②:图像中的倾斜直线表示匀速直线运动.
0-1s 表示物体从x=5m 处以1m/s 匀速到x=4m 处;1-2s 物体在x=4m 处静止1s ;2-4s 物体从x=4m 处以2m/s 匀速到x=0处;4-6s 从x=0处以2m/s 匀速到x=-4m 处.
三.追赶与避碰:
①速度相同时两物体相距最近或最远;
②后面物体速度大于前面物体的速度,则两物体间距在减小,后面物体速
度小于前面物体的速度,则间距在增大;
③同向运动时要相遇,则前面物体位移加起始间距要等于后面物体位移;
相向运动时要相遇,则两物体位移相加要等于起始间距;
④同向运动时要避碰,则速度相同时,前面物体位移加起始间距要大于后
面物体位移,相向运动时要避碰,则两物体均静止时,两物体位移相加要小于起始间距。
表中d为两物体的起始间距。