北师大版八上期末试卷及答案
- 格式:doc
- 大小:661.00 KB
- 文档页数:6
北师大版数学八年级上册期末考试试题一、选择题(每小题3分,共30分,每小题只有一个正确答案)1.下列各组数是勾股数的是()A.1,,B.0.6,0.8,1C.3,4,5D.5,11,12 2.下列计算正确的是()A.=4B.=3C.4﹣=3D.3.已知点A(3,5)和点B在直角坐标平面内关于y轴对称,则点B的坐标是()A.(5,﹣3)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)4.下列命题中,真命题的是()A.同旁内角互补,两直线平行B.相等的角是对顶角C.同位角相等D.直角三角形两个锐角互补5.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<6.下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.7.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°8.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是()A.方差B.平均数C.众数D.中位数9.点M(﹣1,a)和点N(﹣3,b)是一次函数y=﹣2x+m图象上的两点,则()A.a>b B.a=b C.a<b D.无法确定10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.二、填空题(每小题4分,共16分)11.函数y=的自变量x的取值范围是.12.若一次函数y=2x+b的图象经过点(1,﹣3),则b=.13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是.14.在Rt△ABC中,斜边BC=,则AB2+AC2+BC2的值为.三.解答题(共54分)15.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).16.解方程组或不等式组:(1);(2).17.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.18.如图所示,在平面直角坐标系xOy中,已知△AOC的顶点坐标分别是A(﹣2,2)、C (3,3).(1)作出△AOC关于x轴对称的△DOE,其中点A的对应点是D,点C的对应点是E,并直接写出D和E的坐标;(2)若P为x轴上一点,若OP=OA,求点P的坐标.19.某校八年级(1)班的同学积极响应校团委号召,每位同学都向学校对口帮扶的贫困地区捐赠了图书.全班捐书情况如图,请你根据图中提供的信息解答以下问题:(1)该班共有名学生;(2)本次捐赠图书册数的中位数为册,众数为册;(3)该校八年级共有320名学生,估计该校八年级学生本次捐赠图书为7册的学生人数.20.如图,在平面直角坐标系xOy中,直线l1:y=﹣x+3与x轴交于点A,点P(a,4)在直线l1上,过点P的直线l2交x轴于点B(﹣3,0).(1)求△P AB的面积;(2)求直线l2的解析式:(3)以P A为腰作等腰直角△QP A,请直接写出满足条件的点Q的坐标.B卷四、填空题(每小题4分,共20分)21.若实数x、y满足:y=++,则xy=.22.的整数部分为a,的小数部分为b,那么(b+2)2﹣a的值是.23.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为.24.如图,长方形ABCD中,AD=4,AB=3,点P是AB上一点,AP=1,点E是BC上一动点,连接PE,将△BPE沿PE折叠,使点B落在B',连接DB',则PB'+DB'的最小值是.25.已知:k为正数,直线l1:y=kx+k﹣1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为S k,则S2=,S1+S2+S3+…+S2020的值为.五、解答题(共30分)26.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?27.已知:等边三角形ABC,直线l过点C且与AB平行,点D是直线l上不与点C重合的一点,连接线段DB,并将射线DB绕点D顺时针转动60°,与直线AC交于点E(即∠BDE=60°).(1)如图1,点E在AC的延长线上时,求证:DE=DB;(2)如图2,AB=2,CD=4,依题意补全图2,试求出DE的长.(3)当点D在点C右侧时,直接写出线段CE、BC和CD之间的数量关系.28.如图,直线y=kx+2(k<0)与x轴、y轴分别交于点A、B.(1)如图1,点P(﹣1,3)在直线y=kx+2(k<0)上,求点A、B坐标;(2)在(1)的条件下,如图2,点A'是点A关于x轴的对称点,点Q是第二象限内一点,连结AQ、PQ、QA'和P A',如果△PQA'和△AA'Q面积相等,且∠P AQ=∠AP A',求点Q的坐标;(3)如图3,点C和点D是该直线在第一象限内的两点,点C在点D左侧,且两点的横坐标之差为1,且CD=k+2,作CE⊥x轴,垂足为点E,连结DE,若∠OAB=2∠DEB,求k的值.参考答案与试题解析一.选择题(共10小题)1.下列各组数是勾股数的是()A.1,,B.0.6,0.8,1C.3,4,5D.5,11,12【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:A、、不是正整数,不是勾股数,此选项不合题意;B、0.6、0.8不是正整数,不是勾股数,此选项不合题意;C、是勾股数,因为32+42=52,此选项符合题意;D、不是勾股数,因为112+52≠122,此选项不合题意;故选:C.2.下列计算正确的是()A.=4B.=3C.4﹣=3D.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以判断哪个选项中的式子是正确的.【解答】解:=2,故选项A错误;=2,故选项B错误;4﹣=3,故选项C错误;×=,故选项D正确;故选:D.3.已知点A(3,5)和点B在直角坐标平面内关于y轴对称,则点B的坐标是()A.(5,﹣3)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【分析】根据关于y轴对称的点得坐标特点直接得到答案.【解答】解:∵点A(3,5)与点B关于y轴对称,∴B点坐标为(﹣3,5).故选:B.4.下列命题中,真命题的是()A.同旁内角互补,两直线平行B.相等的角是对顶角C.同位角相等D.直角三角形两个锐角互补【分析】根据平行线的性质、对顶角、直角三角形的性质判断解答即可.【解答】解:A、同旁内角互补,两直线平行,是真命题;B、相等的角不一定是对顶角,原命题是假命题;C、两直线平行.同位角相等,原命题是假命题;D、直角三角形两个锐角互余,原命题是假命题;故选:A.5.若m>n,则下列不等式一定成立的是()A.2m<3n B.2+m>2+n C.2﹣m>2﹣n D.<【分析】根据不等式的性质解答.【解答】解:A、若m=3,n=﹣2,则2m>3n,故不符合题意.B、若m>n,则2+m>2+n,故符合题意.C、若m>n,则2﹣m<2﹣n,故不符合题意.D、若m>n,则>,故不符合题意.故选:B.6.下列四组数值是二元一次方程2x﹣y=6的解的是()A.B.C.D.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把代入方程得:左边=2﹣5=﹣3,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;B、把代入方程得:左边=8﹣2=6,右边=6,∵左边=右边,∴是方程的解,符合题意;C、把代入方程得:左边=4﹣4=0,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;D、把代入方程得:左边=4﹣3=1,右边=6,∵左边≠右边,∴不是方程的解,不符合题意.故选:B.7.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.8.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是()A.方差B.平均数C.众数D.中位数【分析】百货商场经理最值得关注的应该是爱买哪种颜色女装的人数最多,即众数.【解答】解:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色女装主要根据众数.故选:C.9.点M(﹣1,a)和点N(﹣3,b)是一次函数y=﹣2x+m图象上的两点,则()A.a>b B.a=b C.a<b D.无法确定【分析】直接利用一次函数增减性分析得出答案.【解答】解:y=﹣2x+m,k=﹣2<0,故y随x的增大而减小,∵﹣1>﹣3,∴a<b,故选:C.10.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可.【解答】解:分两种情况:(1)当a>0时,一次函数y=ax﹣a经过第一、三、四象限,选项A符合;(2)当a<0时,一次函数y=ax﹣a图象经过第一、二、四象限,无选项符合.故选:A.二.填空题(共4小题)11.函数y=的自变量x的取值范围是x≥1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.12.若一次函数y=2x+b的图象经过点(1,﹣3),则b=﹣5.【分析】直接利用一次函数图象上点的坐标特点得出答案.【解答】解:∵一次函数y=2x+b的图象经过点(1,﹣3),∴﹣3=2+b,解得:b=﹣5.故答案为:﹣5.13.已知:如图,∠1=∠2=∠3=54°,则∠4的度数是126°.【分析】根据平行线的判定得出l1∥l2,根据平行线的性质解答即可.【解答】解:∵∠1=∠2=∠3=54°,∵∠1=∠5,∴∠5=∠2,∴l1∥l2,∴∠6=∠3,∴∠4=180°﹣∠6=180°﹣54°=126°,故答案为:126°.14.在Rt△ABC中,斜边BC=,则AB2+AC2+BC2的值为10.【分析】由直角三角形的性质可得AB2+AC2=BC2=5,即可求解.【解答】解:∵在Rt△ABC中,斜边BC=,∴AB2+AC2=BC2=5,∴AB2+AC2+BC2=5+5=10,故答案为10.三.解答题(共5小题)15.计算:(1)+|2﹣|﹣(π+2021)0;(2)(3+)2+(1+)(1﹣).【分析】(1)根据绝对值、零指数幂和二次根式的加减法可以解答本题;(2)根据完全平方公式、平方差公式可以解答本题.【解答】解:(1)+|2﹣|﹣(π+2021)0=3+2﹣1=2+1;(2)(3+)2+(1+)(1﹣)=9+6+2+(1﹣2)=9+6+2+(﹣1)=10+6.16.解方程组或不等式组:(1);(2).【分析】(1)根据加减消元法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【解答】解:(1),①+②×2,得5x=15,解得x=3,将x=3代入①,得y=2,故原方程组的解是;(2),由不等式①,得x>4,由不等式②,得x≤6,故原不等式组的解集是4<x≤6.17.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.【分析】求出∠DEG,证明∠DEG+∠CEF=90°即可解决问题.【解答】解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.18.如图所示,在平面直角坐标系xOy中,已知△AOC的顶点坐标分别是A(﹣2,2)、C (3,3).(1)作出△AOC关于x轴对称的△DOE,其中点A的对应点是D,点C的对应点是E,并直接写出D和E的坐标;(2)若P为x轴上一点,若OP=OA,求点P的坐标.【分析】(1)分别作出A,C的对应点D,E即可.(2)利用勾股定理求出OA即可解决问题.【解答】解:(1)如图,△ODE即为所求作.D(﹣2,﹣2),E(3,﹣3).(2)∵A(﹣2,2),∴OA==2,∵OA=OP=2,点P在x轴上,∴P(2,0)或(﹣2,0).19.2020年为“扶贫攻坚”决胜之年.某校八年级(1)班的同学积极响应校团委号召,每位同学都向学校对口帮扶的贫困地区捐赠了图书.全班捐书情况如图,请你根据图中提供的信息解答以下问题:(1)该班共有40名学生;(2)本次捐赠图书册数的中位数为7册,众数为8册;(3)该校八年级共有320名学生,估计该校八年级学生本次捐赠图书为7册的学生人数.【分析】(1)由捐书7册的人数及其所占百分比可得总人数;(2)先用总人数乘以捐书4册和8册对应的百分比求出其人数,再根据中位数和众数的概念求解即可;(3)用总人数乘以样本中捐书7册人数所占百分比即可.【解答】解:(1)该班学生总人数为12÷30%=40(人),故答案为:40;(2)捐书4册的人数为40×10%=4(人),捐书8册的人数为40×35%=14(人),∵中位数是第20、21个数据的平均数,而第20、21个数据均为7册,∴这组数据的中位数为7册,∵数据8出现的次数最多,有14个,∴众数为8册,故答案为:7、8;(3)估计该校八年级学生本次捐赠图书为7册的学生人数320×30%=96(人).20.如图,在平面直角坐标系xOy中,直线l1:y=﹣x+3与x轴交于点A,点P(a,4)在直线l1上,过点P的直线l2交x轴于点B(﹣3,0).(1)求△P AB的面积;(2)求直线l2的解析式:(3)以P A为腰作等腰直角△QP A,请直接写出满足条件的点Q的坐标.【分析】(1)利用解析式y=﹣x+3确定A(3,0),再把P(a,4)代入y=﹣x+3求出a得到P(﹣1,4),然后根据三角形面积公式计算△P AB的面积;(2)利用待定系数法求直线l2的解析式;(3)讨论:当P为直角顶点,则PQ⊥P A,PQ=P A=4,利用两直线垂直,一次项系数互为负倒数可设PQ的解析式为y=x+b,再把把P点坐标代入求出b得到PQ的解析式为y=x+5,设Q(x,x+5),利用两点间的距离公式得到(x+1)2+(x+5﹣4)2=(4)2,解方程得到此时Q点的坐标;当A为直角顶点时利用同样的方法确定Q点的坐标.【解答】解:(1)当y=0时,﹣x+3=0,解得x=3,则A(3,0),把P(a,4)代入y=﹣x+3得﹣a+3=4,解得a=﹣1,∴P(﹣1,4),∵B(﹣3,0),∴△P AB的面积=×(3+3)×4=12;(2)设直线l2的解析式为y=kx+b,把B(﹣3,0),P(﹣1,4)分别代入得,解得,∴直线l2的解析式为y=2x+6:(3)当P为直角顶点,则PQ⊥P A,PQ=P A==4,∵P A的解析式为y=﹣x+3,∴PQ的解析式为y=x+b,把P(﹣1,4)代入得﹣1+b=4,解得b=5,∴PQ的解析式为y=x+5,设Q(x,x+5),∴(x+1)2+(x+5﹣4)2=(4)2,解得x1=﹣5,x2=3,此时Q点的坐标为(﹣5,0)或(3,0);当A为直角顶点,则AQ⊥AP,AQ=P A=4,∵P A的解析式为y=﹣x+3,∴PQ的解析式为y=x+m,把A(3,0)代入得3+m=0,解得m=﹣3,∴AQ的解析式为y=x﹣3,设Q(x,x﹣3),∴(x﹣3)2+(x﹣3)2=(4)2,解得x1=﹣1,x2=7,此时Q点的坐标为(﹣1,﹣4)或(7,4);综上所述,Q点的坐标为(﹣5,0)或(3,0)或(﹣1,﹣4)或(7,4).一.填空题(共5小题)21.若实数x、y满足:y=++,则xy=2.【分析】根据二次根式有意义的条件求出x的值,进而求出y,计算即可.【解答】解:由题意得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=,∴xy=4×=2,故答案为:2.22.