基于半导体激光器的气体传感器
- 格式:pptx
- 大小:1.15 MB
- 文档页数:13
激光气体传感器原理
激光气体传感器是一种基于激光技术的气体检测装置。
其原理基于气体分子对特定波长的激光光束的吸收特性。
激光气体传感器通常由激光发射器、气体室、光电探测器和信号处理器四个主要部分组成。
首先,激光发射器会产生一束特定波长的激光光束,该波长会被目标气体分子吸收。
然后,激光光束通过气体室,室内填充着待检测气体,目标气体分子吸收一部分光强,使得通过光电探测器的光强减弱。
光电探测器会将光强的变化转化为电信号,并将其传送给信号处理器。
信号处理器会对电信号进行放大、滤波和数字化处理,得出目标气体浓度的相关数据。
通过与预先校准的气体浓度曲线进行比对,信号处理器可以计算出目标气体的浓度。
这样,激光气体传感器就可以实现对目标气体浓度的快速、准确和实时检测。
激光气体传感器具有灵敏度高、响应速度快、抗干扰能力强等优点,能够广泛应用于环境检测、工业生产、气体监测等领域。
然而,激光气体传感器也存在一些局限性,如对环境温度变化敏感、对气体组分有一定的选择性等。
因此,在实际应用中需要根据具体需求选择合适的激光气体传感器。
半导体气体传感器原理
半导体气体传感器是利用气体在半导体表面的氧化还原反应导致敏感元件电阻值发生变化而制成的。
具体来说,当气体接触到半导体表面时,被吸附的分子首先在物体表面自由扩散,失去运动能量,一部分分子被蒸发掉,另一部分残留分子产生热分解吸附在物体表面。
如果半导体的功函数小于吸附分子的亲和力,则吸附分子将从器件夺走电子而变成负离子吸附,半导体表面呈现电荷层。
例如氧气,等具有负离子吸附倾向的气体被称为氧化型气体。
如果半导体的功函数大于吸附分子的离解能,吸附分子将向器件释放出电子,而形成正离子吸附。
具有正离子吸附倾向的气体有氢气、一氧化碳等,它们被称为还原性气体。
当氧化型气体吸附到n型半导体,还原性气体吸附到p 型半导体上时,将使半导体载流子减少,而使电阻增大。
当还原型气体吸附到n型半导体上,氧化型气体吸附到p型半导体上时,则载流子增多,半
导体阻值下降。
以上信息仅供参考,如需了解半导体气体传感器原理的更多信息,建议查阅相关书籍或论文。
中科院半导体所科技成果——基于TDLAS技术的气体传感器项目成熟阶段生长期项目来源公益行业(气象)专项资金成果简介基于可调谐二极管激光器吸收光谱技术(TDLAS)的气体传感器,是结合光电子学,光谱学,以及微弱信号处理等高新技术的气体传感器系统。
该设备与传统的气体传感器装置(电化学法,气象色谱法,吸附法)相比具有更高的灵敏度,更精确的测量数据,更快的响应速度,以及在线实时测量等特点。
通过内建程序及显示屏,可以实时显示当前的待测气体浓度,以及各测量量随时间变化的曲线。
标准的RS232通信接口可以方便的向上位机传输实时测量数据。
通过光纤和电缆的延伸,可以进行远端在线测试。
通过可更换的气室选择,完成不同环境下的测试任务。
并且我们可以根据客户的要求进行定制气体(H2O、NO、CH4、HF)的测试。
技术特点基于可调谐二极管激光吸收光谱技术,通过向待测气体发射特定波长的激光,并对穿过气体的激光信号进行解调,分析气体的组分和浓度。
利用光吸收技术进行气体浓度测试,不会对气体组分造成影响,并且响应速度很快,可以进行实时监测及数据采集。
通过延长的光纤和电缆,可以将传感器深入到人身无法达到的地方及环境,进行远程测试。
专利情况多项专利技术申请中,其中已授权1项。
市场分析根据我们目前的调研情况,目前能够很容易检测的气体包括H2O、NH3、NO、HF、HBr、HI、CH4,其中H2O和HF的检测灵敏度可以高达100个ppb,是目前同类型传感器中灵敏度最高的检测手段。
上述气体都是化工生产、气象监测、特种气体测量(如SF6中的水汽测量、矿井的瓦斯监测等),因此该类传感器具有非常广阔的应用前景。
