2019年七年级数学上册 第一章 基本的几何图形 1.4 线段的比较与作法 1.4.2 线段的比较和作法学案(无答案)
- 格式:doc
- 大小:130.50 KB
- 文档页数:2
七年级上册数学第一章基本的几何图形1.4线段的比较与作法设计人:审批人:时间:学习目标:1.会用直尺和圆规准确地画一条线段,使它等于已知线段。
2.理解线段中点的概念及意义,能用直尺和圆规作出线段的和、差,会用刻度尺画出一条线段的中点,并能用符号语言表示出来,感受符号语言在描述图形中的重要作用。
重点:作出和已知线段相等的线段。
难点:线段的和、差、倍和分。
知识回顾1.如何比较线段的长短?2.如图所示,A地到B地有a,b,c,d(图中从上到下)四条道路,其中最短的是,理由是。
预习自学1、用直尺和圆规做一条线段,使之等于已知的线段a.2、已知线段a,b,用直尺和圆规作出线段a-b.(左a右b)3、已知C是线段AB上的一点,AC=5厘米,CB=3厘米,M是AB的中点,画出符合要求的图形,并求出MC的长。
探究与合作活动一、作出符合要求的线段已知图中线段a,b,(左a右b)(1)利用直尺和圆规画出线段2a(2)画出线段2a-b(3)画出线段a+2b活动二、如图要把一根条形木料锯成相等的两段,应从何锯断?思考,木料截断的位置在什么地方?已知线段AB,画出它的中点C。
例题深入例1、已知线段AB=4厘米,C 为直线AB 上的一点,且BC=3厘米,那么AC 的长度是多少?画图说明。
例2、按下列要求画图,并回答问题:画线段AB=1.5厘米,延长线段AB 到C ,使BC=1厘米,再反向延长线段AB 到D ,使DA=1.5厘米,这时线段DC 的长是多少?例3、已知线段AB 和BC 在同一条直线上,线段AB=6厘米,BC=3厘米,点M,N 分别是线段AB 的三等分点,点D 是线段BC 的中点,求线段MD 的长。
课堂达标:1、如果点M 是线段AB 的中点,那么下列式子错误的是()A 、AM=BMB 、AB=2AMC 、BM=21AMD 、AB=21AM 2、下列说法正确的是()A 、作直线AB=CDB 、延长直线ABC 、延长射线ABD 、延长线段AB3、画线段AB ,延长线段AB 到点C ,使BC=2AB;反向延长AB 到点D ,使AD=AC ,则线段CD= AB4、如图,C ,D 是线段AB 上两点,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm5、如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下面等式不正确的是()A 、CD=AD-BCB 、CD=AC-DBC 、CD=21AB-BD D 、CD=31AB 课堂小结:数学并不神秘,它广泛的存在于我们的生活中,只要你用心去发现,那里都可以发现他们的身影,今天你学会了吗?作业布置:配套练习册相应题目教学反思:。
章节测试题1.【答题】已知点O是线段AB上的一点,且AB=12cm,点M、N分别是线段AO、线段BO的中点,那么线段MN的长度是( )A. 6cmB. 5cmC. 4cmD. 无法确定【答案】A【分析】根据线段中点的性质,可得OM,ON,根据线段的和差,可得答案.【解答】∵点O是线段AB上一点,∴AO+BO=AB=12∵点M、N分别是线段AO、线段BO的中点,∴MO=AO,NO=BO.∴MN=MO+NO=(AO+BO)=6(cm).选A.2.【答题】下列关系中,与图示不符合的式子是( )A. AD-CD=AB+BCB. AC-BC=AD-DBC. AC-BC=AC+BDD. AD-AC=BD-BC【答案】C【分析】根据线段之间的和差关系依次进行判断即可得出正确答案.【解答】解: A. AD-CD=AC=AB+BC,正确;B. AC-BC=AD-DB=AB,正确;C. AC-BC=AC+BD,错误;D. AD-AC=BD-BC=CD,正确.选C.3.【答题】平面上有四点,经过其中的两点画直线最多可画出( )A. 三条B. 四条C. 五条D. 六条【答案】D【分析】画出图形即可确定最多能画的直线的条数.【解答】解:如图,最多可画6条直线.选D.方法总结:此题考查直线问题,只有在任意三点不在同一直线时,才能画出最多的直线.4.【答题】为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A. AB<CDB. AB>CDC. AB=CDD. 以上都有可能【答案】B【分析】根据线段的比较,点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,可得答案.【解答】解:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD.选B.5.【答题】线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD =2AB,则线段DC的长为( )A. 4 cmB. 5 cmC. 6 cmD. 2 cm【答案】C【分析】由已知条件可知,BD=2AB,直接代入求值即可.【解答】解:∵BD=2AB,AB=2cm,∴BD=4cm,DC=DB+BC=4+2=6cm.选C.方法总结:在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.6.【答题】已知线段AB=1 cm,BC=3 cm,则点A到点C的距离为( )A. 4 cmB. 2 cmC. 2 cm或4 cmD. 无法确定【答案】D【分析】没有明确A、B、C三点是否在同一直线上,故点A到点C的距离无法确定.【解答】解:选D.7.【答题】下列说法正确的是( )A. 