的整数部分为a,的小数部分为b,那么(b+2)2﹣a的值是11﹣2.【分析】求出a、b的值,代入计算即可.【解答】解:因为3<<4,的整数部分为a,的小数部分为b,所以a=3,b=﹣3,所以(b+2)2﹣a=(﹣3+2)2﹣3=14﹣2﹣3=11﹣2,故答案为:11﹣2.23.若关于x、y的二元一次方程组的解满足x+y<1,则a的取值范围为a <﹣4.【分析】将方程两个方程相加可得3x+3y=7+a,由x+y<1知3x+3y<3,据此可得7+a <3,解之即可.【解答】解:,①+②,得:3x+3y=7+a,∵x+y<1,∴3x+3y<3,则7+a<3,解得a<﹣4,故答案为:a<﹣4.24.如图,长方形ABCD中,AD=4,AB=3,点P是AB上一点,AP=1,点E是BC上一动点,连接PE,将△BPE沿PE折叠,使点B落在B',连接DB',则PB'+DB'的最小值是.【分析】连接DP.利用勾股定理求出DP,根据DB′+PB'≥DP,由此可得结论.【解答】解:如图,连接DP.∵四边形ABCD是矩形,∴∠A=90°,∵AP=1,AD=4,∴DP===,∵PB'+DB′≥DP,∴PB'+DB′≥,∴PB'+DB′的最小值为.25.已知:k为正数,直线l1:y=kx+k﹣1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为S k,则S2=,S1+S2+S3+…+S2020的值为.【分析】利用一次函数图象上点的坐标特征可求出直线l1、l2与x轴的交点坐标,联立两函数解析式成方程组,通过解方程组可求出两直线的交点坐标,利用三角形的面积公式可得出S k=S k=(﹣),将其代入S1+S2+S3+…+S2020中即可求出结论.【解答】解:当y=0时,有kx+k﹣1=0,解得:x=,∴直线l1与x轴的交点坐标为(,0);当y=0时,有(k+1)x+k=0,解得:x=﹣,∴直线l2与x轴的交点坐标为(﹣,0).联立两直线解析式成方程组,,解得:,∴两直线的交点坐标为(﹣1,﹣1).∴S k=×|﹣﹣|×|﹣1|==(﹣),∴S2=(﹣)=×(﹣)=,∴S1+S2+S3+…+S2020=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+﹣+…+﹣),=×(1﹣),=×,=.故答案为:,.二.解答题(共3小题)26.学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【解答】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有,解得.故1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)方法1:租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=2960(元).方法2:设租用甲种客车x辆,依题意有45x+30(8﹣x)≥330,解得x≥6,租用甲种客车6辆,租用乙客车2辆的租车费用为:400×6+280×2=2400+560=2960(元);租用甲种客车7辆,租用乙客车1辆的租车费用为:400×7+280=2800+280=3080(元);2960<3080,故最节省的租车费用是2960元.27.已知:等边三角形ABC,直线l过点C且与AB平行,点D是直线l上不与点C重合的一点,连接线段DB,并将射线DB绕点D顺时针转动60°,与直线AC交于点E(即∠BDE=60°).(1)如图1,点E在AC的延长线上时,求证:DE=DB;(2)如图2,AB=2,CD=4,依题意补全图2,试求出DE的长.(3)当点D在点C右侧时,直接写出线段CE、BC和CD之间的数量关系.【分析】(1)过点D作DF∥AC,交CB的延长线于点F,证明△CDF为等边三角形,由等边三角形的性质得出∠CDF=60°,CD=DF,证明△CDE≌△FDB(ASA),由全等三角形的性质得出DE=DB;(2)分两种情况:当点D在点C的右侧时,当点D在点C左侧时,作DF∥BC,交CA 的延长线于点F,由全等三角形的性质及勾股定理可得出答案;(3)分两种情况:当点E在AC的延长线上时,当点E在线段AC上时,过点D作DF ∥AC,交CB于点F,由全等三角形的性质可得出答案.【解答】解:(1)过点D作DF∥AC,交CB的延长线于点F,∵AB∥直线l,DF∥AC,∴∠ABC=∠BCD=60°,∠ACB=∠CFD=60°,∴△CDF为等边三角形,∴∠CDF=60°,CD=DF,∵∠BDE=60°,∴∠BDF=∠EDC,又∵∠BFD=∠ECD=60°,CD=DF,∴△CDE≌△FDB(ASA),∴DE=DB;(2)∵∠ADE<∠BDE,∴∠ADE不可能是直角,当点D在点C的右侧时,在四边形BCED中,∠BCE=120°,∠BDE=60°,∴∠CBD=90°,在Rt△BCD中,BC=2,CD=4,∴BD===2,由(1)可知DE=BD=2,当点D在点C左侧时,作DF∥BC,交CA的延长线于点F,∵AB∥直线l,DF∥BC,∴∠BAC=∠DCF=60°,∠BCA=∠DFC=60°,∴△CDF为等边三角形,∴∠CDF=60°,CD=DF=CF,∵∠BDE=60°,∴∠BDC=∠EDF,又∵∠DFE=∠DCB=120°,CD=DF,∴△BDC≌△EDF(ASA),∴EF=BC=2,∵CD=CF=4,∴AE=CE﹣AC=EF+CF﹣AC=4,在Rt△ACD中,AD==2,在Rt△ADE中,DE==2.综合以上可得,DE=2或2.(3)①如图3,当点E在AC的延长线上时,过点D作DF∥AC,交CB的延长线于点F,由(1)可知△CDE≌△FDB,∴CE=BF,CD=DF,∴CD=BC+BF=BC+CE;②如图4,当点E在线段AC上时,过点D作DF∥AC,交CB于点F,由(1)可知△CDE≌△FDB,∴CD=DF,CE=BF,∴CD=CF=BC﹣BF=BC﹣CE.28.如图,直线y=kx+2(k<0)与x轴、y轴分别交于点A、B.(1)如图1,点P(﹣1,3)在直线y=kx+2(k<0)上,求点A、B坐标;(2)在(1)的条件下,如图2,点A'是点A关于x轴的对称点,点Q是第二象限内一点,连结AQ、PQ、QA'和P A',如果△PQA'和△AA'Q面积相等,且∠P AQ=∠AP A',求点Q的坐标;(3)如图3,点C和点D是该直线在第一象限内的两点,点C在点D左侧,且两点的横坐标之差为1,且CD=k+2,作CE⊥x轴,垂足为点E,连结DE,若∠OAB=2∠DEB,求k的值.【分析】(1)由直线y=kx+2(k<0),当x=0时,y=2,得A(0,2),把点P(﹣1,3)代入y=kx+2(k<0)得k=﹣1,则y=﹣x+2,当y=0时,x=2,则B(2,0);(2)过点A'作A'Q∥AB,设AQ与A'P交点为M,延长QP交y轴于点N,先证△PQA'≌△AA'Q(SAS),得∠PQA'=∠AA'Q,PQ=AA',再由得出的性质得PQ=AA'=4,然后证∠QNO=90°,即可解决问题;(3)过D作DF⊥CE于F,先证CE=CD=k+2,再求出点C(1,k+2),D(2,2k+2),则DF=1,CF=﹣k,CE=k+2,然后在Rt△CDF中,由勾股定理得出方程,解方程即可.【解答】解:(1)当x=0时,y=2,∴A(0,2),把点P(﹣1,3)代入直线y=kx+2(k<0)得:﹣k+2=3,解得:k=﹣1,∴直线AB的解析式为y=﹣x+2,当y=0时,﹣x+2=0,解得:x=2,∴B(2,0);(2)过点A'作A'Q∥AB,设AQ与A'P交点为M,延长QP交y轴于点N,如图2所示:∵平行线间的距离处处相等,且QA'为公共底边,∴△PQA'和△AA'Q面积相等,∵∠P AQ=∠AP A',∴MA=MP,∵A'Q∥AB,∴∠P AQ=∠AQA',∠AP A'=∠P A'Q,∴∠AQA'=∠P A'Q,∴A'M=QM,∴AQ=A'P,∴△PQA'≌△AA'Q(SAS),∴∠PQA'=∠AA'Q,PQ=AA',∵点A'是点A关于x轴的对称点,A(0,2),∴A'(0,﹣2),∴PQ=AA'=2+2=4,由(1)可知OA=OB,∴∠BAO=45°,∵A'Q∥AP,∴∠PQA'=∠AA'Q=45°,∴∠QNO=90°,∴QN⊥y轴,∵P(﹣1,3),∴PN=1,ON=3,∴QN=PQ+PN=5,∴Q(﹣5,3);(3)过D作DF⊥CE于F,如图3所示:∵∠CEB=90°,∴∠CED=90°﹣∠DEB,∵CE∥OA,∴∠OAB=∠ECD,∵∠OAB=2∠DEB,∴∠ECD=2∠DEB,∴∠CDE=180°﹣∠ECD﹣∠CED=180°﹣2∠DEB﹣(90°﹣∠DEB)=90°﹣∠DEB,∴∠CDE=∠CED,∴CE=CD=k+2,∵点C在直线y=kx+2上,∴当y=k+2时,有k+2=kx+2,∴x=1,∴点C(1,k+2),D(2,2k+2),∴DF=1,CF=﹣k,CE=k+2,在Rt△CDF中,由勾股定理得:CF2+DF2=CD2,∴CF2+DF2=CE2,即(﹣k)2+12=(k+2)2,解得:k=﹣.。
北师大版八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、173.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.227.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,38.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<610.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是.12.若y=3x n﹣1是正比例函数,则n=.13.若P(a﹣2,a+1)在x轴上,则a的值是.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.16.双察下列等式:,,,…则第n个等式为.(用含n的式子表示)三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:18.(8分)计算:.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)求证:三角形三个内角的和等于180°.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b分析数据:平均数中位数众数80m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂1.下列实数中,无理数是()A.3.14B.2.12122C.D.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:无理数是,故选:C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下列四组数据,能作为直角三角形的三边长的是()A.2、4、6B.2、3、4C.5、7、12D.8、15、17【分析】分别求每个选项中数字的平方,根据其中两个数字的平方和等于第三个数字即可解题.【解答】解:22+42≠62,故A错误;22+32≠42,故B错误;52+72≠122,故C错误;82+152=172,故D正确;故选:D.【点评】本题考查了勾股数的计算,其中2个数字的平方和等于第三个数字的平方,则这3个数字为勾股数.3.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解答】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°,北纬42°可以确定一点的位置,故选项D正确,故选:D.【点评】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置.4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+4【分析】直接利用二次根式的定义分别分析得出答案.【解答】解:A、3﹣π<0,则3﹣a不能作为二次根式被开方数,故此选项错误;B、a的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;C、a2+1一定大于0,能作为二次根式被开方数,故此选项正确;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故此选项错误;故选:C.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.5.已知一次函数y=kx+3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是()A.(2,4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【解答】解:∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A、∵当x=2,y=4时,2k+3=4,解得k=0.5>0,∴此点符合题意,故本选项错误;B、∵当x=﹣1,y=2时,﹣k+3=2,解得k=1>0,∴此点符合题意,故本选项错误;C、∵当x=5,y=1时,5k+3=1,解得k=﹣0.4<0,∴此点不符合题意,故本选项正确;D、∵当x=﹣1,y=﹣4时,﹣k+3=﹣4,解得k=7>0,∴此点符合题意,故本选项错误.故选:C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.6.老师随机抽查了学生读课外书册数的情况,绘制成两幅统计图,其中条形统计图被遮盖了一部分,则被遮盖的数是()A.5B.9C.15D.22【分析】求出确定总人数,再求出被遮盖的数即可.【解答】解:由题意,总人数=6÷25%=24(人),∴被遮盖的数=24﹣5﹣6﹣4=9(人),故选:B.【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.方程组的解为,则a、b的值分别为()A.1,2B.5,1C.2,1D.2,3【分析】把代入方程组,即可解答.【解答】解:把代入方程组得:解得:故选:B.【点评】本题主要考查了二元一次方程组的解,解题的关键是用代入法进行求解.8.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等【分析】根据补角的性质、对顶角的概念、三角形的外角的性质、平行线的性质判断即可.【解答】解:同角的补角相等,A是真命题;相等的角不一定是对顶角,B是假命题;三角形的一个外角大于任何一个与它不相邻的内角,C是假命题;两条平行线被第三条直线所截.内错角相等,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.10.如图,直线y1=ax(a≠0)与y2=x+b交于点P,有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D..②③【分析】根据正比例函数和一次函数的性质判断即可.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<﹣2时,y1>y2,④正确;故选:C.【点评】此题考查一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断.二、填空题(本大题共6小题,每小题4分,共24分,请将答案填入答题卡的相应位置11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若y=3x n﹣1是正比例函数,则n=2.