2016年山东省临沂中考试题数学卷
- 格式:doc
- 大小:358.50 KB
- 文档页数:7
绝密★启用前试卷类型:A2016年临沂市初中学生学业考试试题数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数—3、0、1、2,其中负数是(A) —3. (B) 0.(C) 1 (D) 2.2.如图,直线AB∥CD,∠A = 40°,∠D = 45°,则∠1等于(A) 80°.(B) 85°. (C) 90°. (D) 95°.3.下列计算正确的是(A) 32x x x-=. (B) 326x x x⋅=. (C).32x x x÷=(D).325()x x=4.不等式组33324xxx⎧⎪⎨-⎪⎩<+≥2,的解集,在数轴上表示正确的是5.如图,一个空心圆柱体,其主视图正确的是45°40°1D CB A6.某校九年级一共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是 (A) 18. (B). 16 (C) 38. (D) 12. 7. 一个正多边形内角和等于540°,则这个正多边形的每一外角等于(A) 108°. (B) 90°. (C) 72°. (D) 60°.8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是,78()3230x y A x y +=⎧⎨+=⎩ 78()2330x y B x y +=⎧⎨+=⎩ 30()2378x y C x y +=⎧⎨+=⎩ 30()3278x y D x y +=⎧⎨+=⎩ 9.某老师为了解学生周末学习情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是(A) 4.(B) 3.(C) 2 (D) 1. 10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C.若∠ACB=30°,(B) 6π.6π-. 6π. 11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是第3个图形第2个图形第1个图形(A) 2n+1. (B) n2-1. (C) n2+2n. (D) 5n-2.12.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD、BD,则下列结论:①AC=AD;②BD ⊥AC;③四边形ACED是菱形.其中正确的个数是(A) 0 . (B) 1 .(C) 2 . (D) 3 .13.二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:下列说法正确的是(A)抛物线的开口向下(B) 当x>—3时,y随x的增大而增大.(C) 二次函数的最小值是—2(D) 抛物线的对称轴是x=—52.14.直线y=—x+5与双曲线kyx=(x>0)相交于A、B两点,与x轴相交于C点,△BOC的面积是52.若将直线y=—x+5向下平移1个单位,则所得直线与双曲线kyx=(x>0)的交点有(A) 0个.(B) 1个.(C) 2个.(D) 0个,或1个,或2个.第Ⅱ卷(非选择题共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x3—2x2+x=.16.计算:aaa-+-1112= .17.如图,在△ABC中,点D、E、F分别在AB、AC、BC上,DE∥BC,EF//AB.若AB=8,BD=3,BF=4,则FC的长为.EDCBA第18题图第17题图AB C D EFOG F EDC B A18.如图,将一张矩形纸片ABCD 折叠,使两个顶点A 、C 重合,折痕为FG ,若AB=4,BC=8,则△ABF 的面积为 .19.一般地,当α、β为任意角时,sin (α+β)与sin (α—β)的值可以用下面的公式求得:sin (α+β)=sin αcos β+cos αsin β;sin (α—β)= sin αcos β—cos αsin β .例如sin90°=sin (60°+30°)= sin60°cos30°+cos60°sin30°=21212323⨯+⨯=1 . 类似地,可以求得sin15°的值是 .20. (本小题满分7分)计算:|—3|+3tan30°—12—(2016—π)021. (本小题满分7分)为了解某校九年级学生的身高情况,随机抽取了部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表 频数分布直方图(1)填空:a= ,b= ;(2)补全频数分布直方图;(3)该校九年级一共有600名学生,估计身高不低于165cm 的学生大约有多少人?22. (本小题满分7分)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45方向上的B 处(参考数据:3≈1.732,结果精确到0.1)?23. (本小题满分9分)如图,A 、P 、B 、C 是圆上的四个点,∠APC=∠CPB=60°,AP 、CB 的延长线相交于点D.(1)求证:△ABC 是等边三角形;(2)若∠PAC=90°,AB=23,求PD 的长.24. (本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明应选择哪家快递公司更省钱?25.(本小题满分11分)如图1,在正方形ABCD 中,点E 、F 分别是边BC 、AB 上的点,且CE=BF.连接DE ,过点E 作EG ⊥DE ,P D C BA 东北使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断并予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.(本题满分13分)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
2016年山东省临沂市中考数学真题一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的.1.四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.22.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°3.下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x54.不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.如图,一个空心圆柱体,其主视图正确的是()A.B.C.D.6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.110.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是()A. B.C.﹣D.﹣11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣212.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.313.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣14.如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个二、填空题(共5小题,每小题3分,满分15分)15.分解因式:x3﹣2x2+x=.16.化简=.17.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.第17题图第18题图18.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.19.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.三、解答题(共7小题,满分63分)20.计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表身高分组频数百分比x<155 5 10%155≤x<160 a 20%160≤x<165 15 30%165≤x<170 14 bx≥170 6 12%总计100%(1)填空:a=,b=;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?22.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?23.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2016年山东省临沂市中考数学试卷参考答案与试题解析一、选择题1-5.ABCAB 6-10.BCDBC11-14.CDDB二、填空题15.x(x﹣1)2.16.a+1.17..18.6.19..三、解答题(共7小题,满分63分)20.解:原式=3+×﹣2﹣1=3﹣2.21.解:(1)由表格可得,调查的总人数为:5÷10%=50,∴a=50×20%=10,b=14÷50×100%=28%,故答案为:10,28%;(2)补全的频数分布直方图如下图所示,(3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.22.解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.23.(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.24.解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.25.解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE∵四边形ABCD是正方形,∴CD=BC,∴HE=BC∴HE+EB=BC+EB∴BH=EC∴FG=EC(3)成立.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.26.解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0,10),C(8,4),∴,∴,∴抛物线解析式为y=x2﹣x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1,当P,Q运动t秒,即OP=2t,CQ=10﹣t时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t=,∴当运动时间为时,PA=QA;(3)存在,∵y=x2﹣x,∴抛物线的对称轴为x=,∵A(5,0),B(0,10),∴AB=5设点M(,m),①若BM=BA时,∴()2+(m﹣10)2=125,∴m1=,m2=,∴M1(,),M2(,),②若AM=AB时,∴()2+m2=125,∴m3=,m4=﹣,∴M3(,),M4(,﹣),③若MA=MB时,∴(﹣5)2+m2=()2+(10﹣m)2,∴m=5,∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),。
2016年山东省临沂市中考数学试卷一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的. 1.(3分)(2016•临沂)四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.22.(3分)(2016•临沂)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°3.(3分)(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x54.(3分)(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(3分)(2016•临沂)如图,一个空心圆柱体,其主视图正确的是()A. B.C.D.6.(3分)(2016•临沂)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.7.(3分)(2016•临沂)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.(3分)(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.9.(3分)(2016•临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.110.(3分)(2016•临沂)如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是()A.B.C.﹣ D.﹣11.(3分)(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣212.(3分)(2016•临沂)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.32A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣14.(3分)(2016•临沂)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C 点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2016•临沂)分解因式:x3﹣2x2+x=.16.(3分)(2016•临沂)化简=.17.(3分)(2016•临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.18.(3分)(2016•临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.19.(3分)(2016•临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.三、解答题(共7小题,满分63分)20.(7分)(2016•临沂)计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.21.(7分)(2016•临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:a=,b=;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?22.(7分)(2016•临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?23.(9分)(2016•临沂)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.24.(9分)(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25.(11分)(2016•临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.(13分)(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2016年山东省临沂市中考数学试卷参考答案与试题解析一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的. 1.(3分)(2016•临沂)四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.2【分析】﹣3小于零,是负数,0既不是正数正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选:A.2.(3分)(2016•临沂)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°【分析】根据∠1=∠D+∠C,∠D是已知的,只要求出∠C即可解决问题.