另外,目前国家在环境监控非常重视,其中一些危险气体的检测缺乏体积小、灵敏度高、响应时间快的传感器技术,因此该技术还能在国家安全和环境控制方面发挥重要的作用。
合作方式技术入股产业化所需条件企业提供厂房、基础建设、资金、可靠性试验设备、人员配合。
简述半导体气体传感器工作原理
半导体气体传感器是一种常用的气体检测设备,广泛应用于工业生产、环境监测、安全防护等领域。
其工作原理基于半导体材料对不同气体的吸附作用,通过测量半导体材料电阻的变化来实现气体浓度的检测。
半导体气体传感器的核心部件是由半导体材料制成的传感元件。
当目标气体接触到传感元件表面时,会发生化学反应,导致传感元件表面电子浓度的变化。
这种表面电子浓度的变化将影响半导体材料的电阻,从而实现对气体浓度的监测。
半导体气体传感器的工作原理是基于半导体材料的吸附作用。
不同的气体在半导体表面的吸附作用不同,导致表面电子浓度的变化也不同。
通过测量半导体材料电阻的变化,可以间接地反映出目标气体的浓度。
半导体气体传感器还可以通过加热传感元件来提高传感器的灵敏度。
加热传感元件可以促进目标气体在表面的吸附和反应,从而加快传感器的响应速度和稳定性。
总的来说,半导体气体传感器的工作原理是基于半导体材料表面对目标气体的吸附作用,通过测量半导体材料电阻的变化来实现对气体浓度的检测。
通过不断优化传感元件的材料和结构,可以提高传感器的检测灵敏度和稳定性,满足不同应用场景的需求。
常用气体检测技术比较气体检测仪从检测机理上可分为热催化、光干涉、气敏半导体、电化学、红外吸收等几大类,其中市场以热催化组件为主导。
主要气体检测技术性能比较Beer -Lambert 定律Beer -Lambert 定律描述,电磁辐射与原子和分子间的相互作用是光谱遥感探测污染物成分以及特性的基础,根据环境中痕量气体成分在紫外、可见和红外光谱的特征吸收性质来反演其浓度。
可调谐二极管激光光谱吸收技术作为光学遥感方法的一种,是用几百米到几公里,甚至更长的光程代替了传统试验室中的取样池,采用检测激光光束的透射谱,即使光束从待测气体的一侧入射通过污染气体,在另一端出射用探测器接收的方法。
发射器与接收器间的距离确定了光程(大气的折射率近似为1.0),测量原理基于Beer -Lambert 定律。
在Beer -Lambert 定律中,一些基本概念如下:透射率(纵坐标--透射光谱):0()()100%()I T I γγγ=⨯吸光度(纵坐标--吸光光谱):1()()lg I A γγ=波长和波数的关系:波长(um )⨯波数(1cm -)=100000()()exp(())I I C L λλσλ=-⋅⋅其中,()I λ为为透射光谱强度;0()I λ为激光的初始强度;()σλ则表示在波长入处的分子吸收系数,C 即为吸收物质的浓度,L 为总的光程。
进一步,根据实际应用要求,将上面的公式改进为:0()()exp(()())I I P S T C L λλφλ=-⋅⋅⋅其中,()S T 为谱线的线强度,只与温度有关,单位(cm -2Mpa),可以运用HITRAN 数据库直接进行计算得出;P 为气体的总压,单位Mpa;()φλ为线性函数,表示被测吸收谱线的性质与温度、压强和气体的种类等有关。
可调谐二极管激光吸收检测技术可调谐二极管激光吸收光谱技术(Tunable Diode Laser Absorption Spectroscopy TDLAS )是一种吸收光谱技术,通过分析测量光束被气体的选择吸收获得气体浓度。
基于半导体激光器的气体传感器研究基于可调谐半导体激光吸收光谱技术(TDLAS)的气体传感技术在气体浓度检测领域具有其他方法无可比拟的优势:具有很高的测量精度,可达ppm甚至ppb量级;针对性强,不会被其他气体成分干扰,可同时对多种气体进行检测;具有极快的响应速度;测量过程中与气体无接触且不对待测气体产生影响;由于采用DFB激光器检测气体,可以有效抵抗腐蚀及电磁干扰,并且可以工作在人类无法靠近或接触的各种恶劣环境中。