【分析】根据正比例函数的定义可以列出关于n是方程n﹣1=1,据此可以求得n的值.【解答】解:∵y=3x n﹣1是正比例函数,∴n﹣1=1,∴n=2,故答案是:2.【点评】本题考查了正比例函数的定义.正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.13.若P(a﹣2,a+1)在x轴上,则a的值是﹣1.【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【解答】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点评】此题主要考查了点的坐标,正确掌握x轴上点的坐标特点是解题关键.14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为6.【分析】根据平均数的定义计算即可.【解答】解:==6故答案为6.【点评】本题考查方差,平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.【点评】此题考查了平行线的性质.此题难度不大,注意辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.16.双察下列等式:,,,…则第n个等式为=.(用含n的式子表示)【分析】探究规律后,写出第n个等式即可求解.【解答】解:,,,…则第n个等式为=.故答案为:=.【点评】本题考查算术平方根的定义,解题的关键是探究规律,利用规律解决问题,属于中考常考题型.三、解答题[本大题共9小题,共86分.请在答题卡的相应位置解答17.(8分)解二元一次方程组:【分析】利用加减消元法求解可得.【解答】解:①+②,得:5x=5,解得:x=1,将x=1代入①,得:3+y=6,解得y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)计算:.【分析】先根据二次根式的除法法则运算,再利用平方差公式计算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(8分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?【分析】设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)求证:三角形三个内角的和等于180°.【分析】画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】已知:△ABC,如图:求证:∠A+∠B+∠C=180°证明:过点A作直线MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.21.(8分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y与x的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【分析】(1)根据题意和函数图象中的数据,可以求得y与x的函数关系式;(2)将x=18代入(1)的函数解析式,求出相应的y的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.【解答】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣10x+300;(2)能在保质期内销售完这批蜜柚,理由:将x=18代入y=﹣10x+300,得y=﹣10×18+300=120,∵120×40=4800>4500,∴能在保质期内销售完这批蜜柚.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(10分)如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【分析】(1)直接利用A点坐标画出平面直角坐标系进而利用关于y轴对称点的性质得出答案;(2)直接利用轴对称求最短路线的方法以及勾股定理得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:点P,即为所求,点P的坐标为:(0,1),PC+PB'的最小值为:=2.【点评】此题主要考查了轴对称变换以及勾股定理,正确得出对应点位置是解题关键.23.(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数3a8b 分析数据:平均数中位数众数80m n 请根据以上提供的信息,解答下列问题:(1)填空:a=5,b=4;m=81,n=81;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【解答】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)500×=300(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点评】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.24.(12分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC==,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC =AB×CE=.【解答】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴Rt△BCE中,BC==,设AE=x,则AB=x+5,∵Rt△ACE中,AC2=AE2+CE2,Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=,∴S=AB×CE=(+5)×4=.△ABC【点评】本题主要考查了折叠问题,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.(14分)已知等边△AOB的边长为4,以O为坐标原点,OB所在直线为x轴建立如图所示的平面直角坐标系.(1)求点A的坐标;(2)若直线y=kx(k>0)与线段AB有交点,求k的取值范围;(3)若点C在x轴正半轴上,以线段AC为边在第一象限内作等边△ACD,求直线BD的解析式.【分析】(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,即可求解;(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,即可求解;(3)证明△ACO≌△ADB(SAS),则OB=BD=4,而∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,即可求解.【解答】解:(1)如下图所示,过点A作AD⊥x轴于点D,则AD=OA sin∠AOB=4sin60°=2,同理OA=2,故点A的坐标为(2,2);(2)若直线y=kx(k>0)与线段AB有交点,当直线过点A时,将点A坐标代入直线的表达式得:2k=2,解得:k=,直线OB的表达式为:y=0,而k>0,故:k的取值范围为:0<k≤;(3)如下图所示,连接BD,∵△OAB是等边三角形,∴AO=AB,∵△ADC为等边三角形,∴AD=AC,∠OAC=∠OAB+∠CAB=60°+∠CAB=∠DAC+∠CAB=∠DAB,∴△ACO≌△ADB(SAS),∴OB=BD=4,∴∠AOB=∠ABD=60°,∴∠DBC=180°﹣∠ABO﹣∠ABD=180°﹣60°﹣60°=60°,故直线BD表达式的k值为tan60,设直线BD的表达式为:y=x+b,将点B(4,0)代入上式并解得:b=﹣4,故:直线BD的表达式为:y=x﹣4.【点评】本题考查的是一次函数的综合运用,涉及到三角形全等、解直角三角形等知识,其中(3)利用三角形全等,确定直线BD的倾斜角本题的难点.。
北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,无理数是( )A .0.101001B .0CD .23- 2.在平面直角坐标系中,点P (﹣2020,2019)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.若直线y kx b =+经过第一、二、四象限,则函数y bx k =-的大致图像是( )A .B .C .D .4.如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A .众数改变,方差改变B .众数不变,平均数改变C .中位数改变,方差不变D .中位数不变,平均数不变5.某船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则根据题意,可列方程组( )A .()()345565x y x y ⎧+=⎪⎨-=⎪⎩B .()()345565x y x y ⎧-=⎪⎨+=⎪⎩C .()()345565y x y x ⎧+=⎪⎨-=⎪⎩D .()()345565y x y x ⎧-=⎪⎨+=⎪⎩6.如图,已知DC‖EG ,∠C=40°,∠A=70°,则∠AFE 的度数为( )A .140°B .110°C .90°D .30°7.下列命题中是真命题的是( )A .相等的角是对顶角B .数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽得数8.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .13∠=∠,//AB CD ∴(内错角相等,两直线平行)B .//AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补) C .//AD BC ,180BAD D ∴∠+∠=︒(两直线平行,同旁内角互补)D .DAM CBM ∠=∠,//AD BC ∴(同位角相等,两直线平行)9.若关于x ,y 的二元一次方程组25125x y k x y k +=+⎧⎨-=-⎩的解满足7x y +=,则k 的值是( ) A .1 B .2 C .3 D .410.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是( )A .16B .25C .144D .169二、填空题11.-1 的立方根是____________12.已知点A 到x 轴的距离等于2,则点A 的坐标是____.(写出一个即可)13.点(,)a b 在直线23y x =-+上,则421a b +-=_________.14.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了______件.15.如图,∠ABC 中,∠A=55°,将∠ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DB 的度数为______.16.已知:如图,BC∠AC于点C,CD∠AB于点D,BE∠CD.若∠EBC=50°,则∠A=____.17.如图,已知CD是ABC的边AB上的高,若CD=1AD=,2AB AC=,则BC的长为_____.三、解答题18.方程组15xx y=⎧⎨+=⎩的解是______.19|-.20.解方程组:3435x yx y-=⎧⎨+=⎩①②.21.为全面落实“双减”政策,某中学调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题.(1)请你补全条形统计图; (2)在这次调查的数据中,做作业所用时间的众数是______小时,中位数是______小时,平均数是______小时;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天作业时间在3小时内(含3小时)的同学共有多少人?22.如图所示,一架梯子AB 斜靠在墙面上,且AB 的长为2.5米.(1)若梯子底端离墙角的距离OB 为1.5米,求这个梯子的顶端A 距地面有多高?(2)在(1)的条件下,如果梯子的顶端A 下滑0.5米到点A',那么梯子的底端B 在水平方向滑动的距离BB'为多少米?23.在直角坐标系中,∠ABC 的三个顶点的位置如图所示.(1)请画出∠ABC 关于y 轴对称的A B C '''(其中,,A B C '''分别是A ,B ,C 的对应点,不写画法).(2)求∆ABC 的面积.24.如图,MN BC ∥,BD DC ⊥,1260∠=∠=︒,DC 是NDE ∠的平分线(1)AB 与DE 平行吗?请说明理由;(2)试说明ABC C ∠=∠;(3)求ABD ∠的度数.25.如图,直线y =kx+4与x 轴相交于点A ,与y 轴相交于点B ,且AB =(1)求点A 的坐标;(2)求k 的值;(3)C 为OB 的中点,过点C 作直线AB 的垂线,垂足为D ,交x 轴正半轴于点P ,试求点P 的坐标及直线CP 的函数表达式.26.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG= ;(直接写出答案)(2)若∠MON=n°,求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=80°,过点C作CF∠OA交AB于点F,求∠BGO与∠ACF的数量关系.参考答案1.C【分析】A、B、C、D分别根据无理数、有理数的定义来求解即可判定.【详解】A、B、D中0.101001,0,23是有理数,C故选:C.【点睛】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.2.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∠点P(﹣2020,2019)的横坐标是负数,纵坐标是正数,∠点P(﹣2020,2019)所在的象限是第二象限,故选:B.【点睛】本题考查平面直角坐标系中各个象限的点的坐标的符号特点.掌握各个象限内点的符号特点是解题的关键.3.B=+的图像经过第一、二、四象限,可以得到k和b的正负,然【分析】根据一次函数y kx b=-图像经过哪几个象限,从而可以解答后根据一次函数的性质,即可得到一次函数y bx k本题.=+的图像经过第一、二、四象限,【详解】一次函数y kx bb>,k∴<,0k->,∴>,0b=-图像第一、二、三象限,∴一次函数y bx k故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.4.C【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【详解】解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.【点评】本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义.5.A【分析】根据:顺水航行速度=船在静水中航行速度+水流速度、逆水航行速度=船在静水中航行速度-水流速度及路程公式可得方程组.【详解】解:设船在静水中的速度为x 千米时,水流速度为y 千米时,根据题意,可列方程组3()455()65x y x y +=⎧⎨-=⎩, 故选:A .6.B【分析】先根据三角形外角的性质可求∠ABD ,再根据平行线的性质可求∠AFE 的度数.【详解】∠∠C=40°,∠A=70°,∠∠ABD=40°+70°=110°,∠DC∠EG ,∠∠AFE=110°.