【解答】解:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.3.(3分)(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5【分析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案.【解答】解:A、x3﹣x2,无法计算,故此选项错误;B、x3•x2=x5,故此选项错误;C、x3÷x2=x,正确;D、(x3)2=x5,故此选项错误;故选:C.4.(3分)(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【分析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.5.(3分)(2016•临沂)如图,一个空心圆柱体,其主视图正确的是()A. B.C.D.【分析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:B.6.(3分)(2016•临沂)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故选B.7.(3分)(2016•临沂)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.8.(3分)(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.9.(3分)(2016•临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.1【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【解答】解:根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学习的平均时间是3小时;故选B.10.(3分)(2016•临沂)如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是()A.B.C.﹣ D.﹣【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO﹣S扇形OBD计算即可.【解答】解:连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在RT△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S阴=S△ABO﹣S扇形OBD=×1×﹣=﹣.故选C.11.(3分)(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.12.(3分)(2016•临沂)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.2下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.14.(3分)(2016•临沂)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C 点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个【分析】令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,通过令直线y=﹣x+5中x、y分别等于0,得出线段OD、OC的长度,根据正切的值即可得出∠DCO=45°,再结合做的两个垂直,可得出△OEC与△BFC都是等腰直角三角形,根据等腰直角三角形的性质结合面积公式即可得出线段BC的长,从而可得出BF、CF的长,根据线段间的关系可得出点B的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论.【解答】解:令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,如图所示.令直线y=﹣x+5中x=0,则y=5,即OD=5;令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO==1,∠DCO=45°.∵OE⊥AC,BF⊥x轴,∠DCO=45°,∴△OEC与△BFC都是等腰直角三角形,又∵OC=5,∴OE=.∵S△BOC=BC•OE=×BC=,∴BC=,∴BF=FC=BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴点B的坐标为(4,1),∴k=4×1=4,即双曲线解析式为y=.将直线y=﹣x+5向下平移1个单位得到的直线的解析式为y=﹣x+5﹣1=﹣x+4,将y=﹣x+4代入到y=中,得:﹣x+4=,整理得:x2﹣4x+4=0,∵△=(﹣4)2﹣4×4=0,∴平移后的直线与双曲线y=只有一个交点.故选B.二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2016•常州)分解因式:x3﹣2x2+x=x(x﹣1)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.16.(3分)(2016•临沂)化简=a+1.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣=a+1.故答案为:a+1.17.(3分)(2016•临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.【分析】直接利用平行线分线段成比例定理得出==,进而求出答案.【解答】解:∵DE∥BC,EF∥AB,∴==,∵AB=8,BD=3,BF=4,∴=,解得:FC=.故答案为:.18.(3分)(2016•临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为6.【分析】根据折叠的性质求出AF=CF,根据勾股定理得出关于CF的方程,求出CF,求出BF,根据面积公式求出即可.【解答】解:∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,∴FG是AC的垂直平分线,∴AF=CF,设AF=FC=x,在Rt△ABF中,有勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得:x=5,即CF=5,BF=8﹣5=3,∴△ABF的面积为×3×4=6,故答案为:6.19.(3分)(2016•临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.【分析】把15°化为60°﹣45°,则可利用sin(α﹣β)=sinα•cosβ﹣cosα•sinβ和特殊角的三角函数值计算出sin15°的值.【解答】解:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=•﹣•=.故答案为.三、解答题(共7小题,满分63分)20.(7分)(2016•临沂)计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果.【解答】解:原式=3+×﹣2﹣1=3﹣2.21.(7分)(2016•临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:a=10,b=28%;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?【分析】(1)根据表格中的数据可以求得调查的学生总数,从而可以求得a的值,进而求得b的值;(2)根据(1)中的a的值可以补全频数分布直方图;(3)根据表格中的数据可以估算出该校九年级身高不低于165cm的学生大约有多少人.【解答】解:(1)由表格可得,调查的总人数为:5÷10%=50,∴a=50×20%=10,b=14÷50×100%=28%,故答案为:10,28%;(2)补全的频数分布直方图如下图所示,(3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.22.(7分)(2016•临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.23.(9分)(2016•临沂)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形PAC和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.24.(9分)(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【分析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.【解答】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.25.(11分)(2016•临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【分析】(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.【解答】解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE∵四边形ABCD是正方形,∴CD=BC,∴HE=BC∴HE+EB=BC+EB∴BH=EC∴FG=EC(3)成立.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.26.(13分)(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC 是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,【解答】解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0,10),C(8,4),∴,∴,∴抛物线解析式为y=x2﹣x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1,当P,Q运动t秒,即OP=2t,CQ=10﹣t时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t=,∴当运动时间为时,PA=QA;(3)存在,∵y=x2﹣x,∴抛物线的对称轴为x=,∵A(5,0),B(0,10),∴AB=5设点M(,m),①若BM=BA时,∴()2+(m﹣10)2=125,∴m1=,m2=,∴M1(,),M2(,),②若AM=AB时,∴()2+m2=125,∴m3=,m4=﹣,∴M3(,),M4(,﹣),③若MA=MB时,∴(﹣5)2+m2=()2+(10﹣m)2,∴m=5,∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),参与本试卷答题和审题的老师有:妮子;弯弯的小河;sd2011;zgm666;三界无我;gsls;王学峰;lantin;zjx111;曹先生;gbl210;马兴田;sks;神龙杉;星月相随(排名不分先后)菁优网2016年8月27日。
绝密★启用前 试卷类型:A2016年临沂市初中学生学业考试试题数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数—3、0、1、2,其中负数是 (A) —3. (B) 0.(C) 1(D) 2.2.如图,直线AB ∥CD ,∠A = 40°,∠D = 45°,则∠1等于 (A) 80°. (B) 85°. (C) 90°.(D) 95°.3.下列计算正确的是(A) 32x x x -=. (B) 326x x x ⋅=. (C). 32x x x ÷= (D). 325()x x =4.不等式组33324x x x ⎧⎪⎨-⎪⎩<+≥2,的解集,在数轴上表示正确的是5.如图,一个空心圆柱体,其主视图正确的是45°40°1DCBA6.某校九年级一共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是(A) 18.(B).16 (C) 38.(D) 12.7. 一个正多边形内角和等于540°,则这个正多边形的每一外角等于(A) 108°.(B) 90°. (C) 72°.(D) 60°.8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是,78()3230x y A x y +=⎧⎨+=⎩ 78()2330x y B x y +=⎧⎨+=⎩ 30()2378x y C x y +=⎧⎨+=⎩ 30()3278x y D x y +=⎧⎨+=⎩ 9.某老师为了解学生周末学习情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是 (A) 4. (B) 3.(C) 2(D) 1.10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C.若∠ACB=30°,AB=3,则阴影部分面积是 (A)3. (B)6π. (C) 36π-. (D)36π-. 11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是第3个图形第2个图形第1个图形(A) 2n+1.(B) n 2-1. (C) n 2+2n.(D) 5n-2.12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连DA接AD 、BD ,则下列结论:①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是 (A) 0 . (B) 1 . (C) 2 .(D) 3 .13. 二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如下表: x … -5 -4 -3 -2 -1 0 … y…4-2-24…(A)抛物线的开口向下 (B) 当x >—3时,y 随x 的增大而增大. (C) 二次函数的最小值是—2 (D) 抛物线的对称轴是x=—52. 14.直线y=—x+5与双曲线ky x=(x >0)相交于A 、B 两点,与x 轴相交于C 点,△BOC 的面积是52.若将直线y=—x+5向下平移1个单位,则所得直线与双曲线ky x =(x >0)的交点有 (A) 0个.(B) 1个. (C) 2个.(D) 0个,或1个,或2个.第Ⅱ卷(非选择题 共78分)二、填空题(本大题共5小题,每小题3分,共15分) 15.分解因式:x 3—2x 2+x= .16.计算:aa a -+-1112= . 17.如图,在△ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,EF//AB.若AB=8,BD=3,BF=4,则FC 的长为 .第18题图第17题图ABCD EFOGF EDCBA18.如图,将一张矩形纸片ABCD 折叠,使两个顶点A 、C 重合,折痕为FG ,若AB=4,BC=8,则△ABF 的面积为 .19.一般地,当α、β为任意角时,sin (α+β)与sin (α—β)的值可以用下面的公式求得: sin (α+β)=sin αcos β+cos αsin β;sin (α—β)= sin αcos β—cos αsin β .例如sin90°=sin (60°+30°)= sin60°cos30°+cos60°sin30°=21212323⨯+⨯=1 . 类似地,可以求得sin15°的值是 . 20. (本小题满分7分)计算:|—3|+3tan30°—12—(2016—π)021. (本小题满分7分)为了解某校九年级学生的身高情况,随机抽取了部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表 频数分布直方图(1)填空:a= ,b= ; (2)补全频数分布直方图;(3)该校九年级一共有600名学生,估计身高不低于165cm 的学生大约有多少人?22. (本小题满分7分)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45方向上的B 处(参考数据:3≈1.732,结果精确到0.1)?23. (本小题满分9分)如图,A 、P 、B 、C 是圆上的四个点,∠APC=∠CPB=60°,AP 、CB 的延长线相交于点D. (1)求证:△ABC 是等边三角形;(2)若∠PAC=90°,AB=23,求PD 的长.身高分组 频数 百分比 x <155 5 10% 155≤x <160 a 20% 160≤x <165 15 30% 165≤x <170 14 b x ≥170 6 12% 总计100%PAP BA东北45°60°24. (本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明应选择哪家快递公司更省钱?25.(本小题满分11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断并予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.(本题满分13分)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。