本文主要从利用TDLAS技术对有毒、有害气体如二氧化硫、二氧化氮进行浓度检测出发,介绍了相关的研究背景、研究意义,将其他几种气体浓度检测方法与基于TDLAS的浓度检测方法进行比较,后者表现出巨大的优越性;接着介绍了测量原理,提出了适应不同情况的两种测量方法:直接法和谐波法;随后分别从气体吸收峰的选择、激光器的选择、温控电路设计、程控电流源设计等方面介绍了系统各组成部分具体方案设计,接着得出了大概的测量结果;最后对全文进行总结并对TDLAS技术的发展前景给予展望。
关键词:DFB激光器,TDLAS,二氧化硫,浓度检测,谐波法目录摘要......................................................................... 错误!未定义书签。
Abstract...................................................................... 错误!未定义书签。
目录 (I)第一章绪论 (1)1.1 引言 (1)1.2 常见的气体分析技术介绍 (2)1.2.1 化学分析法 (2)1.2.2 气相色谱法 (2)1.2.3 吸收光谱法 (3)1.2.4 可调谐半导体激光吸收光谱(TDLAS)技术 (4)1.3 TDLAS技术国内外研究现状和发展趋势 (5)1.4 本文的主要工作 (6)第二章可调谐半导体激光吸收光谱技术 (7)2.1 检测原理 (7)2.2 气体吸收的两种情况 (8)2.3 吸收峰的锁定方法 (11)2.4 锁相放大技术 (14)第三章基于TDLAS的气体浓度检测系统设计 (15)3.1 系统总体设计 (15)3.2 系统具体方案设计 (15)3.2.1 气体吸收峰的选择 (15)3.2.2 激光器的选择 (17)3.2.3 激光器温控电路设计 (19)3.2.4 激光器程控电流源设计 (20)3.2.5 待测气体气室设计 (21)3.2.6 光电探测器的选择 (22)3.2.7 调理电路的设计 (23)3.3 装置及测量结果 (24)第四章结论和展望 (26)4.1 结论 (26)4.2 展望 (26)第一章绪论1.1 引言随着社会经济的的飞速发展,人们的生活条件显著提升,由此带来的环境问题也愈发严峻。
n型半导体气体传感N型半导体气体传感N型半导体气体传感器是一种常见的气体检测设备,广泛应用于工业生产、环境监测以及个人防护等领域。
本文将介绍N型半导体气体传感器的原理、特点及其应用。
1. 原理N型半导体气体传感器的工作原理基于半导体材料对特定气体的敏感性。
这种传感器通常由N型半导体材料构成,它的电阻随气体浓度的变化而变化。
当目标气体分子与半导体表面发生相互作用时,电子会从半导体材料中传递到气体分子上,导致电子浓度减少,从而使电阻增加。
通过测量电阻的变化,可以确定目标气体的浓度。
2. 特点(1)高灵敏度:N型半导体气体传感器能够对目标气体的浓度变化非常敏感,能够检测到非常低浓度的气体。
(2)快速响应:传感器对气体浓度的变化能够迅速响应,实时反映环境中目标气体的浓度变化。
(3)稳定性:N型半导体气体传感器具有较高的稳定性,能够长时间稳定地工作而不受环境变化的影响。
(4)可靠性高:传感器具有较长的使用寿命和较低的失效率,能够在恶劣的环境条件下正常工作。
3. 应用(1)工业生产:N型半导体气体传感器广泛应用于工业领域,例如煤气检测、甲醛检测、有毒气体检测等。
它们可以帮助工厂保护生产人员的安全,预防事故的发生,保证生产线的正常运行。
(2)环境监测:随着城市化进程的加快和环境污染的加重,N型半导体气体传感器被广泛用于环境监测领域。