两点之间直线最短B. 画出A,B两点间的距离C. 连接点A与点B的线段,叫A,B两点间的距离D. 两点之间的距离是一个数,不是指线段本身【答案】D【分析】根据线段的性质,两点间的距离的定义对各选项分析判断利用排除法求解.【解答】解: A. 两点之间线段最短,故A错误;B. 量出A,B两点间的距离,故B错误;C. 连接点A与点B的线段的长,叫A,B两点间的距离,故C错误;D. 两点之间的距离是一个数,不是指线段本身,正确.选D.8.【答题】如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N 是DB的中点,AB=7.8 cm,那么线段MN的长等于( )A. 5.4 cmB. 5.6 cmC. 5.8 cmD. 6 cm【答案】A【分析】由已知根据线段的和差和中点的性质可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵M是AC的中点,N是DB的中点,CD=3cm,AB=7.8cm,∴MC+DN=(AB-CD)=2.4cm,∴MN=MC+DN+CD=2.4+3=5..4cm.选A.9.【答题】C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为( )A. 0.8 cmB. 1.1 cmC. 3.3 cmD. 4.4 cm【答案】B【分析】题干中只是说C是线段AB的三等分点,并没有说是哪一个三等分点,线段的三等分点有两个,故应分类讨论,分为AC=AB和BC=AB两种情况.在不同的情况下根据线段之间的关系得出AB的长度.【解答】根据三等分点可得:AC=6.6÷3=2.2cm,根据中点的性质可得:AD=6.6÷2=3.3cm,则CD=AD-AC=3.3-2.2=1.1cm,故选择B.方法总结:本题主要考查的就是中点以及三等分点的性质,属于简单的题型,解决这个问题我们首先要能够根据给出的条件画出图形,然后根据所得的图形进行线段的长度计算.在求线段长度的题目中很多时候我们要根据点的位置关系来进行分类讨论,做题的时候一定要注意这个点是在线段上还是直线上.10.【答题】如图,AB=CD,那么AC与BD的大小关系是( )A. AC=BDB. AC<BDC. AC>BDD. 不能确定【答案】A【分析】由题意已知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【解答】根据AB=CD可得:AC+BC=BD+BC,则AC=BD,故选择A.11.【答题】下列错误的判断是( )A. 任何一条线段都能度量长度B. 因为线段有长度,所以它们之间能比较大小C. 利用圆规配合尺子,也能比较线段的大小D. 两条直线也能进行度量和比较大小【答案】D【分析】根据直线、线段的性质:直线不可以度量,无法比较长短;线段可以度量,能比较长短,逐项判定即可.【解答】直线和射线的长度是无法度量的,则两条直线不能比较大小.12.【答题】如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为( )A. 10B. 20C. 30D. 40【答案】B【分析】灵活运用寻求到的解题线索,搞清图形中隐含的线段之间的和、倍、差的关系,并合理利用等量代换或消元处理等代数方法证明几何问题,用代数方法证明几何中的问题是很重要的方法.【解答】∵点D是线段AC的中点,∴CD=AC,∵点E是线段BC的中点,∴DE=CD+CE= (AC+BC),∴AC+BC=2DE=20.∴AB=AC+BC=20选B.13.【题文】如图,是线段上一点,M是线段的中点,N是线段BC的中点且MN=3cm,则的长为cm.【答案】6【分析】根据线段中点的性质,可得AC+CB=2MN的长,依此可得AB的长.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴AC=2MC,BC=2CN,∴AB=AC+BC=2(MC+CN)=2MN=6cm.故答案为:6.14.【题文】直线上有A,B,C三点,点M是线段AB的中点,点N是线段BC 的一个三等分点,如果AB=6,BC=12,求线段MN的长度.【答案】1或5或7或11.【分析】分类讨论点C在AB的延长线上,点C在B的左边,根据线段的中点,三等分点的性质,可得BM、BN的长,根据线段的和差,可得答案.【解答】解:(1)点C在射线AB上,如:点M是线段AB的中点,点N是线段BC的三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BM+BN=3+4=7,或MN′=BM+BN′=3+8=11;(2)点C在射线BA上,如:点M是线段AB的中点,点N是线段BC三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BN﹣BM=4﹣3=1,或MN′=BN′﹣BM=8﹣3=5.方法总结:本题考查了两点间的距离,分类讨论是解题的关键,根据线段中点的性质,线段的和差,可得出答案.15.【题文】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.【答案】(1)k=2;(2)CD的长为1cm或3cm.【分析】(1)把x=-3代入方程进行求解即可得k的值;(2)由于点C的位置不能确定,故应分点C在线段AB上与点C在BA的延长线上两种情况进行讨论即可得.【解答】解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm;当C在BA的延长线时,如图2,∵BC=2AC,AB=6cm,∴AC=6cm,∵D为AC的中点,∴CD=AC=3cm,即CD的长为1cm或3cm.16.