2016年山东省临沂市中考数学试卷一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的.1. 四个数−3,0,1,2,其中负数是()A.−3B.0C.1D.2【答案】A【考点】正数和负数的识别【解析】−3小于零,是负数,0既不是正数正数也不是负数,1和2是正数.【解答】解:∵−3<0,且小于零的数为负数,∴−3为负数.故选A.2. 如图,直线AB // CD,∠A=40∘,∠D=45∘,则∠1的度数是()A.80∘B.85∘C.90∘D.95∘【答案】B【考点】平行线的判定与性质【解析】根据∠1=∠D+∠C,∠D是已知的,只要求出∠C即可解决问题.【解答】解:∵AB // CD,∴∠A=∠C=40∘,∵∠1=∠D+∠C,∵∠D=45∘,∴∠1=∠D+∠C=45∘+40∘=85∘,故选B.3. 下列计算正确的是()A.x3−x2=xB.x3⋅x2=x6C.x3÷x2=xD.(x3)2=x5【答案】C【考点】幂的乘方与积的乘方同底数幂的乘法同底数幂的除法合并同类项【解析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案.【解答】A、x3−x2,无法计算,故此选项不符合题意;B、x3⋅x2=x5,故此选项不符合题意;C、x3÷x2=x,故此选项符合题意;D、(x3)2=x5,故此选项不符合题意;4. 不等式组{3x<2x+43−x3≥2的解集,在数轴上表示正确的是()A. B.C. D.【答案】A【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】{3x<2x+4 3−x3≥2由①,得x<4,由②,得x≤−3,由①②得,原不等式组的解集是x≤−3;5. 如图,一个空心圆柱体,其主视图正确的是()A. B. C. D.【答案】B【考点】简单几何体的三视图【解析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,6. 某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A.1 8B.16C.38D.12【答案】B【考点】列表法与树状图法概率公式【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212=16.故选B.7. 一个正多边形的内角和为540∘,则这个正多边形的每一个外角等于()A.108∘B.90∘C.72∘D.60∘【答案】C【考点】多边形内角与外角【解析】首先设此多边形为n 边形,根据题意得:180(n −2)=540,即可求得n =5,再由多边形的外角和等于360∘,即可求得答案.【解答】解:设此多边形为n 边形,根据题意得:180(n −2)=540,解得:n =5,故这个正多边形的每一个外角等于:360∘5=72∘.故选C .8. 为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是( )A.{x +y =783x +2y =30B.{x +y =782x +3y =30C.{x +y =302x +3y =78D.{x +y =303x +2y =78【答案】D【考点】由实际问题抽象出二元一次方程组【解析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x 人,女生有y 人.根据题意得:{x +y =303x +2y =78, 故选D .9. 某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( )A.4B.3C.2D.1【答案】B【考点】加权平均数条形统计图【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【解答】解:根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学习的平均时间是3小时;故选B.10. 如图,AB是⊙O的切线,B为切点,AC经过点O与⊙O分别相交于点D,C.∠ACB=30∘,AB=√3,则阴影部分的面积是( )A.√32B.π6C.√32−π6D.√33−π6【答案】C【考点】扇形面积的计算切线的性质含30度角的直角三角形等腰三角形的性质【解析】首先求出∠AOB,OB,然后利用S阴=S△ABO−S扇形OBD计算即可.【解答】解:连接OB,∵AB是⊙O切线,∴OB⊥AB.∵OC=OB,∠C=30∘,∴∠C=∠OBC=30∘,∴∠AOB=∠C+∠OBC=60∘.在Rt△ABO中,∵∠ABO=90∘,AB=√3,∠A=30∘,∴OB=AB⋅tan30∘=1,∴S阴=S△ABO−S扇形OBD=12×1×√3−60π×12360=√32−π6.故选C.11. 用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1B.n2−1C.n2+2nD.5n−2【答案】C【考点】规律型:图形的变化类【解析】由第1个图形中小正方形的个数是22−1、第2个图形中小正方形的个数是32−1、第3个图形中小正方形的个数是42−1,可知第n个图形中小正方形的个数是(n+1)2−1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22−1=3;第2个图形中,小正方形的个数是:32−1=8;第3个图形中,小正方形的个数是:42−1=15;…∴第n个图形中,小正方形的个数是:(n+1)2−1=n2+2n+1−1=n2+2n.故选C.12. 如图,将等边△ABC绕点C顺时针旋转120∘得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.3【答案】D【考点】旋转的性质菱形的判定等边三角形的判定方法【解析】根据旋转和等边三角形的性质得出∠ACE=120∘,∠DCE=∠BCA=60∘,AC=CD= DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.【解答】解:∵将等边△ABC绕点C顺时针旋转120∘得到△EDC,∴∠ACE=120∘,∠DCE=∠BCA=60∘,AC=CD=DE=CE,∴∠ACD=120∘−60∘=60∘,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120∘得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴ ①②③都正确,故选D.13. 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>−3时,y随x的增大而增大C.二次函数的最小值是−2D.抛物线的对称轴是直线x=−52【答案】D【考点】二次函数的性质【解析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(−4, 0)、(−1, 0)、(0, 4)代入到二次函数y =ax 2+bx +c 中,得:{0=16a −4b +c,0=a −b +c,4=c,解得:{a =1,b =5,c =4, ∴ 二次函数的解析式为y =x 2+5x +4.A ,a =1>0,抛物线开口向上,不正确;B ,−b 2a =−52,当x ≥−52时,y 随x 的增大而增大,不正确; C ,y =x 2+5x +4=(x +52)2−94,二次函数的最小值是−94,不正确;D ,−b 2a =−52,抛物线的对称轴是直线x =−52,正确. 故选D .14. 如图,直线y =−x +5与双曲线y =k x (x >0)相交于A ,B 两点,与x 轴相交于C 点,△BOC 的面积是52.若将直线y =−x +5向下平移1个单位,则所得直线与双曲线y =kx (x >0)的交点有( )A.0个B.1个C.2个D.0个,或1个,或2个【答案】B【考点】反比例函数图象上点的坐标特征反比例函数与一次函数的综合【解析】令直线y =−x +5与y 轴的交点为点D ,过点B 作BE ⊥x 轴于点E ,根据一次函数图象上点的坐标特征以及△BOC 的面积是52即可得出BE 的长度,进而可找出点B 的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k 的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论.【解答】令直线y=−x+5与y轴的交点为点D,过点B作BE⊥x轴于点E,如图所示.令直线y=−x+5中y=0,则0=−x+5,解得:x=5,即OC=5.∵△BOC的面积是52,∴12OC⋅BE=12×5⋅BE=52,解得:BE=1.结合题意可知点B的纵坐标为1,当y=1时,有1=−x+5,解得:x=4,∴点B的坐标为(4, 1),∴k=4×1=4,即双曲线解析式为y=4x.将直线y=−x+5向下平移1个单位得到的直线的解析式为y=−x+5−1=−x+4,将y=−x+4代入到y=4x 中,得:−x+4=4x,整理得:x2−4x+4=0,∵△=(−4)2−4×4=0,∴平移后的直线与双曲线y=4x只有一个交点.二、填空题(共5小题,每小题3分,满分15分)分解因式:x3−2x2+x=________.【答案】x(x−1)2【考点】提公因式法与公式法的综合运用【解析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】x3−2x2+x=x(x2−2x+1)=x(x−1)2.化简a2a−1+11−a=________.【答案】a+1【考点】分式的加减运算【解析】首先把两个分式的分母变为相同再计算.【解答】原式=a 2a−1−1a−1=a+1.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE // BC,EF // AB.若AB=8,BD=3,BF=4,则FC的长为________.【答案】125【考点】相似三角形的性质与判定【解析】直接利用平行线分线段成比例定理得出BDAD =ECAE=FCBF,进而求出答案.【解答】∵DE // BC,EF // AB,∴BDAD =ECAE=FCBF,∵AB=8,BD=3,BF=4,∴35=FC4,解得:FC=125.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为________.【答案】6【考点】翻折变换(折叠问题)【解析】根据折叠的性质求出AF=CF,根据勾股定理得出关于CF的方程,求出CF,求出BF,根据面积公式求出即可.【解答】∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,∴FG是AC的垂直平分线,∴AF=CF,设AF=FC=x,在Rt△ABF中,有勾股定理得:AB2+BF2=AF2,42+(8−x)2=x2,解得:x=5,即CF=5,BF=8−5=3,∴△ABF的面积为12×3×4=6,一般地,当α,β为任意角时,sin(α+β)与的值可以用下面的公式求得:sin(α+β)= sinα⋅cosβ+cosα⋅sinβ;sin(α−β)=sinα⋅cosβ−cosα⋅sinβ.例如sin90∘=sin(60∘+30∘)=sin60∘⋅cos30∘+cos60∘⋅sin30∘=√32×√32+12×12=1.类似地,可以求得sin15∘的值是________.【答案】√6−√24【考点】特殊角的三角函数值【解析】把15∘化为60∘−45∘,则可利用sin(α−β)=sinα⋅cosβ−cosα⋅sinβ和特殊角的三角函数值计算出sin15∘的值.【解答】解:sin15∘=sin(60∘−45∘)=sin60∘⋅cos45∘−cos60∘⋅sin45∘=√32×√22−12×√22=√6−√24.故答案为:√6−√24.三、解答题(共7小题,满分63分)计算:|−3|+√3tan30∘−√12−(2016−π)0.【答案】解:原式=3+√3×√33−2√3−1=3−2√3.【考点】实数的运算零指数幂、负整数指数幂特殊角的三角函数值【解析】原式利用绝对值的代数意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果.【解答】解:原式=3+√3×√33−2√3−1=3−2√3.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表(1)填空:a=________,b=________;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?【答案】10,28%(2)补全的频数分布直方图如下图所示,(3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.【考点】频数(率)分布直方图用样本估计总体频数(率)分布表【解析】(1)根据表格中的数据可以求得调查的学生总数,从而可以求得a的值,进而求得b的值;(2)根据(1)中的a的值可以补全频数分布直方图;(3)根据表格中的数据可以估算出该校九年级身高不低于165cm的学生大约有多少人.【解答】解:(1)由表格可得,调查的总人数为:5÷10%=50,∴a=50×20%=10,b=14÷50×100%=28%,(2)补全的频数分布直方图如下图所示,(3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.一艘轮船位于灯塔P南偏西60∘方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45∘方向上的B处(参考数据:√3≈1.732,结果精确到0.1)?【答案】它向东航行约7.3海里到达灯塔P南偏西45∘方向上的B处.【考点】解直角三角形的应用-方向角问题【解析】利用题意得到AC⊥PC,∠APC=60∘,∠BPC=45∘,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10√3,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC−BC即可.【解答】如图,AC⊥PC,∠APC=60∘,∠BPC=45∘,AP=20,在Rt△APC中,∵cos∠APC=PC,AP∴PC=20⋅cos60∘=10,∴AC=√202−102=10√3,在△PBC中,∵∠BPC=45∘,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC−BC=10√3−10≈7.3(海里).如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60∘,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90∘,AB=2√3,求PD的长.【答案】证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60∘,∴∠ABC=∠BAC=60∘,∴△ABC是等边三角形.