例如,它可以用于检测空气中的有害气体浓度,如二氧化硫、一氧化碳等,从而实时监测并提醒公众环境质量状况。
(3)个人防护:一些工作场所可能存在有害气体,例如化工厂、矿井等。
在这些场所,人们可以佩戴装备了N型半导体气体传感器的个人防护器,及时监测周围气体浓度,提醒人们避开可能的危险区域,保护工作人员的生命安全。
总结N型半导体气体传感器是一种常见的气体检测设备,通过测量电阻的变化来实时监测目标气体的浓度。
它具有高灵敏度、快速响应、稳定性和可靠性高的特点。
广泛应用于工业生产、环境监测和个人防护等领域,帮助提高生产安全、改善环境质量、保护工作人员的生命安全。
气体传感器在半导体中的研究报告气体传感器在半导体中的研究报告1. 引言气体传感器是一种广泛应用于各个领域的重要技术。
它们可以检测空气中的各种有害气体,如二氧化碳、一氧化碳、甲醛等。
气体传感器的研究对于环境保护、工业生产以及健康监测等领域具有重要意义。
本文将深入探讨气体传感器在半导体中的研究进展,以及我对该领域的观点和理解。
2. 气体传感器的基本原理气体传感器的工作原理基于半导体材料的电学特性,在气体的存在下导致电导率或电阻率的变化。
半导体材料可以是金属氧化物、半导体合金或其他特殊的半导体材料。
当气体分子与表面发生反应时,电子的迁移率或电阻率将发生变化,并通过测量电流或电阻的变化来检测气体的存在。
3. 半导体材料在气体传感器中的应用(1)金属氧化物半导体(MOX):该类材料具有灵敏度高、成本低的特点,被广泛应用于气体传感器中。
常见的金属氧化物半导体材料有二氧化锡、二氧化钛和二氧化锡等。
它们的传感性能可以通过改变表面形貌、添加掺杂剂或制备纳米结构来进一步优化。
(2)半导体量子点:半导体量子点是一种新兴的半导体材料,在气体传感器中也得到了广泛的应用。
量子点的表面积大,具有高传感性能和高灵敏度,能够检测到很低浓度的气体。
量子点的能带结构也可以通过外界条件(如光照、温度变化等)进行调控,从而实现对气体的选择性检测。
(3)其他半导体材料:除了金属氧化物和量子点,还有一些其他的半导体材料被用于气体传感器中。
锡硅材料可以实现对一氧化碳等有害气体的高灵敏度检测。
一些新型的有机半导体材料也被应用于气体传感器,具有较高的选择性和响应速度。
4. 气体传感器研究的挑战尽管气体传感器在各个领域得到了广泛的应用,但仍然存在一些挑战需要解决。
传统的气体传感器在温度、湿度等环境条件变化时会出现性能不稳定的情况。
选择性检测不同的气体也是一个挑战,因为不同的气体具有不同的特征和特性。
传感器的灵敏度和响应速度也需要进一步提高,以满足复杂环境下的检测需求。
简述半导体气体传感器工作原理。
半导体气体传感器是一种常见的气体检测仪器,用于检测环境中的有害气体浓度。
其工作原理主要基于半导体材料在不同气体环境下电气特性的变化。
半导体气体传感器的核心部分是一块半导体材料,一般采用金属氧化物半导体或二氧化钛等材料。
这些材料的电阻随着环境中不同气体的存在而发生变化,从而实现对该气体浓度的检测。
具体来说,当气体分子与半导体表面相接触时,它们会与半导体表面发生反应,从而改变了半导体中的自由电子或空穴的浓度,进而导致电阻发生变化。
不同的气体对半导体材料的电学特性影响不同,因此可以通过检测不同气体下半导体电阻的变化来确定环境中该气体的浓度。
半导体气体传感器通常与电路配合使用,以实现对检测数据的采集、处理和显示。
在实际应用中,传感器的工作电极和参考电极之间的电阻被通过电路测量并转化为相应的电压信号,然后通过模数转换器转换成数字信号,最后通过显示器显示出来。
一些高级的半导体气体传感器一般还有一些额外的功能,例如温度和湿度补偿,噪声滤波等,以提高传感器的准确性和稳定性。
总的来说,半导体气体传感器采用半导体材料的电学特性敏感性来检测气体的浓度,具有结构简单、响应速度快、易于制造和维护等优点,因此被广泛应用于环保、化工、医疗、智能家居等领域。