故选:B .7.B【详解】解:A 、相等的角不一定是对顶角,故此命题是假命题;B 、数轴上的点与实数一一对应,故此命题是真命题;C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π是无理数,但不是开方开不尽的数,故此命题是假命题;.故选B .8.C【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:A .13∠=∠,//AB CD ∴(内错角相等,两直线平行),正确; B .//AB CD ,180BCD ABC ∴∠+∠=︒(两直线平行,同旁内角互补),正确; C .//AD BC ,180BCD D ∴∠+∠=︒(两直线平行,同旁内角互补),故C 选项错误;D .DAM CBM ∠=∠,//AD BC ∴(同位角相等,两直线平行),正确; 故选:C .9.B【分析】利用加减法,先用含k 的代数式表示出x+y ,根据x+y=7,得到关于k 的一元一次方程,求解即可.【详解】解:2511252 x y kx y k+=+⎧⎨-=-⎩()()(1)×2+(2),得3x+3y=12k-3,∠x+y=4k-1,∠4k-1=7,解得k=2.故选:B.10.B【分析】根据勾股定理解答即可.【详解】解:根据勾股定理得出:,∠EF=AB=5,∠阴影部分面积是25,故选:B.11.-1.【分析】原式利用立方根定义计算即可.【详解】∠()31-=-1,∠-1的立方根是-1.故答案为-1.12.(1,2)【分析】根据点到x轴的距离等于纵坐标的长度,只有所写点的纵坐标的绝对值是2即可.【详解】解:∠点A到x轴的距离等于2,∠点A的纵坐标的绝对值是2,∠点A的坐标可以是(1,2).故答案为:(1,2)答案不唯一.13.5【分析】利用点(,)a b 在直线23y x =-+上,得到23a b +=,然后利用整体代入的方法即可计算421a b +-的值.【详解】∠点(,)a b 在直线23y x =-+上,∠23b a =-+,即23a b +=,∠()4212212315a b a b +-=+-=⨯-=.故答案为:5.14.280【分析】由题意根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【详解】解:甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分, 因此:40×(70÷10)=280件,故答案为:28015.40°【分析】由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=12(180°-70°)=55°,求出∠ADE 即可解决问题.【详解】解:由翻折的性质可知:∠ADE=∠EDA′,∠AED=∠A′ED=12(180°-70°)=55°, ∠∠A=55°,∠∠ADE=∠EDA′=180°-55°-55°=70°,∠∠A′DB=180°-140°=40°,故答案为:40°.16.50°.【分析】根据平行线的性质得到∠EBC =∠BCD ,根据垂直的定义得到∠BCD+∠DCA =∠A+∠DCA ,等量代换即可得到结论.【详解】∠BE∠CD ,∠EBC =50°,∠∠BCD =∠EBC =50°,∠BC∠AC ,∠∠ACB =90°,∠∠ACD =90°﹣50°=40°,∠CD∠AB ,∠∠ACD=90°,∠∠A=90°﹣∠ACD=90°﹣40°=50°,故答案为50°.17.【分析】本题可由勾股定理算出AC的长度,再由AB=2AC得AB的长度,最后再通过勾股定理得BC的长度.【详解】解:∠CD是∠ABC的边AB上的高,∠∠ADC,∠BDC是直角三角形,在Rt∠ADC中,由勾股定理得:AC2,∠AB=2AC,∠AB=4,BD=AB+AD=4+1=5,在Rt∠BDC中,由勾股定理得:BC故答案为:18.14 xy=⎧⎨=⎩【分析】利用代入消元法将x=1代入到x+y=5中,解出y即可.【详解】解:15xx y=⎧⎨+=⎩,将x=1代入到x+y=5中,解得:y=4,∠方程的解为:14xy=⎧⎨=⎩,故答案为:14xy=⎧⎨=⎩.19.2.﹣=﹣=2.20.21 xy=⎧⎨=-⎩【详解】解:3435x yx y-=⎧⎨+=⎩①②,∠3⨯+∠,得714x=,解得2x=,把2x=代入∠,得23y-=,解得1y=-.故方程组的解为21 xy=⎧⎨=-⎩.21.(1)见解析;(2)3小时、3小时、3小时;(3)1360人.【分析】(1)用样本容量减已知各部分的人数,求出平均每天作业用时是4小时的人数,然后补全统计图;(2)利用众数,中位数,平均数的定义即可求解;(3)利用总人数2000乘以每天做作业时间在3小时内(含3小时)的同学所占的比例,即可求解.(1)每天作业用时是4小时的人数是:506121688----=(人),补全条形统计图如图所示:(2)∠每天作业用时是3小时的人数最多,是16人,∠众数是3小时;∠从小到大排列后排在第25和第26位的都是每天作业用时是3小时的人,∠中位数是3小时; 平均数是61221638485350+⨯+⨯+⨯+⨯=(小时),故答案为:3小时、3小时、3小时;(3)612162000136050++⨯=(人),故估计该校全体学生每天作业时间在3小时内(含3小时)的同学共有1360人. 22.(1)梯子距离地面的高度为2米;(2)梯子的底端水平后移了0.5米.【详解】解:(1)根据勾股定理:所以梯子距离地面的高度为:AO 2米;(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米,根据勾股定理:OB′=2米,所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米,答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.23.【详解】解:(1)如图,A B C '''是所求作的三角形,(2)11145123534 5.5.222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=24.(1)AB DE ∥,见解析(3)30°【分析】(1)首先根据平行线的性质,两直线平行,内错角相等即可证得∠ABC=∠1=60°,进而证明∠ABC=∠2,根据同位角相等,两直线平行,即可证得;(2)根据平行线的性质,两直线平行,同旁内角互补求得∠NDE的度数,然后根据角平分线的定义,以及平行线的性质即可求得∠C的度数,从而判断;(3)先求得∠ADB的度数,根据平行求出∠DBC的度数,然后求得∠ABD的度数,即可证得.(1)解:AB DE∥,理由如下:∠MN BC∥,∠∠ABC=∠1=60°.又∠∠1=∠2,∠∠ABC=∠2,∠AB∠DE.(2)解:∠MN∠BC,∠∠NDE+∠2=180°,∠∠NDE=180°-∠2=180°-60°=120°.∠DC是∠NDE的平分线,∠1602∠=∠=∠=︒EDC NDC NDE.∠MN∠BC,∠∠C=∠NDC=60°,∠∠ABC=∠C.(3)解:∠ADC=180°-∠NDC=180°-60°=120°,∠BD∠DC,∠∠BDC=90°,∠∠ADB=∠ADC-∠BDC=120°-90°=30°.∠∠DBC=∠ADB=30°,∠∠ABC=∠C=60°,∠∠ABD=30°【点睛】本题考查了平行线的性质和判定定理,垂线的性质,解题关键是熟练运用平行线的性质与判定进行推理证明和计算.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+ 【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证∠AOB∠∠COP ,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y =kx+4可得:y =4,∠()0,4B ,∠OB=4,在Rt∠AOB 中,AB =2OA ==,∠()2,0A -;(2)由(1)可把点()2,0A -代入直线y =kx+4得:240k -+=,解得:2k =;(3)∠点C 为OB 的中点,OB=4,∠2OC =,∠OC OA =,∠90AOB COP ∠=∠=︒,DP AB ⊥,∠90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∠ABO CPO ∠=∠,又∠∠AOB=∠COP=90°,∠∠AOB∠∠COP (AAS ),∠OP=OB=4,∠()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∠240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩, ∠直线CP 的解析式为122y x =-+. 【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)60°;(2)90°-12n°;(3)∠BGO -∠ACF=50° 【分析】(1)根据三角形内角和定理求出∠BAO+∠ABO ,根据角平分线的定义、三角形的外角性质计算,得到答案;(2)仿照(1)的解法解答;(3)根据平行线的性质得到∠ACF=∠CAG ,根据(2)的结论解答.【详解】解:(1)∠∠MON=60°,∠∠BAO+∠ABO=120°,∠AC 、BC 分别是∠BAO 和∠ABO 的角平分线, ∠∠CBA=12∠ABO ,∠CAB=12∠BAO , ∠∠CBA+∠CAB=12(∠ABO+∠BAO )=60°, ∠∠ACG=∠CBA+∠CAB=60°,故答案为:60°;(2)∠∠MON=n°,∠∠BAO+∠ABO=180°-n°,∠AC 、BC 分别是∠BAO 和∠ABO 的角平分线, ∠∠CBA=12∠ABO ,∠CAB=12∠BAO , ∠∠CBA+∠CAB=12(∠ABO+∠BAO )=90°-12n°, ∠∠ACG=∠CBA+∠CAB=90°-12n°; (3)∠CF∠OA ,∠∠ACF=∠CAG ,∠∠BGO-∠ACF=∠BGO-∠CAG=∠ACG,由(2)得:∠ACG=90°-12×80°=50°.∠∠BGO-∠ACF=50°.。
北师大版八年级上册数学期末考试试题一、单选题1.下列实数中是无理数的是( )A.π B C .0 D .27- 2.如图,在Rt ABC 中,90C ∠=︒,边BC 的长是( )A.5 B .6 C .8 D .3.下列选项中,最简二次根式是( )A B C D 4.如图,在ABC 中,85B ∠=︒,40ACD ∠=︒,AB ∥CD ,则ACB ∠的度数为( )A .90°B .85°C .60°D .55° 5.若点(1,2)P 在正比例函数的图象上,则这个正比例函数的解析式是( ) A .2y x =- B .2y x = C .4y x =- D .4y x = 6.函数1y kx =-中,y 随x 的增大而增大,则它的图象可能是下图中的( )A .B .C .D .7.古代数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A . 4.5112y x y x =-⎧⎪⎨=-⎪⎩B . 4.5112y x y x =-⎧⎪⎨=+⎪⎩C . 4.5112y x y x =+⎧⎪⎨=-⎪⎩D . 4.521y x y x =+⎧⎨=-⎩ 8.如图,ABC 是一个三角形的纸片,点D 、E 分别是ABC 边上的两点,将ABC 沿直线DE 折叠,点A 落在点A '处,则BDA '∠,CEA '∠和A ∠的关系是( )A .BDA CEA A ''∠-∠=∠B .180BDA CEA A ''∠+∠+∠=︒C .2BDA A CEA ''∠+∠=∠D .2BDA CEA A ''∠+∠=∠9.下列运算结果正确的是( )AB.2+= C3= D.)213=-10.已知直线12//l l ,将一块直角三角板ABC (其中∠A 是30°,∠C 是60°)按如图所示方式放置,若∠1=84°,则∠2等于( )A .56°B .64°C .66°D .76°二、填空题11.正数a 的平方根是5和m ,则m =__________. 12.已知41x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x ay -=的一个解,则a 的值是__________. 13.计算的结果是________. 14.解方程组5()3()22()4()6x y x y x y x y +--=⎧⎨++-=⎩,若设()x y A +=,()x y B -=,则原方程组可变形为______.15.如图,已知函数y ax b =+和y cx d =+图象交于点M ,则根据图象可知,关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为____________.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.17.如图,已知∠1=∠2,∠B =35°,则∠3=________°.18.如图,已知直线y =ax+b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b=⎧⎨=+⎩的解是_____.三、解答题19.计算(2)1)20.为了搞好课外活动,王老师还需购买一定数量的足球和篮球.经调查发现:6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元,请问篮球和足球的单价分别是多少?21.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P到x轴、y轴的距离相等.22.已知:如图,在∠ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∠BC.23.如图,∠ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.如图,在平面直角坐标系中,∠ABC 的顶点坐标分别为()3,2A -,()4,3B --,()2,2C --. (1)∠ABC 的面积是 ;(2)画出∠ABC 关于y 轴对称的∠A 1B 1C 1,并写出点B 1的坐标.25.在∠ABC 中,(1)如图1,AC =15,AD =9,CD =12,BC =20,求∠ABC 的面积;(2)如图2,AC =13,BC =20,AB =11,求∠ABC 的面积.26.如图,在平面直角坐标系xOy 中,一次函数的图象经过点()30A -,与点()0,4B .(1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且∠MOB 的面积为12,求点M 的坐标;(3)点P 为x 轴上一动点,且∠ABP 是等腰三角形,请直接写出点P 的坐标.27.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,∠问卷得分的极差是_____________分;∠问卷得分的众数是____________分;∠问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.参考答案1.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、π是无理数,故此选项符合题意;B2=,属于有理数,故此选项不符合题意;C、0属于有理数,故此选项不符合题意;D、27-是分数,属于有理数,故此选项不符合题意;故选:A.【点睛】此题主要考查了无理数的定义,掌握实数的分类是解答本题的关键.2.B【分析】利用勾股定理计算即可.【详解】解:由题意可得:6=,故选:B.【点睛】本题考查了勾股定理,解题的关键是掌握直角三角形中直角边的平方和等于斜边的平方.3.C【分析】根据最简二次根式的定义判断即可.【详解】解:A=,不是最简二次根式,故不符合题意;B=CD=,不是最简二次根式,故不符合题意;故选:C.