∵△ABC是等边三角形,AB=2√3,∴AC=BC=AB=2√3,∠ACB=60∘.在Rt△PAC中,∠PAC=90∘,∠APC=60∘,AC=2√3,∴AP=AC=2.tan60在Rt△DAC中,∠DAC=90∘,AC=2√3,∠ACD=60∘,∴AD=AC⋅tan∠ACD=6.∴PD=AD−AP=6−2=4.【考点】等边三角形的性质与判定四点共圆圆周角定理【解析】(1)由圆周角定理可知∠ABC=∠BAC=60∘,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2√3,∠ACB=60∘”,在直角三角形PAC和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60∘,∴∠ABC=∠BAC=60∘,∴△ABC是等边三角形.∵△ABC是等边三角形,AB=2√3,∴AC=BC=AB=2√3,∠ACB=60∘.在Rt△PAC中,∠PAC=90∘,∠APC=60∘,AC=2√3,∴AP=ACtan60=2.在Rt△DAC中,∠DAC=90∘,AC=2√3,∠ACD=60∘,∴AD=AC⋅tan∠ACD=6.∴PD=AD−AP=6−2=4.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【答案】由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x−1)=15x+7.y乙=16x+3.①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.【考点】一次函数的应用【解析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.【解答】由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x−1)=15x+7.y乙=16x+3.①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】FG=CE,FG // CE过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90∘,∵∠GEH+∠HGE=90∘,∴∠DEC=∠HGE,在△HGE与△CED中,{∠GHE=∠DCE ∠HGE=∠DECEG=DE,∴△HGE≅△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH // BF,∴四边形GHBF是矩形,∴GF=BH,FG // CH∴FG // CE∵四边形ABCD是正方形,∴CD=BC,∴HE+EB=BC+EB∴BH=EC∴FG=EC另过点E作EM⊥GF于M,易证:△EGM≅△DEC(AAS)∴EM=CD=BC,另也可证明△ECD≅△FBC(SAS),∴ED=FC,∴GE=ED=FC,∠DEC=∠CFB,∴CF⊥ED,∴CF // GE,∴四边形是GFCE是平行四边形,从而得证.成立.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90∘,在△CBF与△DCE中,{BF=CE∠FBC=∠ECDBC=DC,∴△CBF≅△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90∘∵∠CDE+∠DEC=90∘∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF // EG,∴四边形CEGF平行四边形,∴FG // CE,FG=CE.【考点】四边形综合题【解析】(1)只要证明四边形CEGF是平行四边形即可得出FG=CE,FG // CE;(2)构造辅助线后证明△HGE≅△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG // CE;(3)证明△CBF≅△DCE后,即可证明四边形CEGF是平行四边形.FG=CE,FG // CE;过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90∘,∵∠GEH+∠HGE=90∘,∴∠DEC=∠HGE,在△HGE与△CED中,{∠GHE=∠DCE ∠HGE=∠DECEG=DE,∴△HGE≅△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH // BF,∴四边形GHBF是矩形,∴GF=BH,FG // CH∴FG // CE∵四边形ABCD是正方形,∴CD=BC,∴HE=BC∴HE+EB=BC+EB∴BH=EC∴FG=EC另过点E作EM⊥GF于M,易证:△EGM≅△DEC(AAS)∴EM=CD=BC,另也可证明△ECD≅△FBC(SAS),∴ED=FC,∴GE=ED=FC,∠DEC=∠CFB,∴CF⊥ED,∴CF // GE,∴四边形是GFCE是平行四边形,从而得证.成立.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90∘,在△CBF与△DCE中,{BF=CE∠FBC=∠ECDBC=DC,∴△CBF≅△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90∘∵∠CDE+∠DEC=90∘∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF // EG,∴四边形CEGF平行四边形,∴FG // CE,FG=CE.如图,在平面直角坐标系中,直线y=−2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8, 4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【答案】解:(1)∵直线y=−2x+10与x轴,y轴相交于A,B两点,∴A(5, 0),B(0, 10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0, 10),C(8, 4),∴{25a+5b=064a+8b=4,∴{a=16b=−56,∴ 抛物线解析式为y =16x 2−56x , ∵ A(5, 0),B(0, 10),C(8, 4),∴ AB 2=52+102=125,BC 2=82+(8−5)2=100,AC 2=42+(8−5)2=25, ∴ AC 2+BC 2=AB 2,∴ △ABC 是直角三角形.(2)如图1,当P ,Q 运动t 秒,即OP =2t ,CQ =10−t 时,由(1)得,AC =OA ,∠ACQ =∠AOP =90∘,在Rt △AOP 和Rt △ACQ 中,{AC =OA PA =QA, ∴ Rt △AOP ≅Rt △ACQ ,∴ OP =CQ ,∴ 2t =10−t ,∴ t =103,∴ 当运动时间为103时,PA =QA ;(3)存在,∵ y =16x 2−56x ,∴ 抛物线的对称轴为x =52,∵ A(5, 0),B(0, 10),∴ AB =5√5设点M(52, m), ①若BM =BA 时,∴ (52)2+(m −10)2=125,∴ m 1=20+5√192,m 2=20−5√192, ∴ M 1(52, 20+5√192),M 2(52, 20−5√192), ②若AM =AB 时, ∴ (52)2+m 2=125,∴m3=5√192,m4=−5√192,∴M3(52, 5√192),M4(52, −5√192),③若MA=MB时,∴(52−5)2+m2=(52)2+(10−m)2,∴m=5,∴M(52, 5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(52, 20+5√192),M2(52, 20−5√192),M3(52, 5√192),M4(52, −5√192),【考点】二次函数综合题【解析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10−t,判断出Rt△AOP≅Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,【解答】解:(1)∵直线y=−2x+10与x轴,y轴相交于A,B两点,∴A(5, 0),B(0, 10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0, 10),C(8, 4),∴{25a+5b=064a+8b=4,∴{a=16b=−56,∴抛物线解析式为y=16x2−56x,∵A(5, 0),B(0, 10),C(8, 4),∴AB2=52+102=125,BC2=82+(8−5)2=100,AC2=42+(8−5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1,当P ,Q 运动t 秒,即OP =2t ,CQ =10−t 时,由(1)得,AC =OA ,∠ACQ =∠AOP =90∘,在Rt △AOP 和Rt △ACQ 中,{AC =OA PA =QA, ∴ Rt △AOP ≅Rt △ACQ ,∴ OP =CQ ,∴ 2t =10−t ,∴ t =103,∴ 当运动时间为103时,PA =QA ;(3)存在,∵ y =16x 2−56x ,∴ 抛物线的对称轴为x =52,∵ A(5, 0),B(0, 10),∴ AB =5√5设点M(52, m),①若BM =BA 时,∴ (52)2+(m −10)2=125,∴ m 1=20+5√192,m 2=20−5√192, ∴ M 1(52, 20+5√192),M 2(52, 20−5√192), ②若AM =AB 时,∴ (52)2+m 2=125,∴ m 3=5√192,m 4=−5√192,∴ M 3(52, 5√192),M 4(52, −5√192), ③若MA =MB 时, ∴ (52−5)2+m 2=(52)2+(10−m)2,∴m=5,∴M(52, 5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(52, 20+5√192),M2(52, 20−5√192),M3(52, 5√192),M4(52, −5√192),。
山东省临沂市2016年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】30-<,且小于零的数为负数, ∴3-为负数.【提示】3-小于零,是负数,0既不是正数也不是负数,1和2是正数. 【考点】正数和负数 2.【答案】B 【解析】AB CD ∥,401451454085A C D C D D C ∴∠=∠=︒∠=∠+∠∠=︒∴∠=∠+∠=︒+︒=︒,,,,【提示】根据1D C D ∠=∠+∠∠,是已知的,只要求出C ∠即可解决问题. 【考点】平行线的性质 3.【答案】C【解析】A .32x x -,无法计算,故此选项错误;B .325•x x x =,故此选项错误;C .32x x x ÷=,正确;D .325()x x =,故此选项错误.【提示】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案. 【考点】同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方 4.【答案】A【解析】324323x x x+⎧⎪⎨-⎪⎩①②≥ 由4x ①,得<, 由3x -②,得≤,由①②得,原不等式组的解集是3x -≤;【提示】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决. 【考点】解一元一次不等式组,在数轴上表示不等式的解集 5.【答案】B【解析】从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,【提示】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】简单几何体的三视图 6.【答案】B【解析】画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率21126==. 【提示】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【考点】随机事件的概率,列表法与树状图法 7.【答案】C【解析】设此多边形为n 边形, 根据题意得:180(2)540n -=, 解得:5n =.【提示】首先设此多边形为n 边形,根据题意得:180(2)540n -=,即可求得5n =,再由多边形的外角和等于360︒,即可求得答案. 【考点】多边形内角与外角 8.【答案】D【解析】该班男生有x 人,女生有y 人.根据题意得:303278x y x x +=⎧⎨+=⎩,【提示】根据题意可得等量关系:①男生人数+女生人数30=;②男生种树的总棵树+女生种树的总棵树78=棵,根据等量关系列出方程组即可.【考点】由实际问题抽象出二元一次方程组 9.【答案】B【解析】根据题意得:(1122432415)103⨯+⨯+⨯+⨯+⨯÷=(小时),【提示】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【考点】加权平均数,条形统计图 10.【答案】C 【解析】连接OB .AB O 是切线,OB AB ∴⊥,303060OC OB C C OBC AOB C OBC =∠=︒∴∠=∠=︒∴∠=∠+∠=︒,,,,在Rt ABO △中,90ABO ∠=︒,AB =30A ∠=︒,1OB ∴=,2160π13π123606ABO OBDS S S ∴==⨯-=-△阴扇形. 【提示】首先求出AOB OB ∠,,然后利用ABO OBD S S S -=△阴扇形计算即可. 【考点】切线的性质,扇形面积的计算 11.【答案】C【解析】∵第1个图形中,小正方形的个数是:2213-=; 第2个图形中,小正方形的个数是:2318-=; 第3个图形中,小正方形的个数是:24115-=;∴第n 个图形中,小正方形的个数是:22211211()2n n n n n -+=++-=+;【提示】由第1个图形中小正方形的个数是221-、第2个图形中小正方形的个数是231-、第3个图形中小正方形的个数是241-,可知第n 个图形中小正方形的个数是2(11)n +-,化简可得答案.【考点】图形的变化类 12.【答案】D【解析】∵将等边ABC △绕点C 顺时针旋转120︒得到EDC △,120ACE ∴∠=︒,60DCE BCA ∠=∠=︒,AC CD DE CE ===,1206060ACD ∴∠=︒-︒=︒,ACD ∴△是等边三角形,AC AD ∴=,AC AD DE CE ===, ∴四边形ACED 是菱形,将等边ABC △绕点C 顺时针旋转120︒得到EDC △,AC AD =,AB BC CD AD ∴===,四边形ABCD 是菱形,BD AC ∴⊥,∴①②③都正确.【提示】根据旋转和等边三角形的性质得出120ACE ∠=︒,60DCE BCA ∠=∠=︒,AC CD DE CE ===,求出ACD △是等边三角形,求出AD AC =,根据菱形的判定得出四边形ABCD 和ACED 都是菱形,根据菱形的判定推出AC BD ⊥.【考点】旋转的性质,等边三角形的性质,菱形的判定 13.【答案】D【解析】将点(4,0)-,(1,0)-,(0,4)代入到二次函数2y ax bx c =++中,得:016404a b c a b c c =-+⎧⎪=-+⎨⎪=⎩,解得:154a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为254y x x =++.A .10a =>,抛物线开口向上,A 不正确;B .55222b x a -=--,当≥时,y 随x 的增大而增大,B 不正确;C .225954()24y x x x =++=+-,二次函数的最小值是94-,C 不正确;D .522b a -=-,抛物线的对称轴是52x =-,D 正确.【提示】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论. 【考点】二次函数的性质 14.【答案】B【解析】令直线5y x =-+与y 轴的交点为点D ,过点O 作OE ⊥直线AC 于点E ,过点B 作BF x ⊥轴于点F ,如图所示.