人教版七年级下册数学:实数复习课
- 格式:ppt
- 大小:2.95 MB
- 文档页数:14
初中实数复习课教案1. 理解实数的意义,掌握实数的分类,了解实数与数轴的关系。
2. 掌握有理数、无理数的概念,理解有理数与无理数的区别。
3. 理解相反数、绝对值的概念,掌握相反数和绝对值的性质。
4. 掌握实数的四则运算,包括加、减、乘、除、乘方及开方运算。
5. 能运用实数的概念和性质解决实际问题。
二、教学重难点1. 实数的分类和实数与数轴的关系。
2. 相反数和绝对值的性质。
3. 实数的四则运算。
三、教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,引导学生通过自主学习、合作交流,掌握实数的知识和技能。
四、教学过程1. 导入新课通过数轴引入实数的概念,引导学生回顾数轴上的点与实数的关系,为新课的学习打下基础。
2. 知识讲解(1)实数的分类讲解实数的分类,包括有理数和无理数。
通过实例让学生了解有理数和无理数的特点,引导学生掌握有理数与无理数的区别。
(2)实数与数轴讲解实数与数轴的关系,引导学生理解每一个实数都在数轴上有一个对应的点,反之亦然。
(3)相反数和绝对值讲解相反数和绝对值的概念,引导学生掌握相反数和绝对值的性质。
3. 课堂练习布置一些有关实数的分类、实数与数轴、相反数和绝对值等方面的练习题,让学生在课堂上完成,及时巩固所学知识。
4. 小组合作组织学生进行小组合作,探讨实数的四则运算,引导学生掌握实数的运算规律。
5. 课堂小结对本节课的内容进行课堂小结,帮助学生梳理实数的知识和技能。
五、课后作业布置一些有关实数的练习题,让学生课后巩固所学知识,提高解题能力。
六、教学反思在课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,为下一步的教学做好准备。
通过以上教学设计,希望能帮助学生全面掌握实数的知识和技能,提高他们的数学素养。
(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
⼈教版七年级数学下册第六章《实数》单元复习教案设计⼈教版七年级下册《实数》单元复习教案教学⽬标:【知识与技能】掌握本章基本概念与运算,能⽤本章知识解决实际问题.【过程与⽅法】梳理本章知识点,挖掘知识点间的联系,并应⽤于实际解题中.【情感态度】领悟分类讨论思想,学会类⽐学习的⽅法.【教学重点】本章知识梳理及掌握基本知识点.【教学难点】应⽤本章知识解决实际与综合问题.【教学⽅法】演⽰法、类⽐法教学过程:⼀、作业回顾,提出错点【教学说明】将前⼀天的作业问题进⾏反馈,及时化解存在的问题。
⼆、课前⼩测,竞争⿎励1.下列说法正确的是()A.1的平⽅根是1B.1是1的算术平⽅根C. 22)(- 的平⽅根是2 D.0没有算术平⽅根 2.下列运算正确的是() A.31-=-31- B. 31-= 31 C. 31-= 31- D.31-=-313.化简:2242)()(-+-= . 4.6-的相反数是,倒数是,绝对值是 .5.绝对值⼩于7的正数有,它们的和是 .【教学说明】1.通过简单知识⼩测,让学⽣体会成就感的同时回顾本章知识.2.利⽤⼩组竞争提⾼学⽣的数学学习兴趣.三、知识要点,整体把握【教学说明】1.通过构建框图,帮助学⽣回忆本节所有基本概念和基本⽅法.2.帮助学⽣找出知识间联系,如平⽅与开平⽅,平⽅根与⽴⽅根,有理数与实数等等.四、类⽐精讲,释疑解惑【教学说明】在例题的分析讲解后,学⽣马上进⾏相关练习训练,通过师⽣互动形式,达到学以致⽤的效果。
例1.在实数21,3-,-3.14,0,π,2.161161161…,316中,⽆理数有() A.1个 B.2个 C.3个 D.4个分析:准确地进⾏实数的分类,能将各个数落相应类别的位置上.类⽐精练1.下列实数中,⽆理数是() A.4 B.2π C.2.161161116 D. 722 例2.若(a+1)2+02-b =,则a ,b 的值为 .【教学说明】本题由两个⾮负数的和为0,得到两个⾮负数为0,求出a,b 的值. 类⽐精练2.若x,y 为实数,且︱x+2︱+2-y =0,则2017)(y x 的值为() A.1 B.-1 C.2 D. -2 例3.计算(1)328163+-)((2)361535-++-【教学说明】实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适⽤.在进⾏实数混合运算时,⾸先要观察算式的特点,选择合适的⽅法进⾏计算.⼀般按照先乘⽅,后乘除,再加减的顺序计算,另外还要注意符号.类⽐精练3.(1)2325276)()(-+- (2)32274123-++-)(五、随堂练习,巩固要点4.