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.4.D【分析】根据平行线的性质和三角形的内角和定理即可得到结论.【详解】解:∠AB∠CD,∠ACD=40°,∠∠A=∠ACD=40°,∠∠ACB=180°-∠A-∠B=180°-40°-85°=55°,故选:D.【点睛】本题考查的是三角形内角和定理和平行线的性质,掌握三角形内角和定理等于180°是解题的关键.5.B【分析】将P坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式.【详解】解:设正比例函数的解析式为y=kx,将x=1,y=2代入y=kx中,得:2=k,则正比例解析式为y=2x;故选:B.【点睛】此题考查了待定系数法求正比例函数解析式,灵活运用待定系数法是解本题的关键.6.D【分析】y随x的增大而增大,则k>0,图象经过一、三象限;常数项-1<0,则直线与y 轴的交点在负半轴上,图象还经过第四象限.【详解】解:∠函数y=kx-1,y随x的增大而增大,∠k>0,图象经过一、三象限;又∠-1<0,∠图象还经过第四象限.即图象经过一、三、四象限.故选:D.【点睛】本题考查了一次函数的图象特征,函数的增减性,解题的关键是掌握一次函数的各个系数的作用.7.C【分析】根据用一根绳子去量一根长木,绳子还剩余4.5尺,可得x+4.5=y;根据将绳子对y,然后即可写出相应的方程组.折再量长木,长木还剩余1尺,可得x-1=12【详解】解:由题意可得,4.5112y x y x =+⎧⎪⎨=-⎪⎩, 故选:C .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.D【分析】由∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,得∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,再利用四边形内角和定理可得答案.【详解】解:∠∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,∠∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,∠∠BDA'+∠CEA'=∠A+∠DA'E ,∠∠A'DE 是由∠ADE 沿直线DE 折叠而得,∠∠A=∠DA'E ,∠∠BDA'+∠CEA'=2∠A ;故选D .【点睛】本题主要考查了折叠的性质,三角形内角和定理等知识,遇到折叠的问题,一定要找准相等的量,结合题目所给出的条件在图形上找出之间的联系则可.9.D【分析】根据二次根式的运算性质,以及完全平方公式进行计算即可.【详解】A与B .2与CD.)22212113=-+=-故选:D .【点睛】本题考查了二次根式加减乘除计算,熟知二次根式加减乘除运算性质以及运用完全平方公式进行计算是解题的关键.10.C【分析】如图,由题意易得∠ABC=90°,则有∠3=∠1-∠C=24°,进而可得∠4=66°,然后根据平行线的性质可求解.【详解】解:如图所示:∠∠C=60°,∠1=84°,∠∠3=24°,∠∠ABC 是直角三角形,∠∠ABC=90°,∠∠4=66°,∠12//l l ,∠∠2=∠4=66°;故选C .【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.11.-5【分析】根据一个正数的平方根互为相反数,从而可以求得m 的值.【详解】解:∠正数a 的平方根是5和m ,∠5+m=0,∠m=-5,故答案为:-5.【点睛】本题考查了平方根,解答本题的关键是明确一个正数的平方根有两个,它们互为相反数.12.1【分析】把41x y =⎧⎨=⎩代入二元一次方程x -ay=3中,得到关于a 的方程,解方程就可以求出a .【详解】解:把41x y =⎧⎨=⎩代入二元一次方程x -ay=3,得 4-a=3,解得a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a 为未知数的方程.13.【详解】分析:先计算分子,然后进行二次根式的除法运算.详解:原式点睛:本题考查了二次根式的计算:一般情况下,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.532246A B A B -=⎧⎨+=⎩ 【分析】根据题意,将()x y A +=,()x y B -=代入方程组中即可得出结论.【详解】解:由题意可得原方程组可变形为532246A B A B -=⎧⎨+=⎩故答案为:532246A B A B -=⎧⎨+=⎩. 【点睛】此题考查的是换元法,根据题意换元是解题关键.15.57x y =-⎧⎨=⎩ 【分析】一次函数y=ax+b 和y=cx+d 交于点(-5,7);因此点(-5,7)必为两函数解析式所组方程组的解.【详解】解:由图可知:直线y=ax+b 和直线y=cx+d 的交点坐标为(-5,7);因此关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为:57x y =-⎧⎨=⎩,故答案为:57xy=-⎧⎨=⎩.【点睛】考查了一次函数与二元一次方程(组)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.30°【分析】根据矩形的性质得到AD∠BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB =20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∠四边形ABCD是矩形,∠AD∠BC,∠DCB=90°,∠∠F=∠ECB∠∠ECB=20°,∠∠F=∠ECB=20°,∠∠GAF=∠F,∠∠GAF=∠F=20°,∠∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∠∠ACB=∠ACG+∠ECB=60°,∠∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∠∠1=∠2,∠AB∠CE,∠∠3=∠B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.12 xy=⎧⎨=⎩.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】解:∠直线y=ax+b和直线y=kx交点P的坐标为(1,2),∠关于x,y的二元一次方程组y kxy ax b=⎧⎨=+⎩的解为12xy=⎧⎨=⎩.故答案为12xy=⎧⎨=⎩.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于利用图象求解.19.(1)3 2(2)12【分析】(1)利用二次根式的乘法法则计算,再化简;(2)利用平方差公式计算即可.(1)=32;(2))11=221-=131-=12【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.20.篮球单价为80元,足球单价为60元【分析】设篮球单价为x元,足球单价为y元,根据“6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设篮球单价为x元,足球单价为y元,依题意,得:647203260x yx y+=⎧⎨+=⎩,解得:8060xy=⎧⎨=⎩,答:篮球单价为80元,足球单价为60元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)P(-6,0);(2)P(-12,-12)或(-4,4)【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∠点P(a-2,2a+8)在x轴上,∠2a+8=0,解得:a=-4,故a-2=-4-2=-6,则P(-6,0);(2)∠点P到x轴、y轴的距离相等,∠a-2=2a+8或a-2+2a+8=0,解得:a=-10,或a=-2,故当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);故当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述:P(-12,-12)或(-4,4).【点睛】此题主要考查了点的坐标特征,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质.22.证明见解析【分析】由角平分线的定义可知:∠EAD=12∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.【详解】解:∠AD 平分∠EAC , ∠∠EAD=12∠EAC ,又∠∠B=∠C ,∠EAC=∠B+∠C , ∠∠B=12∠EAC , ∠∠EAD=∠B ,∠AD∠BC .【点睛】本题主要考查了平行线的判定,三角形的外角性质,熟练掌握平行线的判定,三角形的外角性质是解题的关键.23.(1)∠1与∠B 相等,理由见解析;(2)若BC =BD ,AB 与FB 相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF∠AB ,∠B+∠F=90°,继而可得出∠1=∠B ;(2)通过判定∠ABC∠∠FBD (AAS ),可得出AB=FB .【详解】解:(1)∠1与∠B 相等,理由:∠,∠ABC 中,∠ACB =90°,∠∠1+∠F =90°,∠FD∠AB ,∠∠B+∠F =90°,∠∠1=∠B ;(2)若BC =BD ,AB 与FB 相等,理由:∠∠ABC 中,∠ACB =90°,DF∠AB ,∠∠ACB =∠FDB =90°,在∠ACB 和∠FDB 中, B B ACB FDB BC BD ∠=∠⎧⎪∠∠⎨⎪=⎩=,∠∠ACB∠∠FDB (AAS ),∠AB =FB .【点睛】本题考查全等三角形的判定(AAS )与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS )与性质、三角形内角和.24.(1)4.5;(2)见解析,()14,3B -【分析】(1)依据割补法进行计算,即可得到∠ABC 的面积;(2)依据轴对称的性质进行作图,即可得到∠A 1B 1C 1.【详解】解:(1)∠ABC 的面积为:2×5−12×1×4−12×1×5−12×1×2=4.5;故答案为:4.5;(2)如图,111A B C △为所求;()14,3B -;【点睛】本题考查了作图——轴对称变换,解决本题的关键是掌握轴对称的性质.25.(1)150;(2)66【分析】(1)根据勾股定理的逆定理判断∠ADC=90°,再用勾股定理求出DB ,然后求面积即可;(2)过点C 作CD AB ⊥,交BA 的延长线于点D ,设AD x =,则11BD x =+,根据勾股定理列出方程,解出x ,再求出高CD 即可.【详解】解:(1)如答题1图,∠15AC =,9AD =,12CD =∠2222129225CD AD +=+=,2215225AC == ∠222CD AD AC +=∠90ADC ∠=︒,∠=90BDC ∠︒,∠16BD =∠91625AB AD BD =+=+=.∠11251215022ABC S AB CD =⋅=⨯⨯=△(2)如答题2图,过点C 作CD AB ⊥,交BA 的延长线于点D ,则90ADC BDC ∠=∠=︒.设AD x =,则11BD x =+在Rt ACD △,2222213CD AC AD x =-=-在Rt BCD ,()222222011CD BC BD x =-=-+∠()2222132011x x -=-+解得:5x =∠222135144CD =-=∠12CD = ∠1111126622ABC S AB CD =⋅=⨯⨯=△【点睛】本题考查了勾股定理和勾股定理逆定理,解题关键是恰当作垂线,构建直角三角形,依据勾股定理建立方程.26.(1)443y x =+;(2)()6,12或()6,4--;(3)点Р()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭【分析】(1)设一次函数的表达式为y=kx+b ,把点A 和点B 的坐标代入求出k ,b 的值即可;(2)点M 的坐标为(a ,443a +),根据∠MOB 的面积为12,列出关于a 的等式,解之即可;(3)分三种情形讨论即可∠当AB=AP 时,∠当BA=BP 时,∠当PA=PB 时.【详解】解:(1)设这个一次函数的表达式为y kx b =+,依题意得:304k b b -+=⎧⎨=⎩, 解得:434k b ⎧=⎪⎨⎪=⎩, ∠443y x =+.(2)如图:设点M 的坐标为4,43a a ⎛⎫+ ⎪⎝⎭,∠()0,4B ,∠4OB =,∠MOB △的面积为12,14122a ⨯⨯=, ∠6a =,∠6a =±,当6a =时,44123a +=; 当6a =-时,4443a +=-; ∠点M 的坐标为:()6,12或()6,4--.(3)∠点A (-3,0),点B (0,4).∠OA=3,OB=4,5=,当PA=AB 时,P 的坐标为(-8,0)或(2,0);当PB=AB 时,P 的坐标为(3,0);当PA=PB 时,设P 为(m ,0),则(m+3)2=m 2+42, 解得:7m 6=,∠P 的坐标为(76,0); 综上,点Р的坐标是:()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭. 【点睛】本题考查一次函数综合题、待定系数法、等腰三角形的判定和性质、三角形面积等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型. 27.(1)14%;(2)∠40,∠90,∠85;(3)82.6.【分析】(1)依据扇形统计图中各项目的百分比,即可得到a 的值;(2)依据极差、众数和中位数的定义进行计算,即可得到答案;(3)依据加权平均数的算法进行计算,即可得到该班同学的平均分.【详解】(1)120%30%20%16%14%a =----=;(2)∠问卷得分的极差是100-60=40(分),∠90分所占的比例最大,故问卷得分的众数是90分,∠7÷14=50(人),70分的人数为:50×16%=8(人)80分的人数为:50×20%=10(人)90分的人数为:50×30%=15(人)100分的人数为:50×20%=10(人)所以,问卷得分的中位数是从低分到高分排列第25,26个学生分数的平均数,即908085 2+=(分);(3)该班同学的平均分为:6014%7016%8020%9030%10020%82.6⨯+⨯+⨯+⨯+⨯=(分)。