令直线505y x x y =-+==中,则, 即5OD =;令直线50055y x y x x =-+==-+=中,则,解得:, 即5OC =.在Rt 905COD COD OD OC ∠=︒==△中,,,tan 1ODDCO OC∴∠==,45DCO ∠=︒, OE AC ⊥,BF x ⊥轴,45DCO ∠=︒,OEC ∴△与BFC △都是等腰直角三角形,又5OC =,OE ∴=11525222BOC S BC OE BC ==⨯=△,BC ∴1BF FC ∴==, 5141OF OC FC BF =-=-==,, ∴点B 的坐标为(4,1),414k ∴=⨯=,即双曲线解析式为4y x=. 将直线5y x =-+向下平移1个单位得到的直线的解析式为514y x x =-+-=-+, 将4y x =-+代入到4y x =中,得:44x x-+=, 整理得:2440x x +=-,2(4)440=-=-⨯△,∴平移后的直线与双曲线4y x=只有一个交点. 【提示】令直线5y x =-+与y 轴的焦点为点D ,过点O 作直线AC 于点E ,过点B 作BF x ⊥轴于点F ,通过令直线5y x =-+中x y 、分别等于0,得出线段OD OC 、的长度,根据正切的值即可得出45DCO ∠=︒,再结合做的两个垂直,可得出OEC BFC △与△都是等腰直角三角形,根据等腰直角三角形的性质结合面积公式即可得出线段BC 的长,从而可得出BF CF 、的长,根据线段间的关系可得出点B 的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k 的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论. 【考点】反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征第Ⅱ卷二、填空题 15.【答案】2(1)x x -【解析】32222(21)(1)x x x x x x x x --+=+=-.【提示】首先提取公因式x ,进而利用完全平方公式分解因式即可. 【考点】提公因式法与公式法的综合运用 16.【答案】1a +【解析】原式()()222111*********a a a a a a a a a a a a +--+=-===+------. 【提示】首先把两个分式的分母变为相同再计算. 【考点】分式的加减法 17.【答案】125【解析】DE BC EF AB ∥,∥, BD EC FC AD AE BF∴==, 834AB BD BF ===,,, 354FC ∴=, 解得:125FC =.【提示】直接利用平行线分线段成比例定理得出BD EC FCAD AE BF==,进而求出答案. 【考点】相似三角形的判定与性质 18.【答案】6【解析】∵将一矩形纸片ABCD 折叠,使两个顶点A C ,重合,折痕为FG ,FG ∴是AC 的垂直平分线, AF CF ∴=,设AF FC x ==,在Rt ABF △中,有勾股定理得:222AB BF AF +=,2224(8)x x +-=,解得:5x =,即5853CF BF ==-=,,ABF ∴△的面积为13462⨯⨯=,【提示】根据折叠的性质求出AF CF =,根据勾股定理得出关于CF 的方程,求出CF ,求出BF ,根据面积公式求出即可.【考点】翻折变换(折叠问题)19.【解析】321262sin15sin(6045)sin60cos45cos60sin452-︒=︒-︒=︒︒-︒︒=-=. 【提示】把15︒化为6045︒-︒,则可利用sin()sin cos cos sin αβαβαβ-=-和特殊角的三角函数值计算出sin15︒的值.【考点】特殊角的三角函数值 三、解答题20.【答案】3-【解析】313=+-=-原式 【提示】原式利用绝对值的代数意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果.【考点】实数的运算,零指数幂,特殊角的三角函数值 21.【答案】(1)10 28%(2)(3)240人【解析】(1)由表格可得, 调查的总人数为:510%50÷=,5020%10a ∴=⨯=, 1450100%28%b =÷⨯=,故答案为:10,28%.(2)补全的频数分布直方图如下图所示,(3)600(28%12%)60040%240⨯+=⨯=(人)即该校九年级共有600名学生,身高不低于165cm 的学生大约有240人.【提示】(1)根据表格中的数据可以求得调查的学生总数,从而可以求得a 的值,进而求得b 的值; (2)根据(1)中的a 的值可以补全频数分布直方图;(3)根据表格中的数据可以估算出该校九年级身高不低于165cm 的学生大约有多少人. 【考点】频数(率)分布直方图,用样本估计总体,频数(率)分布表 22.【答案】7.3海里【解析】如图,AC PC ⊥,60APC ∠=︒,45BPC ∠=︒,20AP =, 在Rt APC △中,PCcos APC AP∠=, 20cos6010PC ∴=︒=,AC ∴=,在PBC △中,45BPC ∠=︒,PBC ∴△为等腰直角三角形, 10107.3BC PC AB AC BC ∴==∴=-=≈,(海里).【提示】利用题意得到604520AC PC APC BPC AP ⊥∠=︒∠=︒=,,,,如图,在Rt APC △中,利用余弦的定义计算出10PC =,利用勾股定理计算出AC =PBC △为等腰直角三角形得到10BC PC ==,然后计算AC BC -即可.【考点】解直角三角形的应用——方向角问题23.【答案】(1)证明:60ABC APC BAC BPC APC CPB ∠=∠∠=∠∠=∠=︒,,,60ABC BAC ∴∠=∠=︒,ABC ∴△是等边三角形. (2)6AD =,4PD = 【解析】(1)略(2)解:ABC △是等边三角形,AB =60AC BC AB ACB ∴===∠=︒.在Rt PAC △中,9060PAC APC AC ∠=︒∠=︒=,,cot 2AP AC APC ∴=∠=.在Rt DAC △中,9060DAC AC ACD ∠=︒=∠=︒,,tan 6AD AC ACD ∴=∠=. 624PD AD AP ∴=-=-=.【提示】(1)由圆周角定理可知60ABC BAC ∠=∠=︒,从而可证得ABC △是等边三角形. 【考点】四点共圆,等边三角形的判定与性质,圆周角定理 24.【答案】(1)由题意知:当01x <≤时,22y x =甲;当1x <时,2215(1)157y x x =+-=+甲.163y x =+乙.(2)①当01x <≤时,令y y 乙甲<,即22163x x +<, 解得:102x <<;令y y =乙甲,即22163x x =+, 解得:12x =; 令y y 乙甲>,即22163x x +>, 解得:112x <≤.②1x >时, 令y y 乙甲<,即157163x x ++<, 解得:4x >;令y y =乙甲,即57163x x +=+, 解得:4x =;令y y 乙甲>,即157163x x ++>, 解得:04x <<.综上可知:当142x <<时,选乙快递公司省钱;当142x x ==或时,选甲、乙两家快递公司快递费一样多;当102x <<或4x >时,选甲快递公司省钱.【提示】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分011x x <≤和>两种情况讨论,分别令y y y y y y =乙乙乙甲甲甲<、和>,解关于x 的方程或不等式即可得出结论.【考点】一次函数的应用25.【答案】(1)FG CE FG CE =,∥.(2)过点G 作GH CB ⊥的延长线于点H ,EG DE ⊥,90GEH DEC ∴∠+∠=︒,90GEH HGE ∠+∠=︒,DEC HGE ∴∠=∠,HGE △与CED △中,GHE DCEHGE DECEG DE∠=∠⎧⎪∠=∠⎨⎪=⎩()HGE CED AAS ∴△≌△,GH CE HE CD ∴==,,CE BF =,GH BF ∴=,GH BF ∥∴四边形GHBF 是矩形GF BH FG CH ∴=,∥FG CE ∴∥四边形ABCD 是正方形,CD BC ∴=,HE BC ∴=HE EB BC EB ∴+=+BH EC ∴=FG EC ∴=.(3)四边形ABCD 是正方形,90BC CD FBC ECD ∴=∠=∠=︒,,在CBF △与DCE △中BF CEFBC ECDBC DC=⎧⎪∠=∠⎨⎪=⎩()9090CBF DCE SAS BCF CDE CF DE EG DE CF EG DE EGDEC CEG CDE DEC ∴∴∠=∠==∴=⊥∴∠+∠=︒∠+∠=︒△≌△,,,,,CDE CEG ∴∠=∠,BCF CEG ∴∠=∠,CF EG ∴∥,∴四边形CEGF 是平行四边形,FG CE FG CE ∴=∥,.【提示】(1)只要证明四边形CDGF 是平行四边形即可得出FG CE FG CE =,∥;(2)构造辅助线后证明HGE CED △≌△,利用对应边相等求证四边形GHBF 是矩形后,利用等量代换即可求出FG CE FG CE =,∥.【考点】四边形综合题26.【答案】(1)∵直线210y x =-+与x 轴,y 轴相交于A B ,两点,∴(5,0)A ,(0,10)B ,∵抛物线过原点,∴设抛物线解析式为2y ax bx =+,∵抛物线过点(0,10)(8,4)B C ,,255064841656a b a b a b +=⎧∴⎨+=⎩⎧=⎪⎪∴⎨⎪=-⎪⎩∴抛物线解析式为21566y x x -=, (5,0)0,10(8,4)A B C ,(),,222510125AB ∴=+=,222885100BC =+-=(),2224(85)25AC =+-=,222AC BC AB ∴+=ABC ∴△是直角三角形.(2)103t = (3)152(M,252(M,352(M,4(52M【解析】(1)略(2)如图1,当P Q ,运动t 秒,即210OP t CQ t ==-,时,由(1)得,90AC OA ACQ AOP =∠=∠=︒,,在Rt AOP △和Rt ACQ △中,Rt Rt 21010,3AOP ACQ OP CQ AC OA t t t PA QA=⎧⎨=∴∴=∴⎩=-∴=△≌△,,,∴当运动时间为103时,PA QA =; (3)存在, 25616yx x -=,∴抛物线的对称轴为52x =, (5,0)(0,10)A B ,,∴AB =设点5(,)2M m ,①若BM BA =时,2212125()(10)125255((22m m m M M ∴+-=∴=∴,,, ②若AM AB =时,2234345()125255((,22m m m M M ∴+=∴=∴,,, ③若MA MB =时,222255(5)()(10)22m m ∴-+=+-, ∴5m =,5(,5)2M ∴,此时点M 恰好是线段AB 的中点,构不成三角形,舍去, 2222555(5)()(10)(,5)222m m M ∴-+=+-∴ ∴点M的坐标为:152(M,252(M,352(M,4(52M . 【提示】(1)先确定出点A B ,坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出ABC △是直角三角形;(2)根据运动表示出210OP t CQ t ==-,,判断出Rt Rt AOP ACQ △≌△,得到OP CQ =即可; (3)分三种情况用平面坐标系内,两点间的距离公式计算即可.【考点】二次函数综合题。
绝密★启用前 试卷类型:A2016年临沂市初中学生学业考试试题数 学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数—3、0、1、2,其中负数是(A) —3.(B) 0.(C) 1(D) 2.2.如图,直线AB∥CD,∠A = 40°,∠D = 45°,则∠1等于(A) 80°.(B) 85°. (C) 90°.(D) 95°.3.下列计算正确的是(A) . (B) . (C). (D). 4.不等式组的解集,在数轴上表示正确的是32x x x -=326x x x ⋅=32x x x÷=325()x x =33324x x x ⎧⎪⎨-⎪⎩<+≥2,45°40°1DCBA5.如图,一个空心圆柱体,其主视图正确的是6.某校九年级一共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是(A) .(B).(C) .(D) .7. 一个正多边形内角和等于540°,则这个正多边形的每一外角等于(A) 108°.(B) 90°. (C) 72°.(D) 60°.8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是,9.某老师为了解学生周末学习情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是(A) 4.(B) 3.(C) 2(D) 1.10.如图,AB 是⊙O的切线,B 为切点,AC 经过点O,与⊙O 分别相交于点D 、C.若∠ACB=30°,则阴影部分面积是.(B)...11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是1816381278()3230x y A x y +=⎧⎨+=⎩78()2330x y B x y +=⎧⎨+=⎩30()2378x y C x y +=⎧⎨+=⎩30()3278x y D x y +=⎧⎨+=⎩6π6π-6π(A) 2n+1.(B) n 2-1. (C) n 2+2n.(D) 5n-2.12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD 、BD,则下列结论:①AC=AD 。
2016年临沂市初中学生学业考试第Ⅰ卷(选择题,共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数-3,0,1,2,其中负数是()A.-3B.0C.1D.22.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°3.下列计算正确的是()A.x3-x2=xB.x3·x2=x6C.x3÷x2=xD.(x3)2=x54.不等式组3x<2x+4,3-x≥2的解集在数轴上表示正确的是()5.如图是一个空心圆柱体,其主视图正确的是()6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.127.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.x+y=783x+2y=30 B.x+y=782x+3y=30C.x+y=302x+3y=78 D.x+y=303x+2y=789.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4小时B.3小时C.2小时D.1小时10.如图,AB是☉O的切线,B为切点,AC经过点O,与☉O分别相交于点D,C.若∠ACB=30°,AB=3,则阴影部分的面积是()A.3B.πC.3-πD.3-π11.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A.2n+1B.n 2-1C.n 2+2nD.5n-212.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC; ③四边形ACED 是菱形.其中正确的个数是( )A.0B.1C.2D.313.二次函数y=ax 2+bx+c,自变量x 与函数y 的对应值如下表:下列说法正确的是( ) A.抛物线的开口向下B.当x>-3时,y 随x 的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5214.如图,直线y=-x+5与双曲线y=k x(x>0)相交于A,B 两点,与x 轴相交于C 点,△BOC 的面积是52.若将直线y=-x+5向下平移1个单位,则所得直线与双曲线y=k x(x>0)的交点有( )A.0个B.1个C.2个D.0个,或1个,或2个第Ⅱ卷(非选择题,共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x 3-2x 2+x= . 16.计算:a 2a -1+11-a= .17.如图,在△ABC 中,点D,E,F 分别在AB,AC,BC 上,DE ∥BC,EF ∥AB.若AB=8,BD=3,BF=4,则FC 的长为 .18.