(人教版)小学五年级上册数学总复习知识点
- 格式:doc
- 大小:111.50 KB
- 文档页数:9
人教五年级数学上册的必背知识点包括:
1.分数乘法:理解分数乘法的意义,掌握分数乘法的基本计算方
法。
2.长方形的面积公式:理解长方形面积的概念,掌握长方形面积
的计算方法。
3.除法的意义和计算方法:理解除法的意义,掌握除法的基本计
算方法。
4.平行四边形的面积公式:理解平行四边形面积的概念,掌握平
行四边形面积的计算方法。
5.三角形的面积公式:理解三角形面积的概念,掌握三角形面积
的计算方法。
6.梯形的面积公式:理解梯形面积的概念,掌握梯形面积的计算
方法。
7.组合图形的面积:理解组合图形面积的概念,掌握组合图形面
积的计算方法。
以上知识点需要学生熟练掌握,并能灵活运用。
同时,还需要注意一些细节问题,例如单位换算、小数点移动等。
小学五年级数学上册复习教学知识点归纳总结第一单元:小数乘法1.小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
也可以表示1.2的5倍是多少。
2.一个数乘以小数的意义是求这个数的十分之几、百分之几、千分之几…是多少。
如1.2×0.5表示求1.2的十分之五是多少。
3.小数乘法的计算法则:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数部分末尾的0要去掉乘得的积得小数位数不够,要在前面用零补足。
再点上小数点。
4. 规律:(1)一个数(零除外)乘1,积等于原来的数。
(2)一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个数(零除外)乘大于1的数,积比原来的数大。
一个数(零除外)乘小于1的数,积比原来的数小。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
5.整数乘法的交换律、结合律、分配律,对于小数乘法也使用。
6.运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c - b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法1.小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算或者被除数里面有多少个除数。
如:2.4÷1.6表示已知两个因数的积是2.4,其中一个因数是1.6,求另一个因数是多少。
小学数学五年级上册期末复习知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版数学五年级上册知识点总结、梳理知识点总结第一单元《小数乘法》1、小数乘整数:@意义:求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@除法:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c第二单元《位置》1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
人教版小学五年级上册数学总复习知识点一、小数乘法和除法1、小数乘法的意义小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数乘小数的意义是求这个数的十分之几、百分之几、千分之几……2、小数乘法的计算法则计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。
3、小数除法的意义小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
4、除数是整数的小数除法计算法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在被除数的末尾添0再继续除。
5、除数是小数的除法计算法则除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。
6、循环小数的意义一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
循环小数是无限小数。
7、循环节的意义一个循环小数的小数部分中。
依次不断地重复出现的数字,叫做这个循环小数的循环节。
循环节从小数部分第一位开始的,叫做纯循环小数。
循环节不是从小数部分第一位开始的,叫做混循环小数。
例1 用简便方法计算下列各题①②③④例2 明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。
每支黑色笔芯多少钱?例3 7.9468保留整数是,保留一位小数是,保留两位小数是。
知识回顾二、整数、小数四则混合运算和应用题1、四则混合运算顺序整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数四则混合运算的运算定律对小数同样适用。
人教版五年级数学上册各单元知识点小数加减法的计算方法:计算小数加减法,要先把小数点对齐,然后按照整数加减法的法则进行计算。
第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:积中小数末尾有0的乘法。
先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。
如:3.60 “0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。
如0.02×2=0.04 知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。
)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。
如6.597 保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。
先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料小学最新人教版五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版五年级上册全册数学知识点归纳第一单元:小数乘法。
、小数乘整数------重点:理解小数乘整数的算理。
2、小数乘小数------重点:小数乘小数的计算方法。
3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。
难点:根据实际情况取近似值。
4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。
难点:引导学生理解解决问题中出现的解题思路。
、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。
第二单元:小数除法。
、小数除以整数------重点:小数除以整数的计算方法。
难点:让学生理解商的小数点是如何确定的。
2、一个数除以小数------重点:掌握除数是小数除法的计算方法。
3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。
难点:怎样判断除得的商是循环小数。
、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。
第三单元:观察物体。
观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。
观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。
第四单元:简易方程。
、用字母表示数------重点:会用字母表示数、运算定律及计算公式。
2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。