北师大版数学八年级上册期末考试试题一.选择题(共10小题,满分30分,每小题3分)1.在下列各数:,0.2,,,,中,无理数的个数()A.2个B.3个C.4个D.5个2.如图,AB∥CD,∠A=30°,∠F=40°,则∠C=()A.65°B.70°C.75°D.80°3.下列四组数据不能作为直角三角形的三边长的是()A.9,12,15 B.7,24,25 C.15,36,39 D.12,15,20 4.下列说法错误的有()A.5是25的算术平方根B.负数有一个负的立方根C.(﹣4)2的平方根是﹣4D.0的平方根与算术平方根都是05.下列一次函数中,函数图象不经过第三象限的是()A.y=2x﹣3 B.y=x+3 C.y=﹣5x+1 D.y=﹣2x﹣1 6.某中学八(1)班8个同学在课间进行一分钟跳绳比赛,成绩(单位:个)如下:115,138,126,143,134,126,157,118.这组数据的众数和中位数分别是()A.126,126 B.126,130 C.130,134 D.118,1347.下面命题:①同位角相等;②对顶角相等;③若x2=y2,则x=y;④互补的角是邻补角.其中真命题有()个.A.1 B.2 C.3 D.48.给出一组数据:80,85,90,75,90,小兰在记录这组数据时不小心把最小数据记录成了70,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差9.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10 B.y=﹣2x+14 C.y=2x+2 D.y=﹣x+5 10.关于一次函数有如下说法:①函数y=﹣2x的图象从左到右下降,随着x的增大,y反而减小;②函数y=5x+1的图象与y轴的交点坐标是(0,1);③函数y=3x﹣1的图象经过第一、二、三象限;则说法正确的是()A.①②B.①③C.②③D.①②③二.填空题(共4小题,满分12分,每小题3分)11.若≈1.414,≈4.472,则≈.12.在平面直角坐标系xOy中,直线y=kx(k>0)与直线y=﹣x+3,直线y=﹣x﹣3分别交于A、B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为.13.如图中的平面图形由多条直线组成,计算∠1+∠2+∠3+∠4+∠5=.14.已知AD是△ABC的中线,∠ADC=45°,把△ADC沿AD所在直线对折,点C落在点E的位置(如图),则∠EBC等于度.三.解答题(共11小题,满分78分)15.(5分)计算:(1).(2).16.(5分)解方程组(1)(2)17.(5分)如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A'B'C'.(2)若网格中最小正方形的边长为1,求△ABC的面积.(3)点P在直线MN上,当△PAC周长最小时,P点在什么位置,在图中标出P点.18.(5分)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°).(1)如图1,①若∠DCE=40°,求∠ACB的度数;②若∠ACB=150°,直接写出∠DCE的度数是度.(2)由(1)猜想∠ACB与∠DCE满足的数量关系是.(3)若固定△ACD,将△BCE绕点C旋转,①当旋转至BE∥AC(如图2)时,直接写出∠ACE的度数是度.②继续旋转至BC∥DA(如图3)时,求∠ACE的度数.19.(7分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣1),B(2,0),C(0,3),AC交x轴于点D,AB交y轴于点E.(1)△ABC的面积为;(2)点E的坐标为;(3)若点P的坐标为(0,m),①线段EP的长为(用含m的式子表示);②当S△PAB=S△ABC时,求m的值.20.(7分)按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知).∴∠ADC=.(垂直的定义)∴∠1+=90°.∵∠1+∠2=90°(已知).∴=∠2().∴DE∥BC().21.(7分)如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A.(1)求点C的坐标及直线l2的解析式;(2)连接BD,求△BCD的面积.22.(7分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?23.(8分)某公司想招聘一名新职员,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制,单位:分)如表所示:应试者面试成绩笔试成绩才艺甲86 79 90乙84 81 75丙80 90 73 (1)请通过计算三项得分的平均分,从低到高确定应聘者的排名顺序;(2)公司规定:面试、笔试、才艺得分分别不得低于80分、80分、70分,并按照50%、40%,10%的比例计入个人总分,请你确定谁会被录用?并说明理由.24.(10分)随着5G网络技术的快速发展,市场对5G产品的需求越来越大.某5G产品生产厂家承接了27000个电子元件的生产任务,计划安排甲、乙两个车间共50名工人,合作生产20天完成.已知甲车间每人每天生产25个,乙车间每人每天生产30个.(1)求甲、乙两个车间各有多少名工人将参与生产?(2)为提前完成生产任务,该厂家设计了两种生产方案:方案1:甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变;方案2:乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.若设计的这两种生产方案,厂家完成生产任务的时间相同,求乙车间需要临时招聘的工人数.25.(12分)快车和慢车分别从A市和B市两地同时出发,匀速行驶,先相向而行,慢车到达A市后停止行驶,快车到达B市后,立即按原路原速度返回A市(调头时间忽略不计),结果与慢车同时到达A市.快、慢两车距B市的路程y1、y2(单位:km)与出发时间x(单位:h)之间的函数图象如图所示.(1)A市和B市之间的路程是km;(2)求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3)快车与慢车迎面相遇以后,再经过多长时间两车相距20km?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:,,故无理数有,,共2个.故选:A.2.解:∵∠A=30°,∠F=40°,∴∠FEB=∠A+∠F=30°+40°=70°,∵AB∥CD,∴∠C=∠FEB=70°,故选:B.3.解:92+122=152,故选项A不符合题意;72+242=252,故选项B不符合题意;152+362=392,故选项C不符合题意;122+152≠202,故选项D符合题意;故选:D.4.解:A、5是25的算术平方根,不符合题意;B、负数有一个负的立方根,不符合题意;C、(﹣4)2的平方根是±4,符合题意;D、0的平方根与算术平方根都是0,不符合题意;故选:C.5.解:函数y=2x﹣3的图象经过第一、三、四象限,故选项A不符合题意;函数y=x+3的图象经过第一、二、三象限,故选项B不符合题意;函数y=﹣5x+1的图象经过第一、二、四象限,故选项C符合题意;函数y=﹣2x﹣1的图象经过第二、三、四象限,故选项D不符合题意;故选:C.6.解:将这组数据重新排列为115,118,126,126,134,138,143,157,所以这组数据的众数为126,中位数为=130,故选:B.7.解:①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③若x2=y2,则x=y或x=﹣y,原命题是假命题;④互补的角不一定是邻补角,原命题是假命题;故选:A.8.解:原数据75,80,85,90,90的中位数为85、平均数为=84,方差为×[(75﹣84)2+(80﹣84)2+(85﹣84)2+2×(90﹣84)2]=34,极差为90﹣75=15;新数据70,80,85,90,90的中位数为85,平均数为=83,方差为×[(70﹣83)2+(80﹣83)2+(85﹣83)2+2×(90﹣83)2]=56,极差为90﹣70=20;所以计算结果不受影响的是中位数,故选:A.9.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.10.解:①∵k=﹣2<0,∴函数y=﹣2x的图象从左到右下降,随着x的增大,y反而减小,故正确;②令x=0,则y=1,∴函数y=5x+1的图象与y轴的交点坐标是(0,1),故正确;③∵k=3,b=﹣1,∴函数y=3x﹣1的图象经过第一、三、四象限,故错误;故选:A.二.填空题(共4小题,满分12分,每小题3分)11.解:≈44.72.故答案是:44.72.12.解:∵直线y=﹣x+3、直线y=﹣x﹣3关于原点对称,∴点A,点B关于原点对称,∴y1+y2=0,故答案为:0.13.解:由图可知,∠1+∠2+∠3+∠4+∠5=360°.故答案为:360°.14.解:根据翻折不变性,可知△ADC≌△ADE,∴DE=DC,∠ADE=∠ADC=45°,∴∠EDC=90°,又∵AD是△ABC的中线,∴BD=CD,于是,BD=DE,∴∠EBC=45°.故答案为45°.三.解答题(共11小题,满分78分)15.解:(1)原式=3﹣5+=﹣;(2)原式=3﹣5+3﹣﹣2=﹣2.16.解:(1),①×2+②得:﹣9y=﹣9,解得:y=1,把y=1代入②得:x=1,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为.17.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积为:3×2=3;(3)因为点A关于MN的对称点为A′,连接A′C交直线MN于点P,此时△PAC周长最小.所以点P即为所求.18.解:(1)①∵∠DCE=40°,∴∠ACE=∠ACD﹣∠DCE=50°,∴∠ACB=∠ACE+∠ECB=50°+90°=140°;②∵∠ACB=150°,∠ACD=90°,∴∠ACE=150°﹣90°=60°,∴∠DCE=∠ACD﹣∠ACE=90°﹣60°=30°,故答案为:30;(2)∵∠ACB=∠ACD+∠BCE﹣∠DCE=90°+90°﹣∠DCE,∴∠ACB+∠DCE=180°,故答案为:∠ACB+∠DCE=180°;(3)①∵BE∥AC,∴∠ACE=∠E=45°,故答案为:45°;②∵BC∥DA,∴∠A+∠ACB=180°,又∵∠A=60°,∴∠ACB=180°﹣60°=120°,∵∠BCE=90°,∴∠BCD=∠ACB﹣∠ECB=120°﹣90°=30°.19.解:(1)过C作MN⊥y轴,过B作BG⊥MN于G,过A作AH⊥MN于H,如图所示:∵A(﹣2,﹣1),B(2,0),C(0,3),∴GH=2+2=4,BG=3,AH=1+3=4,∴S△ABC=S﹣S△ACH﹣S△BCG=×(3+4)×4+×4×2﹣×2×3=7,梯形ABGH故答案为:7;(2)设E(0,a),∵A(﹣2,﹣1)、B(2,0)、C(0,3),∴S△ABC=S△ACE+S△BCE=×(3﹣a)×2+×(3﹣a)×2=7,解得:a=﹣,∴E(0,﹣),故答案为:(0,﹣);(3)①∵点P的坐标为(0,m),∴线段EP的长|﹣﹣m|=|+m|,故答案为:|+m|;②∵S△PAB=S△ABC,∴×|+m|×(2+2)=×7,∴m=或m=﹣.20.解:证明:∵CD⊥AB(已知),∴∠ADC=90°(垂直的定义),∴∠1+∠CDE=90°,∵∠1+∠2=90°(已知),∴∠CDE=∠2(同角的余角相等),∴DE∥BC(内错角相等,两直线平行),故答案为:90°;∠CDE;∠CDE,同角的余角相等;内错角相等,两直线平行.21.解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当x=0时,y=2,∴直线BC与y轴的交点坐标为(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),∴△BCD的面积:×(5﹣2)×(1+2)=.22.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.23.解:(1)=×(86+79+90)=85(分),甲=×(84+81+75)=80(分),乙=×(80+90+73)=81(分),丙从低到高确定应聘者的排名顺序为乙、丙、甲;(2)由题意可知,只有甲不符合规定,乙的加权平均数:84×50%+81×40%+75×10%=81.9(分),丙的加权平均数:80×50%+90×40%+73×10%=83.3(分),所以录用丙.24.解:(1)设甲车间有x名工人参与生产,乙车间有y名工人参与生产,依题意得:,解得:.答:甲车间有30名工人参与生产,乙车间有20名工人参与生产.(2)设乙车间需要临时招聘m名工人,依题意得:=,解得:m=5,经检验,m=5是原方程的解,且符合题意.答:乙车间需要临时招聘5名工人.25.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120 km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20 km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20 km.。
北师大版八年级上册数学期末考试试卷一、单选题1.在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,,则下列式子成立的是 A .222+=a b c B .222a c b += C .222a c b -= D .222b c a +=2.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .若3AC =,4BC =,则CD 的长为( )A .2.4B .2.5C .4.8D .53.估计3 )A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间 4.下列各组二次根式中,属于同类二次根式的是( )A .B C .D5.在平面直角坐标系中,若点()P m m n -,与点()21Q ,关于原点对称,则点()M m n ,在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A 的坐标为()23,,直线AB y ∥轴,且5AB =,则点B 的坐标为( ) A .()28,B .()28,或()22-,C .()73,D .()73,或()33-, 7.一次函数1y ax b 与正比例函数2y bx =-在同一坐标系中的图象大致是( )A .B .C .D .8.如图,某电信公司手机的收费标准有A B ,两类,已知每月应缴费用S (元)与通话时间t (分)之间的关系如图所示,当通话时间为50分钟时,按这两类收费标准缴费的差为( )A .30元B .20元C .15元D .10元9.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<< C .212(012)y x x =-<< D .16(412)2y x x =-<< 10.下列方程组中是二元一次方程组的是( )A .23124x y x y ⎧+=⎨-=⎩ B .225xy x y =⎧⎨+=⎩ C .63a b b c -=⎧⎨+=⎩ D .310521m n m n +=⎧⎨-=⎩11.古代数学问题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 5.412y x x y -=⎧⎪⎨-=⎪⎩B . 5.412x y y x -=⎧⎪⎨-=⎪⎩C . 5.412y x y x -=⎧⎪⎨-=⎪⎩D . 5.412x y xy -=⎧⎪⎨-=⎪⎩12.若324432a ba b x y ++--=是关于x ,y 的二元一次方程,则2a b +的值为( )A .0B .-3C .3D .413.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是() A .甲.B .乙C .丙D .丁14.如图,在ABC 中,1268AD BC C ⊥∠=∠∠=︒,,.则BAC ∠的度数为( )A .68°B .67°C .77°D .78°15.如图,AB CD ∥,EF BD ⊥于点E ,50ABM ∠=︒,则CFE ∠的度数为( )A .130︒B .140︒C .145︒D .150︒二、填空题16______,338的算术平方根是______.17.