如图,将一矩形纸片ABCD 折叠,使两个顶点A,C 重合,折痕为FG.若AB=4,BC=8,则△ABF 的面积为 .19.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin α·cos β+ cos α·sin β;sin(α-β)=sin α·cos β-cos α·sin β.例如sin 90°=sin(60°+30°)=sin 60°·cos 30°+cos 60°· sin 30°= 32× 32+12×12=1.类似地,可以求得sin 15°的值是 .三、解答题(本大题共7小题,共63分)三、解答题20.计算:|-3|+ 3tan 30°- 12-(2 016-π)0.21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表(1)填空:a=,b=;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165 cm的学生大约多少人.22.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?23.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=23,求PD的长.24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25.如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其他条件不变.(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其他条件不变.(1)中结论是否仍然成立?请直接写出你的判断.26.如图,在平面直角坐标系中,直线y=-2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC,BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2016年临沂市初中学生学业考试一、选择题1.A小于0的数是负数,0既不是正数也不是负数,大于0的数是正数.2.B∵AB∥CD ∴∠C=∠A=40°(两直线平行,内错角相等),∴∠1=∠D+∠C=45°+40°=85°.3.C x3与x2不是同类项,不能合并,故A选项错误;x3·x2=x3+2=x5 ,故B选项错误;x3÷x2=x3-2=x,故C选项正确;(x3)2=x6,故D选项错误.故选C.评析本题主要考查了合并同类项,同底数幂的乘除法法则,幂的乘方运算,熟练掌握运算法则是解题的关键.≥2得3-x≥6,解得x≤-3.4.A由3x<2x+4得x<4;由3-x3故不等式组的解集为x≤-3.故选A.评析本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”“≤”要用实心圆点表示,“<”“>”要用空心圆圈表示.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.B由主视图的定义可知选B.6.B列表如下:.故选B.则恰好抽到1班和2班的概率是167.C设这个正多边形的边数为n,则有(n-2)·180°=540°,解得n=5.因为多边形的外角和为360°,且正多边形的每一个外角都相等,所以这个正多边形的每一个外角为360°÷5=72°.故选C.8.D根据学生总人数为30可列方程x+y=30,男生x人可植树3x棵,女生y人可植树2y棵,一共可植树(3x+2y)棵,则3x+2y=78,故选D.9.B根据条形统计图可知,10名学生中学习1小时的有1人;学习2小时的有2人;学习3小时的有4人;学习4小时的有2人;学习5小时的有1人,则这10名学生周末学习的平均时间为1×1+2×2+3×4+4×2+5×1=30=3小时.故选B.10.C连接OB,∵AB是☉O的切线,B为切点,∴∠OBA=90°,又∠AOB=2∠ACB=60°, ∴∠OAB=30°.在Rt △ABO 中,设OB=x,则OA=2x,∵OB 2+AB 2=OA 2, ∴x 2+( 3)2=(2x)2,解得x=1(负值舍去), ∴S 阴影=S △OAB -S 扇形BOD =12·AB ·OB-60×π×12360=12× 3×1-π6= 32-π6.故选C.评析 本题考查了切线的性质、扇形的面积公式.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.11.C 每个图形可分解成一个n×n 的大正方形与上方n 个及右方n 个小正方形,即第1个图形中小正方形的个数为1×1+1+1=3;第2个图形中小正方形的个数为2×2+2+2=8; 第3个图形中小正方形的个数为3×3+3+3=15; ……第n 个图形中小正方形的个数为n×n+n+n=n 2+2n. 故选C.12.D ∵等边△ABC 绕点C 顺时针旋转120°得到△EDC, ∴AC=BC=CD=CE,∠BCD=120°, ∵∠ACB=60°,∴∠ACD=60°,∴△ACD 为等边三角形,∴AC=AD,∴①正确; ∵AC=CE=DE=AD=CD, ∴四边形ACED 是菱形,∴③正确; 由AB=BC,得B 在AC 的垂直平分线上, 由AD=CD,得D 在AC 的垂直平分线上,∴BD 垂直平分AC,∴②正确.13.D 由题表中数据可求得二次函数的解析式为y=x 2+5x+4,即y= x +5 2-9,故抛物线的开口向上,对称轴是x=-52,二次函数的最小值是-94,当x>-52时,y 随x 的增大而增大,当x<-52时,y 随x 的增大而减小.故选D. 14.B 由题意得C(5,0),设点B 的坐标为(a,-a+5),a>0, ∵△BOC 的面积是5,∴12×5×(-a+5)=52,解得a=4,则B(4,1), ∴k=4,则y=4x(x>0),将直线y=-x+5向下平移1个单位得到直线y=-x+4,令4=-x+4,整理得x 2-4x+4=0,解得x=2,即直线y=-x+4与双曲线y=4(x>0)只有一个交点,为(2,2),故选B. 评析 根据题意得出反比例函数的解析式是解答本题的关键. 二、填空题 15.答案 x(x-1)2解析 x 3-2x 2+x=x(x 2-2x+1)=x(x-1)2.评析 本题考查了提公因式法,公式法分解因式,注意分解要彻底. 16.答案 a+1 解析a 2a -1+11-a =a 2a -1-1a -1=a 2-1a -1=(a +1)(a -1)a -1=a+1. 17.答案125解析 由已知得AD=AB-BD=8-3=5.∵DE∥BC,EF ∥AB,∴四边形BFED 是平行四边形, 则DE=BF=4,由DE ∥BC 得△ADE ∽△ABC,则AD AB =DE BC ,即58=4BC,解得BC=325,∴FC=BC -BF=325-4=125. 18.答案 6解析由折叠知AF=FC,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3.所以S△ABF=12AB·BF=6.19.答案6-24解析sin 15°=sin(45°-30°)=sin45°cos30°-cos 45°·sin 30°=22×32-22×12=6-24.20.解析|-3|+3tan 30°-12-(2 016-π)0=3+3×33-23-1(4分)=3+1-2-1(5分)=3-23.(7分)21.解析(1)10;28%.(2分)(2)(4分)(3)600×14+650=240(人).故身高不低于165 cm的学生大约240人.(7分)22.解析过点P作PC⊥AB,交AB的延长线于点C.在Rt△ACP中,∠ACP=90°,∠APC=60°,PA=20,∵cos∠APC=PCPA ,sin∠APC=ACPA,∴PC=PA·cos 60°=20×12=10,(2分)AC=PA·sin 60°=20×32=103.(4分)在Rt△BCP中,∠BCP=90°,∠BPC=45°.∴BC=PC=10.(5分)∴AB=AC-BC=103-10≈10×1.732-10≈7.3.答:轮船向东航行约7.3海里到达位于灯塔P南偏西45°方向上的B处.(7分) 23.解析(1)证明:∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,(2分)∴∠ACB=60°,(3分)∴△ABC是等边三角形.(4分)(2)解法一:∵∠PAC=90°,∠APC=∠ACB=60°,∴∠D=∠DAB=∠PCB=30°,∴BD=AB=23.(6分)又∵∠PBD=∠PAC=90°,∴PD=BDcos30°=332=4.(9分)解法二:∵∠PAC=90°,∠APC=∠ACB=60°,∴∠ACP=∠PCB=∠D=30°,∴PD=PC.(6分)由(1)知△ABC是等边三角形,∴AC=AB=23,∴在Rt△PAC中,PC=ACcos30°=332=4.∴PD=4.(9分)24.解析(1)y甲=22x,0<x≤1,15x+7,x>1.(2分)y乙=16x+3,x>0.(3分)(2)解法一:若0<x≤1,当y甲>y乙,即22x>16x+3时,x>1;当y甲=y乙,即22x=16x+3时,x=12;当y甲<y乙,即22x<16x+3时,x<12.(6分)若x>1,当y甲>y乙,即15x+7>16x+3时,x<4;当y甲=y乙,即15x+7=16x+3时,x=4;当y甲<y乙,即15x+7<16x+3时,x>4.因此,当快递物品少于12千克或者多于4千克时,选择甲公司省钱;当快递物品等于12千克或者4千克时,两家公司一样;当快递物品多于12千克而少于4千克时,选择乙公司省钱.(9分)解法二:画出函数y甲=22x,0<x≤1,15x+7,x>1和y乙=16x+3,x>0的图象.(5分)分别解二元一次方程组y=22x,y=16x+3,y=15x+7,y=16x+3,得x=12,y=11,x=4,y=67.因此两图象的交点分别是1,11,(4,67),(7分) 由图象可以看出:当0<x<12或x>4时,选择甲公司省钱;当x=1或x=4时,两家公司一样;2<x<4时,选择乙公司省钱.(9分)当1225.解析(1)FG=CE(相等);FG∥CE(平行).(2分) (2)仍然成立.(3分)证明:证法一:设CF与DE相交于点M.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.∵BF=CE,∴△BCF≌△CDE,∴FC=ED,∠BFC=∠DEC.(5分)∵∠BFC+∠FCE=90°,∴∠DEC+∠FCE=90°,∴∠EMC=90°,即FC⊥DE,∵GE⊥DE,∴GE∥FC,又∵EG=DE,∴EG=FC.∴四边形GECF是平行四边形.(8分)∴FG=CE,FG∥CE.(9分)证法二:过点G作GN⊥BC,交CB的延长线于点N,则∠GNE=∠ECD=90°.∴∠NGE+∠NEG=90°.又GE⊥ED,∴∠GEN+∠DEC=90°.∴∠NGE=∠CED.又∵EG=DE,∴△GNE≌△ECD.∴EN=CD,GN=CE.(5分)又∵CE=BF,∴BF=GN.又∵∠FBC=∠GNB=90°,∴BF∥GN.∴四边形GNBF是矩形,(7分)∴FG=BN,FG∥CN,即FG∥CE.又∵CD=BC,∴NB=CE,∴FG=CE.(9分)(3)成立.(11分)26.解析(1)由题意,知A(5,0),B(0,10),∵抛物线过坐标原点,∴设其解析式为y=ax2+bx.则25a+5b=0,64a+8b=4,解得a=16,b=-56.∴抛物线的解析式为y=1x2-5x.(3分)在△ABC中,∵AB2=52+102=125,BC2=82+(10-4)2=100,AC2=42+(8-5)2=25,∴AC2+BC2=AB2.∴△ABC为直角三角形.(5分)(2)解法一:设当P,Q运动t秒,即OP=2t,CQ=10-t时,PA=QA, 由(1)知AC=OA,∠ACQ=∠AOP=90°,∴△AOP≌△ACQ.∴OP=CQ,(6分)∴2t=10-t,∴t=10.故当运动时间为103秒时,PA=QA.(8分)解法二:分别过C 、Q 作CD 、QE 垂直于y 轴,垂足分别为D 、E,则CD=8. ∵P 、Q 的运动时间为t 秒,∴BQ=t,OP=2t,设点Q 的坐标是(m,n),∴QE=m. ∵CD⊥y 轴,QE ⊥y 轴, ∴CD∥QE, ∴△BQE ∽△BCD. ∴QE CD =BQ BC ,即m 8=t 10,∴m=45t.(6分)设直线BC 的解析式为y=kx+b,则 b =10,8k +b =4,解得 k =-3,b =10.∴直线BC 的解析式为y=-34x+10. ∵点Q 在BC 上,∴n=-34×45t+10=-35t+10, ∴点Q 的坐标是 45t,-35t +10 ,(7分) ∴QA 2= -35t +10 2+ 5-45t 2=t 2-20t+125. ∵OP=2t,∴PA 2=(2t)2+25=4t 2+25, ∵PA=QA,∴t 2-20t+125=4t 2+25,即3t 2+20t-100=0,解得t 1=103,t 2=-10(不合题意,舍去),因此,当运动时间为103秒时,PA=QA.(8分)(3)存在.由(1)知抛物线的对称轴是直线x=5,设点M的坐标为5,m.①若BM=BA,则有522+(m-10)2=125,解得m1=20+5192,m2=20-5192,此时点M的坐标是M152,20+5192,M252,20-5192.(10分)②若AM=AB,则有522+m2=125,解得m3=5192,m4=-5192.此时点M的坐标是M35,519,M45,-519.(12分)③若MA=MB,则有5-522+m2=522+(10-m)2,解得m=5,此时点M5的坐标为52,5.因为点M5恰好是线段AB的中点,构不成三角形,所以不符合题意,应舍去. 综上所述,点M的坐标是:M152,20+5192,M252,20-5192,M352,5192,M452,-5192.(13分)。
2016年山东省临沂市中考数学试卷一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的. 1.(3分)(2016•临沂)四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.22.(3分)(2016•临沂)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°3.(3分)(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x54.(3分)(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.5.(3分)(2016•临沂)如图,一个空心圆柱体,其主视图正确的是()A. B.C.D.6.(3分)(2016•临沂)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.7.(3分)(2016•临沂)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.(3分)(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.9.(3分)(2016•临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.110.(3分)(2016•临沂)如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是()A.B.C.﹣ D.﹣11.(3分)(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣212.(3分)(2016•临沂)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.32A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣14.(3分)(2016•临沂)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C 点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2016•临沂)分解因式:x3﹣2x2+x=.16.(3分)(2016•临沂)化简=.17.