3、方程的意义------重点:初步理解方程的意义。
4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。
、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。
6、稍复杂的方程(二)------重点:分析数量关系。
难点:列方程和解方程。
7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。
新人教版五年级上册数学知识点汇编第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
最新人教版小学数学五年级上册期末复习知识点总结(全册)小数乘法是求几个相同加数的和的简便运算,其意义与数乘法相同。
例如,1.5×3表示求3个1.5的和是多少(或1.5的3倍是多少)。
小数乘整数时,先把小数乘法转化成整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
列竖式计算小数乘法时,末位对齐,先按整数乘法的计算方法进行计算,再在积中点上小数点。
计算出小数乘整数的积后,积的小数部分末尾出现,要根据小数的基本性质去掉小数末尾的数字。
如果乘得的积的小数位数不够,要在前面用零补足,再点上小数点。
小数乘整数与整数乘法的不同在于,小数乘整数中有一个因数是小数,所以积一般来说也是小数。
小数乘小数是求一个数的几倍(几分之几)是多少。
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点)。
乘得的积的小数位数不够时,在前面用零补足,再点上小数点。
小数乘法的验算方法有两种:把因数的位置交换相乘,或用计算器来验算。
积的近似数是指先算出积,然后看要保留数位的下一位,最后按“四舍五入”法取近似数,用约等号表示。
如果求得的积中要保留数位上的数字是9,而后一位数字大于或等于5,这时就要向前一位依次进一。
计算钱数通常保留两位小数,表示精确到分,如果保留一位小数,表示精确到角。
求积的近似数的方法一般有三种:“四舍五入”法(常用)、“进一”法和“去尾”法。
表示列数为1,行数为4.这个数对唯一确定了大象馆在方格图中的位置。
二、小数的四则混合运算小数的四则混合运算顺序和整数的四则混合运算顺序是一样的。
在小数的四则混合运算中,要注意小数点的位置。
三、整数乘法运算律整数乘法运算律可以推广到小数。
在小数的乘法运算中,可以运用乘法交换律、结合律将相乘得整百、整十的数先乘,再乘另一个数,简化计算。
四、运算定律加法有交换律和结合律,乘法有交换律、结合律和分配律。
在运算中,可以通过变形运用运算定律简化计算。
小学五年级上册数学总复习知识点(人教版)一、小数乘法和除法
小数乘法的意义
小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数乘小数的意义是求这个数的十分之几、百分之几、千分之几……
1、小数乘法的计算法则
计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。
2、小数除法的意义
小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
3、除数是整数的小数除法计算法则
除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在被除数的末尾添0再继续除。
4、除数是小数的除法计算法则
除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。
5、循环小数的意义
一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
循环小数是无限小数。
6、循环节的意义
一个循环小数的小数部分中。
依次不断地重复出现的数字,叫做这个循环小数的循环节。
循环节从小数部分第一位开始的,叫做纯循环小数。
循环节不是从小数部分第一位开始的,叫做混循环小数。
例1 用简便方法计算下列各题
①0.25104
⨯⨯③226.80.108
÷④⨯②2.4 2.544
÷
125.625125
例2 明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。
每支黑色笔芯多少钱?
例3 7.9468保留整数是,保留一位小数是,保留两位小数是。
二、整数、小数四则混合运算和应用题
1、四则混合运算顺序
整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数四则混合运算的运算定律对小数同样适用。
一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算;如果有括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
2、解答应用题的步骤
(1)弄清题意,并找出已知条件和所求问题;
(2)分析题里数量间的关系,确定先算什么,再算什么,最后算什么;
(3)确定每一步该怎样算,列出算式,算出得数;
(4)进行检验,写出答案。
例4计算
① 5.52 3.120.68.9
⨯+÷③-⨯+② 3.20.7 5.4 1.7
(0.36 1.5+0.03685)4
⨯⨯÷
例5 甲、乙两队学生从相距17千米的两地出发,相向而行,一个同学骑自行车以每刻钟3.5千米的速度在两地之间往返联络(停歇时间不计)。
如果甲队学生每小时走4.5千米,乙队学生每小时走4千米,问两队学生相遇时,骑自行车的学生共走多少千米?
三、多边形面积的计算
例6 如图,梯形的面积是63平方米,高是7米,已知上底比下底少4米,求下底的长度。
例7 如图,长方形的面积是86平方米,宽为6米。
BE长为6米,将弧AE平移到FC。
求阴影部分的面积。
四、简易方程
1、方程的意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用x表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和 - 另一个加数减数=被减数–差被减数= 差 + 减数
因数=积÷另一个因数除数=被除数÷商被除数=商⨯除数
例8 用含有字母的式子表示下面的数量关系
(1)x的7倍;(2)x的5倍加上6;(3)5减x的差除以3;
(4)200减5个a;(5)比7个b多2的数。
例9 要修一段公路,平均每天修c米,修了6天,还剩下b米。
(1)用含有字母的式子表示这段公路有多少米;
(2)根据这个式子,分别求c等于50,等于200时,公路长多少米。
例10 指出下列式子哪些是等式,哪些是方程
①4057
+>②6848
⨯=③ 4.6 2.3 x
y÷=
④8627
a b
+⨯-=⑤9462
x+=÷⑥52
x
例11 某个数与9的和的12倍等于156,求这个数是多少。
例12 王晰买了2支钢笔和5支圆珠笔,共付17元。
一支钢笔的价格是一支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱?
五、统计与可能性
1、在我们生活中有很多事件是不确定的,如何求事件发
生可能性的大小是本节知识的重点。
2、感受等可能事件发生的可能性,会用分数进行表示;
会用数学语言描述获胜的可能性。
3、投掷硬币,每次正面、反面朝上的可能性是1
2
4、中位数和平均数的区别
中位数:把一组数据按照大小顺序排列后,最中间的数据就
是中位数;
平均数:是指在一组数据中所有数据之和再除以数据的个
数。
即平均数=总数 总分数
例13 说出下列事件发生的可能性是多少?
1、盒子中有红、白、黄三种颜色的球各一个,只取一次,拿出
红色球的可能性是多少?白色呢?黄色?
2、商场促销,将奖品放置于1到9号的箱子中,幸运顾客有一
次猜奖机会,一位顾客猜中得奖的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,黄色球8个,只取一次,取出红色球的可能性大还是黄色球?。