已知Rt△ABC 中,AB =8,BC =10,△BAC =90°,则图中阴影部分面积为 _____.18.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.19.若点()()1232A y B y -,,,都在一次函数1yx =-+的图象上,则1y ______2y .(填“>”或“<”)20.一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.三、解答题21.用适当的方法解下列方程组:(1)524x yx y+=⎧⎨-=⎩;(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩22.学校运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:(1)甲组的平均成绩是____分;(2)计算乙组的平均成绩和方差;(3)已知甲组成绩的方差是1.4,如果你是老师,你将选择哪组代表八(5)班参加学校比赛?说说你的理由.23.如图,在四边形ABCD中,20AB=,15AD=,7CD=,24BC=,90A∠=︒,求证:△C=90°.24.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程. (3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?25.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:|P|表示点P 到x 、y 轴的距离中的最大值,|Q|表示点Q 到x 、y 轴的距离中的最大值,若P Q =,则称P ,Q 两点为“等距点”.例如:如图中的P (3,3),Q (﹣3,﹣2)两点,有|P|=|Q|=3,所以P 、Q 两点为“等距点”.(1)已知点A 的坐标为(﹣3,1),△则点A 到x 、y 轴的距离中的最大值|A|= ;△在点E (0,3),F (3,﹣3),G (2,﹣5)中,为点A 的“等距点”的是 ; △若点B 的坐标为B (m ,m+6),且A ,B 两点为“等距点”,则点B 的坐标为 ;(2)若()113T k --,-,()2443T k -,且|4k ﹣3|≤4,两点为“等距点”,求k 的值.261==;==2==.请解决下列问题: (1)=______; (2)=______;(3)....27.如图,已知12AB CD ∠=∠∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG ∠,交CD 于点H ,交NP 于点O ,且14010FHG ∠=︒∠=︒,,求FGD ∠的度数.参考答案1.A【分析】根据题意,可得c 为斜边,,a b 为直角边,根据勾股定理即可求解. 【详解】解:△在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,, △c 为斜边,,a b 为直角边, △222+=a b c ,故选:A .【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键. 2.A【分析】先由勾股定理求出AB 的长,再运用等面积法求得CD 的长即可. 【详解】解:△在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,△AB 5==,CD AB ⊥△1122AB CD AC BC ⋅=⋅,即342.45AC BC CD AB ⋅⨯===. 故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键. 3.B3 【详解】解:△161725<<,△45<,△738<+,△37和8之间, 故选:B .【点睛】此题考查了无理数的估算,正确掌握各平方数及无理数估算的方法是解题的关键. 4.B【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A. ,不是同类二次根式,故该选项不符合题意;B. =C. =D.=故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键. 5.C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,m n 的值,即可求解.【详解】解:△点()P m m n -,与点()21Q ,关于原点对称, △2,1m m n =--=-,△()2,1M --在第三象限, 故选:C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,判断点所在的象限,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键. 6.B【分析】根据平行于y 轴的直线上的点的横坐标相等求出点B 的纵坐标,再分点B 在点A 的上面与下面两种情况求出点B 的纵坐标,即可得解.【详解】解:△AB y ∥轴,点A 的坐标为()23,, △点B 的横坐标为2, △5AB =,△点B 在点A 的下面时,纵坐标为352-=-, 点B 在点A 的上面时,纵坐标为358+=,△点B 的坐标为()28,或()22-,. 故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,利用了平行于y 轴的直线是上的点的横坐标相等的性质,难点在于要分情况讨论. 7.C【分析】根据一次函数和正比例函数的性质逐一判断即可得答案. 【详解】A.△一次函数经过一、二、三象限, △a >0,b >0, △-b <0,△正比例函数应经过二、四象限,故本选项不符合题意, B.△一次函数经过一、三、四象限, △a >0,b <0, △-b >0,△正比例函数应经过一、三象限,故本选项不符合题意, C.△一次函数经过二、三、四象限, △a <0,b <0,△正比例函数应经过一、三象限,故本选项符合题意, D.△一次函数经过二、三、四象限, △a <0,b <0, △-b >0,△正比例函数经过一、三象限,故本选项不符合题意, 故选:C .【点睛】本题考查一次函数和正比例函数的性质,对于一次函数y=kx+b ,当k >0时,图象经过一、三象限,当k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴;熟练掌握相关性质是解题关键. 8.D【分析】根据题意,待定系数法求得解析式,分别令50x =,求得S 是的值,进而即可求解. 【详解】解:设A 类收费的解析式为AS ax b =+,代入()0,20 ,()100,30,得2010030b a b =⎧⎨+=⎩, 解得11020a b ⎧=⎪⎨⎪=⎩, △12010A S x =+, B 类收费的解析式为BS kx =,代入()100,30,得30100k =, 解得310k =, △310B S x =, △当50x =时,150202510A S =⨯+=,3501510B S =⨯=, △251510-=(元), 故选:D .【点睛】本题考查了一次函数的应用,待定系数法求解析式,求得解析式是解题的关键.9.B【分析】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【详解】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >,∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键. 10.D【分析】二元一次方程组是指含有两个未知数,且未知数的次数都是1的一次整式方程组成的方程组,据此求解即可.【详解】解:A 、23124x y x y ⎧+=⎨-=⎩未知数的最高次不是1,不是二元一次方程组,不符合题意;B 、225xy x y =⎧⎨+=⎩xy 的次数不是1,不是二元一次方程组,不符合题意; C 、63a b b c -=⎧⎨+=⎩含有3个未知数,不是二元一次方程组,不符合题意;D 、310521m n m n +=⎧⎨-=⎩是二元一次方程组,符合题意;故选D .【点睛】本题主要考查了二元一次方程组的定义,熟知二元一次方程组的定义是解题的关键. 11.C【分析】设木条长x 尺,绳子长y 尺,根据用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,列出二元一次方程组,即可求解.【详解】设木条长x 尺,绳子长y 尺,可列方程组为5.412y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.12.D【分析】根据二元一次方程的定义,得出1a b +=,3241a b +-=,解出a b 、的值,然后把a b 、的值代入2a b +,计算即可得出结果.【详解】解:△324432a b a b x y ++--=是关于x ,y 的二元一次方程,△可得:13241a b a b +=⎧⎨+-=⎩, 解得:32a b =⎧⎨=-⎩, 把32a b =⎧⎨=-⎩代入2a b +, 可得:22324a b +=⨯-=.故选:D【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.13.A【分析】根据方差的意义,即可求解.【详解】解:△S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75△2222甲乙丁丙<<<S S S S△成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.14.B【分析】根据垂直的定义,直角三角形的两个锐角互余,可得145,22DAC ∠=︒∠=︒,即可求解.【详解】解:△1268AD BC C ⊥∠=∠∠=︒,,,△90ADB ADC ∠=∠=︒,△1245∠=∠=°,90906822DAC C ∠=︒-∠=︒-︒=︒,△1452267BAC DAC ∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了直角三角形的两个锐角互余,求得145,22DAC ∠=︒∠=︒是解题的关键.15.B【分析】根据题意和平行线的性质得=50D ABM ∠∠=︒,根据垂直得=90DEF ∠︒,运用三角形内角和定理求出=40EFD ∠︒,即可得.【详解】解:△AB CD ∥,50ABM ∠=︒,△=50D ABM ∠∠=︒,△EF BD ⊥,△=90DEF ∠︒,△=180=1805090=40EFD D DEF ∠︒∠∠︒︒︒︒----,△180=18040=140CFE EFD ∠=︒-∠︒-︒︒,故选:B .【点睛】本题考查了平行线的性质,三角形内角和定理,解题的关键是掌握这些知识点.16. 2± 【分析】根据平方根和算术平方根的定义求解即可.【详解】4,△4的平方根是2±,,即338故答案为:2± 【点睛】本题考查的是平方根、算术平方根的计算,如果一个数的平方等于a ,这个数就叫a 的平方根,如果一个正数的平方等于a ,这个数就叫a 的算术平方根,0的算术平方根是0.掌握定义是解题的关键.17.24【分析】根据阴影部分面积等于以,AB AC 为直径的半圆的面积与ABC 的面积的和减去以BC 为直径的半圆面积即可求解.【详解】解:Rt△ABC 中,AB =8,BC =10,△BAC =90°,6AC ∴==,222111111=+222222ABC S AB AC BC S πππ⎛⎫⎛⎫⎛⎫∴+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△阴影部分 ABC S =△1862=⨯⨯ =24.故答案为:24.【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键.18.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:△()115P a -,和()221P b -,关于x 轴对称, △12,510a b -=+-=,解得3,4a b ==-,△()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.19.>【分析】根据解析式中10k =-<,可得y 随x 的增大而减小,即可求解.【详解】解:△在1y x =-+中,10k =-<,△y 随x 的增大而减小,△32-<,点()()1232A y B y -,,,都在一次函数1yx =-+的图象上, △12y y >,故答案为:>.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.20.643【分析】设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可.【详解】解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:1100210(100102)297y x x y x x y x =+⎧⎨⨯++-++=⎩, 解得:34x y =⎧⎨=⎩, △26x =,即原三位数为643,故答案为:643.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)32x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)解:524x y x y +=⎧⎨-=⎩①②△+△得: 3x=9,解得: x=3,把x=3代入△得:3+y=5得 y=2,则方程组的解为32x y =⎧⎨=⎩ ; (2)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ 方程组整理得:432342x y x y -=⎧⎨-=-⎩①② 由△×4-△×3得: 7x=14,解得: x=2,把x=2代入△得:4×2-3y=2得 y=2,则方程组的解为22x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)9(2)乙组的平均成绩为9,方差为1(3)选择乙组,理由见解析【分析】(1)根据平均数的计算公式求得平均数即可求解;(2)一组数据:123n x x x x ⋯,,,,,则它们的平均数1232n x x x x x ++++=,方差是()()()()2222212312n s x x x x x x x x ⎡⎤=-+-+-+++-⎣⎦; (3)根据一组数据的方差越大,则数据的波动就越大,进行判断即可.【详解】(1)甲组的平均成绩是:()1789710109101010910+++++++++=, (2)乙组的平均成绩是:()110879810109109910+++++++++=, 方差是:()()()()22221109897999110⎡⎤-+-+-++-=⎣⎦; (3)选择乙组,理由如下,△1.41>,且平均成绩都为9,△乙组的方差较小,应该选择乙组.【点睛】本题考查了求平均数,求方程,以及根据方差做决策,掌握平均数,方差是解题的关键.23.见解析【分析】连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD +=,即可得证.【详解】解:如图,连接BD ,△20AB =,15AD =,90A ∠=︒,△25BD =,△7CD =,24BC =,△22224957662525CD BC BD +=+===,△CDB △是直角三角形,且90C ∠=︒.【点睛】本题考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解题的关键. 24.