(3分)(2016•临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.18.(3分)(2016•临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.19.(3分)(2016•临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.三、解答题(共7小题,满分63分)20.(7分)(2016•临沂)计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.21.(7分)(2016•临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:a=,b=;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?22.(7分)(2016•临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?23.(9分)(2016•临沂)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.24.(9分)(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25.(11分)(2016•临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.26.(13分)(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2016年山东省临沂市中考数学试卷参考答案与试题解析一、(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的. 1.(3分)(2016•临沂)四个数﹣3,0,1,2,其中负数是()A.﹣3 B.0 C.1 D.2【分析】﹣3小于零,是负数,0既不是正数正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选:A.2.(3分)(2016•临沂)如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A.80°B.85°C.90°D.95°【分析】根据∠1=∠D+∠C,∠D是已知的,只要求出∠C即可解决问题.【解答】解:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.3.(3分)(2016•临沂)下列计算正确的是()A.x3﹣x2=x B.x3•x2=x6C.x3÷x2=x D.(x3)2=x5【分析】直接利用同底数幂的乘除法运算法则以及结合幂的乘方运算法则分别化简求出答案.【解答】解:A、x3﹣x2,无法计算,故此选项错误;B、x3•x2=x5,故此选项错误;C、x3÷x2=x,正确;D、(x3)2=x5,故此选项错误;故选:C.4.(3分)(2016•临沂)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【分析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.5.(3分)(2016•临沂)如图,一个空心圆柱体,其主视图正确的是()A. B.C.D.【分析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:B.6.(3分)(2016•临沂)某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故选B.7.(3分)(2016•临沂)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.8.(3分)(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.9.(3分)(2016•临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4 B.3 C.2 D.1【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【解答】解:根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学习的平均时间是3小时;故选B.10.(3分)(2016•临沂)如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是()A.B.C.﹣ D.﹣【分析】首先求出∠AOB,OB,然后利用S阴=S△ABO﹣S扇形OBD计算即可.【解答】解:连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在RT△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S阴=S△ABO﹣S扇形OBD=×1×﹣=﹣.故选C.11.(3分)(2016•临沂)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.12.(3分)(2016•临沂)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.2下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.14.(3分)(2016•临沂)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C 点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个【分析】令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,通过令直线y=﹣x+5中x、y分别等于0,得出线段OD、OC的长度,根据正切的值即可得出∠DCO=45°,再结合做的两个垂直,可得出△OEC与△BFC都是等腰直角三角形,根据等腰直角三角形的性质结合面积公式即可得出线段BC的长,从而可得出BF、CF的长,根据线段间的关系可得出点B的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论.【解答】解:令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,如图所示.令直线y=﹣x+5中x=0,则y=5,即OD=5;令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.在Rt△COD中,∠COD=90°,OD=OC=5,∴tan∠DCO==1,∠DCO=45°.∵OE⊥AC,BF⊥x轴,∠DCO=45°,∴△OEC与△BFC都是等腰直角三角形,又∵OC=5,∴OE=.∵S△BOC=BC•OE=×BC=,∴BC=,∴BF=FC=BC=1,∵OF=OC﹣FC=5﹣1=4,BF=1,∴点B的坐标为(4,1),∴k=4×1=4,即双曲线解析式为y=.将直线y=﹣x+5向下平移1个单位得到的直线的解析式为y=﹣x+5﹣1=﹣x+4,将y=﹣x+4代入到y=中,得:﹣x+4=,整理得:x2﹣4x+4=0,∵△=(﹣4)2﹣4×4=0,∴平移后的直线与双曲线y=只有一个交点.故选B.二、填空题(共5小题,每小题3分,满分15分)15.(3分)(2016•常州)分解因式:x3﹣2x2+x=x(x﹣1)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.16.(3分)(2016•临沂)化简=a+1.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣=a+1.故答案为:a+1.17.(3分)(2016•临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.【分析】直接利用平行线分线段成比例定理得出==,进而求出答案.【解答】解:∵DE∥BC,EF∥AB,∴==,∵AB=8,BD=3,BF=4,∴=,解得:FC=.故答案为:.18.(3分)(2016•临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为6.【分析】根据折叠的性质求出AF=CF,根据勾股定理得出关于CF的方程,求出CF,求出BF,根据面积公式求出即可.【解答】解:∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,∴FG是AC的垂直平分线,∴AF=CF,设AF=FC=x,在Rt△ABF中,有勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得:x=5,即CF=5,BF=8﹣5=3,∴△ABF的面积为×3×4=6,故答案为:6.19.(3分)(2016•临沂)一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°=×+×=1.类似地,可以求得sin15°的值是.【分析】把15°化为60°﹣45°,则可利用sin(α﹣β)=sinα•cosβ﹣cosα•sinβ和特殊角的三角函数值计算出sin15°的值.【解答】解:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=•﹣•=.故答案为.三、解答题(共7小题,满分63分)20.(7分)(2016•临沂)计算:|﹣3|+tan30°﹣﹣(2016﹣π)0.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果.【解答】解:原式=3+×﹣2﹣1=3﹣2.21.(7分)(2016•临沂)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:a=10,b=28%;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?【分析】(1)根据表格中的数据可以求得调查的学生总数,从而可以求得a的值,进而求得b的值;(2)根据(1)中的a的值可以补全频数分布直方图;(3)根据表格中的数据可以估算出该校九年级身高不低于165cm的学生大约有多少人.【解答】解:(1)由表格可得,调查的总人数为:5÷10%=50,∴a=50×20%=10,b=14÷50×100%=28%,故答案为:10,28%;(2)补全的频数分布直方图如下图所示,(3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.22.(7分)(2016•临沂)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.23.(9分)(2016•临沂)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形PAC和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.24.(9分)(2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【分析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.【解答】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.25.(11分)(2016•临沂)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是FG=CE,位置关系是FG∥CE;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【分析】(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.【解答】解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE∵四边形ABCD是正方形,∴CD=BC,∴HE=BC∴HE+EB=BC+EB∴BH=EC∴FG=EC(3)成立.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.26.(13分)(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC 是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,【解答】解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0,10),C(8,4),∴,∴,∴抛物线解析式为y=x2﹣x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1,当P,Q运动t秒,即OP=2t,CQ=10﹣t时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t=,∴当运动时间为时,PA=QA;(3)存在,∵y=x2﹣x,∴抛物线的对称轴为x=,∵A(5,0),B(0,10),∴AB=5设点M(,m),①若BM=BA时,∴()2+(m﹣10)2=125,∴m1=,m2=,∴M1(,),M2(,),②若AM=AB时,∴()2+m2=125,∴m3=,m4=﹣,∴M3(,),M4(,﹣),③若MA=MB时,∴(﹣5)2+m2=()2+(10﹣m)2,∴m=5,∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),参与本试卷答题和审题的老师有:妮子;弯弯的小河;sd2011;zgm666;三界无我;gsls;王学峰;lantin;zjx111;曹先生;gbl210;马兴田;sks;神龙杉;星月相随(排名不分先后)菁优网2016年8月27日。