下列等式正确的是()A. 13169±=B.552--=)(C. 327-D.1251253=--5.在10,3,325,-4中,最⼤的⼀个是()A. 10B.3C. 325D.-46.设a 为整数,若a 在数轴上的对应点如图所⽰,则a 的取值范围是()A.2﹤a ﹤3B. 4﹤a ﹤9C. -2﹤a ﹤3D. -4﹤a ﹤97.若1.1001.102=,则±0201.1=8.若10的纯⼩数是a ,则a =9.若a a --332=)(,则a 与3的⼤⼩关系是 .11.如果⼀个数的两个平⽅根分别是 2a-3和a+9,求这个数.【教学说明】结合中考考点,有针对性地进⾏训练,提⾼学⽣解题能⼒.六、拓展训练,能⼒提升14.已知a,b,c 为实数,且它们在数轴上的对应点位置如图所⽰:化简:a c a c b a b 2)(222---++-)(【教学说明】多块知识点相关结合,为中等能⼒的学⽣提升知识运⽤能⼒.七、作业布置:1.布置作业:课本P61 3.8.92.完成优化设计的课时的练习.教学反思:1.本课时教学可应⽤不同形式的练习引导学⽣认识相关的基本概念,强化对基本概念的理解以利于进⾏运算与判断.2.注重分类思想的认识与理解,强调实数计算能⼒的训练,打下坚实的运算能⼒的基础.。
可编辑修改精选全文完整版实数复习课一、学生起点分析本章学习至此,学生已经认识了无理数,学习了实数概念及相关运算,从而将原有有理数扩充到了实数范围,使得对数的认识更进一步深入,让学生感受到了数系扩充的必要性与作用.在前面的探究活动中,学生已经掌握了相关数学知识,并具备了一定的数学能力,掌握了类比、数形结合等数学思想方法,也具备了一定的合作学习经验,为学习本节“知识回顾与思考”奠定了基础.二、教学任务分析本章是在学习了勾股定理及有理数等知识的基础上,进行的数系第二次扩张,使学生对数的认识进一步深入.本课是对整章内容的复习与归纳,在教学过程中不必多过地追求概念,只要学生能够结合具体情境,从意义上理解主要概念即可.作为复习归纳课,学生虽对相关知识基本掌握,但是知识间的联系还不够清楚,对于一些综合性较强的题在方法上还有所欠缺,因此本节的教学中应将整章知识点进行梳理整合,并以典型题作为载体让学生从题中悟知识点,从题中悟数学思想与方法.因此,本节课的教学目标是:①复习无理数、算术平方根、平方根、立方根、实数、二次根式及相关概念,会用根号表示,并会求数的平方根、立方根并进行相关运算;②在实数的有关概念和运算律、运算法则的教学中,让学生体会类比的思想;③通过复习提高学生归纳整理的能力,并在师生互动、生生互动的过程中让学生学会倾听学会交流;本章概念较多,学生容易混淆,因此本节的重点应帮助学生理清无理数、算术平方根、平方根、立方根、实数、二次根式的概念.本章的难点体现在以下几处:①算术平方根的双重非负性有着重要的作用,常与平方、绝对值等具有非负性的知识结合在一起应用;②实数的混合运算也一向是学生计算的难点,学生往往在运算顺序、运算法则上出错;③本章对学生数形结合的能力有较高要求,如实数与几何知识勾股定理结合在一起就是学生掌握的难点.本章的知识结构框图222330)x a x a x ax a xx a a xx a x a x ax a xa⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩⎧=⎪⎪==⎨⎪=⎪⎩⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数叫做二次根式二次根式最简二次23(0)0,0)0,0)a aaaaa ba b⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎪⎪⎧=≥⎪⎪=⎪⎪=⎪⎪⎪=⎪⎪=≥≥⎪⎪=≥≥⎪⎪⎪⎩根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用教学反思1.选择性的使用例题在此教学设计中,例题数量并不少,针对不同的学生群体,老师可适当删减,做到有的放矢,但是建议概念例题保留.2.给予学生充分的表达和交流的机会老师可以在前四个环节中根据具体情况采用不同的教学方法,可以师生互动也可以生生互动,通过交流讨论让学生学会表达、学会倾听、学会归纳.其实教学活动最主要的意图就是让学生主动起来,应多给予学生交流的时间与机会.3.注意收集学生生成性的学习资源在师生的问答活动中、在学生的独立思考中、在生生之间的互动交流中都会迸发出许多我们难以预料的惊喜或困惑,也许是一些精彩的发言、也许是一个精妙的方法、也许是一个典型的错误、也许一个重要的经历、也许是一串宝贵的收获…这些在课堂中新生成的资源是学生学习过程中的宝贵财富,因此我们应鼓励学生多收集这些闪光点用以形成自己可以学习借鉴的学习资源.。