(1)500.4A y x =+,0.6B y x =(2)选择A 类(3)350元【分析】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解;(2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解; (3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【详解】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4Ay x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,△500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) △A B y y <,△选择A 类.(3)解:根据题意得,100A B y y +=,△500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, △500.4500.4750350A y x =+=+⨯=(元),△小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.25.(1)△3;△E ;F ;△(−3,3)(2)k 的值是1【分析】(1)△找到x 、y 轴距离最大为3的点即可;△先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可; △根据A ,B 两点为“等距点”得出点B 的坐标即可;(2)根据“等距点”概念对4k−3分类讨论,进行解答即可.【详解】(1)解:△点A (−3,1)到x 、y 轴的距离中最大值为|A|=3,故答案为:3.△△点A (−3,1)到x 、y 轴的距离中最大值为3,△与点A 的“等距点”的是E ,F ,故答案为:E ;F .△当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3),这些点中与A 符合“等距点”的是(−3,3).故答案为:(−3,3).(2)解:()113T k --,-,()2443T k -,两点为“等距点”, △4=−k−3或−4=−k−3,解得:k =−7或k =1,△当k =−7时,43314k -=>,△k =−7不符合题意舍去,根据“等距点”的定义知,k =1符合题意,△k 的值是1.【点睛】:本题主要考查了平面直角坐标系的知识,此题属于阅读理解类型题目,解题的关键是读懂“等距点”的定义,而后根据概念解决问题.26.(1)21【分析】(1)先找出有理化因式2,根据平方差公式求出即可;(2(3)先分母有理化,再合并即可.【详解】(1-故答案为:2;(2(3...+⋅⋅⋅1.【点睛】本题考查了分母有理化,能正确分母有理化是解此题的关键.27.(1)见解析(2)60︒【分析】(1)根据平行线的性质及等量代换得出1BNP ∠=∠,即可判定EF NP ∥; (2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH ∠=∠=︒,根据三角形外角性质求解即可.【详解】(1)证明:△AB CD ∥,50GFH EFH ∠=∠=︒△2BNP ∠=∠,△12∠=∠,△1BNP ∠=∠,△EF NP ∥;(2)解:如图,过点F 作FM AB ∥,△AB CD ∥,△AB FM CD ∥∥,△14010EFM HFM FHG ∠=∠=︒∠=∠=︒,,△50EFH EFM HFM ∠=∠+∠=︒,△FH 平分EFG ∠,△50GFH EFH ∠=∠=︒,△60FGD GHF HFG ∠=∠+∠=︒.。
北师大版八年级数学上册期末试卷及参考答案第一部分:选择题(共30小题,每小题2分,共60分)1. 某数加上4再除以3的结果是8,求这个数。
答案:122. 若分子是a,分母是2a的一个真分数,且这个真分数比3/8 大3/5 ,求a的值。
答案:1/23. 若在数轴上,点A坐标是2.1 ,点B坐标是-4.9 ,求AB的长度。
答案:7……(依次回答4-30题)……第二部分:解答题(共6题,每小题10分,共60分)31. 某数的5倍与这个数的和是180,求这个数。
答案:3032. 小红买了一本数学书,书的原价是30元,后来有优惠活动,全部图书7折销售,小红要付多少钱?答案:21元33. 一辆汽车从A地到B地,全程240千米,第一个多小时速度为v千米/小时,下一个多小时速度为2v千米/小时,第三个多小时速度为3v千米/小时,求这辆车平均速度。
答案:2.4v千米/小时34. 用10个1元纸币点餐,有超过10种选择,菜品每份价格为a元,求a的最小整数值。
答案:335. 矩形ABC D 的AB边垂直于BC边,将矩形从A点对折后,使A点和C点重合,该点为E ,连接AE ,求∠BAE的大小。
答案:45°36. 某校为学生布置了一道数学题,如果x/3<2 ,则x的结果为()A. 4B. 6C. 8D. 10答案:B第三部分:填空题(共5题,每题6分,共30分)37. 如果一个正整数x满足(x+4)/(x-4)=7/3 ,那么x的值为___ 。
答案: 1438. 小明家有36毫升洗洁精,他用一个容量为m毫升的瓶子装了一部分洗洁精,还剩下1/3给了邻居,这时,瓶子里的洗洁精为原来的1/10,问m等于____。
39. 若正整数x的个位数字比十位数字大3,将x的两位数字颠倒,所得正整数y 是x的3倍,那么x的值为____。
答案: 4340. 某数除以11的余数为0,如果这个数的各位数字之和为14 ,那么这个数的值为____。
图1AB C D3412图2B CBC北师大版八年级(上)期末数学试卷及答案一选择题。
(每小题3分,共24分)下列各小题均有四个选项,其中只有一项符合题目要求,将符合题目要求的选项前面字母填入题后括号内。
1、下列式子正确的是()A. 1)1(33-=- B. 525±= C. 9)9(2-=- D. 2)2(2-=-2、二元一次方程12=-yx有无数多个解,下列四组值中不是..该方程的解是()A.⎩⎨⎧==11yxB.⎩⎨⎧-=-=21yxC.⎩⎨⎧-=-=31yxD.⎩⎨⎧==32yx3、如图1,相对灯塔O而言,小岛A的位置是()A. 北偏东60 °B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处4、下列说法正确的是()A. 数据0,5,-7,-5,7的中位数和平均数都是0;B. 数据0,1,2,5,a的中位数是2;C. 一组数据的众数和中位数不可能相等;D. 数据-1,0,1,2,3的方差是4。
5、已知正比例函数kxy=的函数值xy随的增大而减小,则一次函数kkxy+=的图象大致是()6、如图2在△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A等于()A. 25°B. 50°C. 65°D. 75°7、小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路D程s (m)与他行走的时间t (min)之间的函数关系用图象表示正确的是( )8、如图3,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则 ∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 二、填空题(每小题3分,共21分) 9、64的算术平方根是___________。
北师大版八年级期末试卷
数学
注意事项:
1.本试卷共8页,三大题,满分120分。
请用钢笔或圆珠笔直接答在试卷上。
一、选择题(每小题3分,共
18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
的相反数是()
A .5
B .5-
C .5±
D .25
2.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF,则四边形
ABFD 的周长为( ) A .6 B . 8 C .10D .12
3.为了让居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是()
A .正三角形
B .正方形
C .正五边形
D .正六边形
4.在平面直角坐标系中,点(1
2)P -,
的位置在() A .第一象限 B .第二象限 C .第三象限D .第四象限 5.在一组数据3,4,4,6,8中,下列说法正确的是( ) A
.平均数小于中位数B .平均数等于中位数 C .平均数大于中位数
D .平均数等于众数 6. ). A.6到7之间B.7到8之间C.8到9之间D.9到10之间 二、填空题(每小题3分,共27分)
7.x 应满足的条件是.
8.若一个多边形的内角和等于720
,则这个多边形是边形.
9.随着海拔高度的升高,空气中的含氧量含氧量3
(g /m )y 与大气压强(kPa)x 成正比例函数关
F
E
D
C
B
A
2题
系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式. 10.如图,点A B ,在数轴上对应的实数分别为m n ,, 则A B ,间的距离是.(用含m n ,的式子表示)
11.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是. 12.写出满足14<a <15的无理数a 的两个值为.
13.如图,有一圆柱体,它的高为20cm ,底面半径为7cm .在圆柱的下底面A 点处有一个蜘蛛,它想吃到上底面上与A 点相对的B 点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).
14.直线y kx b =+经过点(2
0)A -,和y 轴正半轴上的一点B ,如果ABO △(O 为坐标原点)的面积为2,则b 的值为.
15.若等腰梯形ABCD 的上、下底之和为4,并且两条对角线所夹锐角为60
,则该等腰梯形的面积为(结果保留根号的形式). 三、解答题(本大题8个小题,共75分) 16.(8分)(1
.
(
2
)
解
方
程
组
:
425x y x y -=⎧⎨
+=⎩,
.
①② 17.(9分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41)-,
. ①把ABC △向上平移5个单位后得到对应的111A B C △,画出
111A B C △的图形并写出点1C 的坐标;
②以原点O 为对称中心,再画出与111A B C △关于原点
标.
18.(9分)3200千克,全部售出后卖了元,各收获多少千克?
l9.(9分)是4. B
20.(9分)如图:在平面直角坐标系中,有A (0,1),B (1-,0),C (1,0)三点.
(1)若点D 与A B C ,,三点构成平行四边形,请写出所有符合条件
的点D 的坐标;
(1)求这30户家庭月用水量的平均数、众数和中位数; (2)根据上述数据,试估计该社区的月用水量;
(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m (吨),家庭月用水量不超过m (吨)的部分按原价收费,超过m (吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比
关系式;
(2)请你为康乐公司设计一种最佳调运方案,使总费用最少,并说明
理由。
23.(11分)如图,BD 是ABC △的一条角平分线,DK AB ∥交BC 于E 点,且DK =BC ,连结BK ,CK ,得到四边形DCKB ,请判断四边形DCKB 是哪种特殊四边形,并说明理由.
数学试题参考答案及评分标准
一、选择题(每小题3分,共18分)BBC B C C 二、填空题(每小题3分,共27分)
7. 2x ≥,8. 六 ,9. 3y x = ,10.n m - ,11.8cm ,12.
等 ,
,14. 2 ,
15.
三、解答题
16.(1)解:12 (4分) (2)解:+①②得39x =,3x =. (2分)
把3x =代入①得1y =-,
∴原方程组的解是3
1
x y =⎧⎨
=-⎩. (4分)
17.答案:111A B C ,,;222A B C ,,六点中每画对一个得1分; ①1(44)C ,得1分;
②2(44)C --,得2分(满分9分)
. 18.解:设这个种植场今年“妃子笑”荔枝收获
1分
320081230400x y x y +=⎧⎨
+=⎩
,
.5分 解这个方程组得20001200x y =⎧⎨=⎩,
.
9分
答:该场今年收获“妃子笑”与“无核Ⅰ号”荔枝分别为2000千克和1200千克. 10分
19解:设BD=x ,则AB=8-x
由勾股定理,可以得到AB 2=BD 2+AD 2,也就是(8-x)2=x 2+42. 所以x=3,所以AB=AC=5,BC=6.
20.解:(1)符合条件的点D 的坐标分别是
1(21)D ,,2(21)D -,,3(01)D -,.
3分
(2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,
由题意得021k b k b -+=⎧⎨+=⎩,解得13
1
3k b ⎧
=⎪⎪⎨⎪=⎪⎩,
8分
∴直线1BD 的解析式为11
33
y x =+.9分
②选择点2(21)D -,时,类似①的求法,可得 直线2BD 的解析式为1y x =--.9分
③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--.9分 说明:第(1)问中,每写对一个得1分. 21.解:(1)1
(3443557118492101) 6.230
x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,众数是7,中位数是
1
(77)72
+= (2)1500 6.29300⨯=(吨) ∴该社区月用水量约为9300吨
(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水. 22.解:(1)600500(17)400(18)800(3)50013300y x x x x x =+-+-+-=+; (2)由(1)知:总运费50013300y x =+.
017018030.
x x x x ⎧⎪-⎪
⎨
-⎪⎪-⎩ ≥,≥,≥,≥317x ∴≤≤,又0k >, ∴随x 的增大,y 也增大,∴当3x =时,50031330014800y =⨯+=最小(元)
. ∴该公司完成以上调运方案至少需要14800元运费,最佳方案是:由A 地调3台至甲地,14
台至乙地,由B 地调15台至甲地. 23.解:
....
,..1
(180).2
.
BD ABC ABD DBC DK AB ABD BDK CBD BDK EB ED DK BC EK EC EKC ECK BED CEK
EKC ECK CBD BDK BED BD CK ∠∴∠=∠∴∠=∠∴∠=∠∴==∴=∴∠=∠∠=∠∴∠=∠=∠=∠=-∠∴ 平分,∥, ∥
又由BD 是BDK DBC △和△的公共边,得BDK △≌DBC △.故∠KBD=∠CDB.(5分)
(i )当B A ≠BC 时,四边形DCKB 是等腰梯形.理由如下:
由B A ≠BC ,BD 平分∠ABC ,知道BD 与AC 不垂直.故∠KBD+∠CDB=2∠CDB ≠180
. 故DC 与Bk 不平行.得四边形DCKB 是等腰梯形. (8分) (ii)当BA=BC 时,四边形DCKB 是矩形。
理由如下:
,,.
BA BC BD ABC BD AC =∠∴ 平分与垂直90.
.DBK BDC CD BK BDCK ∴∠=∠=∴∴
平行于四边形是矩形.
(11分)。