一、选择题(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的.1.四个数﹣3,0,1,2,其中负数是( ) A .﹣3 B .0 C .1 D .2 【答案】A . 【解析】试题分析:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.故选A . 考点:正数和负数.2.如图,直线AB ∥CD ,∠A=40°,∠D=45°,则∠1的度数是( )A .80°B .85°C .90°D .95° 【答案】B .考点:平行线的性质.3.下列计算正确的是( )A .32x x x -=B .326x x x ⋅=C .32x x x ÷=D .325()x x =【答案】C .【解析】试题分析:A .不是同类项,不能合并,故此选项错误;B .325x x x ⋅=,故此选项错误; C .32x x x ÷=,正确; D .326()x x =,故此选项错误;故选C .考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.4.不等式组324323x xx<+⎧⎪-⎨≥⎪⎩的解集,在数轴上表示正确的是()A.B.C.D.【答案】A .考点:解一元一次不等式组;在数轴上表示不等式的解集;方程与不等式.5.如图,一个空心圆柱体,其主视图正确的是()A .B.C.D.【答案】B.【解析】试题分析:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选B.考点:简单几何体的三视图.6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.12【答案】B.考点:列表法与树状图法.7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C.【解析】试题分析:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:360°÷5 =72°.故选C.考点:多边形内角与外角.8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.30 3278 x yx y+=⎧⎨+=⎩【答案】D.【解析】试题分析:该班男生有x人,女生有y人.根据题意得:303278x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.4B.3C.2D.1【答案】B.考点:加权平均数;条形统计图.10.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=3,则阴影部分的面积是()A.3B.6πC.36π-D.36π-【答案】C.【解析】试题分析:连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在RT△ABO中,∵∠ ABO=90°,AB=3,∠A=30°,∴OB=1,∴S阴=S△ABO﹣S扇形OBD=21601132360π⨯⨯⨯-=36π-.故选C.考点:切线的性质;扇形面积的计算.11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A .2n+1B .21n -C .22n n +D .5n ﹣2【答案】C .考点:规律型:图形的变化类.12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD .则下列结论: ①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形. 其中正确的个数是( )A .0B .1C .2D .3 【答案】D .考点:旋转的性质;等边三角形的性质;菱形的判定.13.二次函数2y ax bx c =++,自变量x 与函数y 的对应值如表: x… ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 … y …4﹣2﹣24…下列说法正确的是( ) A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是52x =-【答案】D . 【解析】试题分析:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数2y ax bx c =++中,得:016404a b ca b c c =-+⎧⎪=-+⎨⎪=⎩,解得:154a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为254y x x =++.考点:二次函数的性质;推理填空题;二次函数图象及其性质.14.如图,直线y=﹣x+5与双曲线ky x =(x >0)相交于A ,B 两点,与x 轴相交于C 点,△BOC 的面积是52.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线ky x =(x >0)的交点有( )A.0个B.1个C.2个D.0个,或1个,或2个【答案】B.【解析】试题分析:令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B 作BF⊥x轴于点F,如图所示.令直线y=﹣x+5中x=0,则y=5,即OD=5;令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征;一次函数及其应用;反比例函数及其应用.二、填空题(共5小题,每小题3分,满分15分)15.分解因式:322x x x -+= .【答案】2(1)x x -. 【解析】试题分析:322x x x -+=2(21)x x x -+=2(1)x x -.故答案为:2(1)x x -.考点:提公因式法与公式法的综合运用.16.化简111aa a +--= .【答案】1. 【解析】试题分析:原式=111a a a ---=11a a --=1.故答案为:1.考点:分式的加减法. 17.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB .若AB=8,BD=3,BF=4,则FC 的长为 .【答案】125.考点:相似三角形的判定与性质. 18.如图,将一矩形纸片ABCD 折叠,使两个顶点A ,C 重合,折痕为FG .若AB=4,BC=8,则△ABF 的面积为 .【答案】6. 【解析】试题分析:∵将一矩形纸片ABCD 折叠,使两个顶点A ,C 重合,折痕为FG ,∴FG 是AC的垂直平分线,∴AF=CF ,设AF=FC=x ,在Rt △ABF 中,有勾股定理得:222AB BF AF +=,2224(8)x x +-=,解得:x=5,即CF=5,BF=8﹣5=3,∴△ABF 的面积为12×3×4=6,故答案为:6.考点:翻折变换(折叠问题).19.一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=331122⨯+⨯=1.类似地,可以求得sin15°的值是 . 【答案】62-.考点:特殊角的三角函数值;新定义.三、解答题(共7小题,满分63分) 20.计算:3312(2016)π--o .【答案】23.【解析】试题分析:原式利用绝对值的代数意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果.试题解析:原式=3 33231+⨯--=23-.考点:实数的运算;零指数幂;特殊角的三角函数值.21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表身高分组频数百分比x<155 5 10%155≤x<160 a 20%160≤x<165 15 30%165≤x<170 14 bx≥170 6 12%总计100%(1)填空:a= ,b= ;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?【答案】(1)10,28%;(2)作图见解析;(3)240.试题解析:(1)由表格可得,调查的总人数为:5÷10%=50,∴a=50×20%=10,b=14÷50×100%=28%,故答案为:10,28%;(2)补全的频数分布直方图如下图所示:(3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm的学生大约有240人.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;统计与概率.22.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:3≈1.732,结果精确到0.1)?【答案】7.3.试题解析:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=PCAP,∴PC=20cos60°=10,∴AC=222010=103,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10310≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.考点:解直角三角形的应用-方向角问题.23.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;23,求PD的长.(2)若∠PAC=90°,AB=【答案】(1)证明见解析;(2)4.23∴AC=BC=AB=3∠ACB=60°.在Rt△PAC (2)∵△ABC是等边三角形,AB=23,∴AP=AC•cot∠APC=2.在Rt△DAC中,中,∠PAC=90°,∠APC=60°,AC=23ACD=60°,∴AD=AC•tan∠ACD=6,∴PD=AD﹣AP=6﹣2=4.∠DAC=90°,AC=考点:四点共圆;等边三角形的判定与性质;圆周角定理.24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【答案】(1)22 (01)157 (1)x xyx x<<⎧=⎨+>⎩甲,=163y x+乙;(2)当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱..(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.试题解析:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD 是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG,∴∠DEC+∠CEG=90°,∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.考点:四边形综合题;探究型;变式探究.26.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q 从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1)21566y x x=-,直角三角形;(2)103;(3)M1(52,20519+),M2(52,20519-),M3(52,519),M4(52,519-).试题解析:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为2y ax bx=+,∵抛物线过点B(0,10),C(8,4),∴25506484a ba b+=⎧⎨+=⎩,∴1656ab⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为21566y x x=-,∵A(5,0),B (0,10),C(8,4),∴2AB=22512+=125,2BC=228(85)+-=100,2AC=224(85)+-=25,∴222AC BC AB+=,∴△ABC是直角三角形.(3)存在,∵21566y x x=-,∴抛物线的对称轴为x=52,∵A(5,0),B(0,10),∴AB=55设点M(52,m);①若BM=BA时,∴225()(10)1252m+-=,∴m1=20519+,m2=20519-,∴M1(52,20519+),M2(52,20519-);②若AM=AB时,∴225()1252m+=,∴m3=5192,m4=5192-,∴M3(52,5192),M4(52,5192-);③若MA=MB时,∴222255(5)()(10)22m m-+=+-,∴m=5,∴M(52,5),此时点M恰好是线段AB的中点,构不成三角形,舍去;∴点M的坐标为:M1(52,205192+),M2(52,205192-),M3(52,5192),M4(52,5192-).考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.。
2016年临沂市中考数学试卷
一、选择题(共14小题,每小题3分,满分42分)在每小题给出的四个选项中,只有一个是符合题目要求的.
1.四个数﹣3,0,1,2,其中负数是()
A .﹣3 B.0 C.1 D.2
2.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()
A.80°B.85°C.90°D.95°
3.下列计算正确的是()
A.32
x x x
-=B.326
x x x
⋅=C.32
x x x
÷=D.325
()
x x
= 4.不等式组
324
3
2
3
x x
x
<+
⎧
⎪
-
⎨
≥
⎪⎩
的解集,在数轴上表示正确的是()
A.B.
C.D.
5.如图,一个空心圆柱体,其主视图正确的是()
A.B.C.D.
6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()
A.
1
8B.
1
6C.
3
8D.
1
2
7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于(
)
A.108°B.90°C.72°D.60°
8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()
A.
78
3230
x y
x y
+=
⎧
⎨
+=
⎩B.
78
2330
x y
x y
+=
⎧
⎨
+=
⎩ C.
30
2378
x y
x y
+=
⎧
⎨
+=
⎩D.
30
3278
x y
x y
+=
⎧
⎨
+=
⎩
9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()
A.4 B.3 C.2 D.1
10.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=3,则阴影部分的面积是()
A.3
B.6
π
C.
3
6
π
-
D.
3
6
π
-
11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()
A .2n+1
B .21n -
C .2
2n n + D .5n ﹣2
12.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD .则下列结论: ①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形. 其中正确的个数是( )
A .0
B .1
C .2
D .3
13.二次函数
2
y ax bx c =++,自变量x 与函数y 的对应值如表: x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 … y …
4
﹣2
﹣2
4
…
下列说法正确的是( )
A .抛物线的开口向下
B .当x >﹣3时,y 随x 的增大而增大
C .二次函数的最小值是﹣2
D .抛物线的对称轴是
5
2x =-
14.如图,直线y=﹣x+5与双曲线
k
y x =
(x >0)相交于A ,B 两点,与x 轴相交
于C 点,△BOC 的面积是5
2.若将直线y=﹣x+5向下平移1个单位,则所得直线与
双曲线
k
y x =
(x >0)的交点有( )
A .0个
B .1个
C .2个
D .0个,或1个,或2个
二、填空题(共5小题,每小题3分,满分15分)
15.分解因式:32
2x x x -+= .
16.化简111a a a +
--= .
17.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC ,BC 上,DE ∥BC ,EF ∥AB .若AB=8,BD=3,BF=4,则FC 的长为 .
18.如图,将一矩形纸片ABCD 折叠,使两个顶点A ,C 重合,折痕为FG .若AB=4,BC=8,则△ABF 的面积为 .
19.一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如
si n90°=sin (60°+30°)
=sin60°•cos30°+cos60°•sin30°=
331122+⨯=1.类似地,可以求得sin15°的值是 . 三、解答题(共7小题,满分63分) 20.计算:0
3312(2016)π--o .
21.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
身高分组频数百分比
x<155 5 10%
155≤x<160 a 20%
160≤x<165 15 30%
165≤x<170 14 b
x≥170 6 12%
总计100%
(1)填空:a= ,b= ;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
22.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:3≈1.732,结果精确到0.1)?
23.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.
(1)求证:△ABC是等边三角形;
(2)若∠PAC=90°,AB=23,求PD的长.
24.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
25.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
26.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.。