【题文】(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C 在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【答案】(1)5cm;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变化,会出现两种情况:①当点C在线段AB上时,MN==5cm;②当点C在AB或BA的延长线上时,MN=1cm.【分析】(1)(2)在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算;(3)会出现两种情况:①点C在线段AB上;②点C在AB或BA的延长线上.不要漏【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,(2)直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,②当点C在AB或BA的延长线上时,17.【题文】已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【答案】见解析【分析】先在射线上依次截取再截取,则线段【解答】解:如图:,线段AB即为所求.18.【题文】如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD 的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【答案】(1)3(2)4:5【分析】(1)AB:BC:CD=2:4:3,可得线段、线段的长,根据线段的和差,可得线段的长,根据线段中点的性质,可得的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得的长,根据线段的和差,可得的长,根据比的意义,可得答案.【解答】解:(1)由AB:BC:CD=2:4:3,CD=6,得AB=4,BC=8.由线段的和差,得AD=AB+BC+CD=4+8+6=18.由线段中点的性质,得由线段的和差,得MC=MD−CD=9−6=3;(2)由线段的和差,得BM=AM−AB=9−4=5.由比的意义,得AB:BM=4:5.19.【题文】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)1或2;(2)1.5秒;(3)5或 3.5.【分析】(1)分点B在点C的左边和点B在点C的右边两种情况讨论;(2)所走路程为这两条线段的和,用路程,速度,时间之间的关系可求解;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.【解答】解:(1)设运动t秒时,BC=2单位长度,①当点B在点C的左边时,由题意得:3t+2+t=6,解得:t=1;②当点B在点C的右边时,由题意得:3t﹣2+t=6,解得:t=2.(2)(2+4)÷(3+1)=1.5(秒).答:线段AB与线段CD从开始相遇到完全离开共经过1.5秒长时间.(3)存在关系式BD﹣AP=3PC.设运动时间为t秒,①当t=(4+2)÷(3+1)=1.5时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,PA+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即BD﹣AP=3PC;②当1.5<t<2.5时,点C在点A和点B之间,0<PC<2:当点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC当PC=0.5时,有BD=AP+3PC,即 BD﹣AP=3PC,③当t=2.5时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC=0.5时,有BD=AP+3PC,即BD﹣AP=3PC,∵P在C点左侧或右侧,∴PD的长有2种可能,即5或3.5.20.【题文】已知线段AB=6cm,点P是线段AB的中点,E是线段AB延长线上的一点,BE=AB,求线段PE的长.【答案】5cm.【分析】根据线段的倍分关系与和差关系求解. 【解答】解:∵点P是线段AB的中点,AB=6cm,∴PB=AB=3cm,∵EB=AB,∴EB=2cm,∴PE=PB+BE=5cm.。
青岛版初中数学教材(总目录)青岛版初中数学教材总目录七年级上册(最新)第1章基本的几何图形1.1我们身边的图形世界1.2几何图形1.3线段、射线和直线1.4线段的比较与作法第2章有理数2.1有理数2.2数轴2.3相反数与绝对值第3章有理数的运算3.1有理数的乘法与加法3.2有理数的乘法与乘法3.3有理数的乘方3.4有理数的混合运算3.5利用计算器展开有理数的运算第4章数据的搜集、整理与叙述4.1普查和抽样调查4.2直观随机抽样4.3数据的整理4.4扇形统计图第5章代数式与函数的初步认识5.1用字母表示数5.2代数式5.3代数式的值5.4生活中的常量与变量5.5函数的初步认识第6章整式的以此类推6.1单项式与多项式6.2同类项6.3回去括号6.4整式的以此类推第7章一元一次方程7.1等式的基本性质7.2一元一次方程7.3一元一次方程的数学分析7.4一元一次方程的应用领域七年级下册第9章角9.1角的表示9.2角的比较9.3角的度量9.4对顶角9.5垂直第10章平行线10.1同位角10.2平行线和它的画法10.3平行线的性质10.4平行线的判定第11章图形与坐标11.1怎样确定平面内点的位置11.2平面直角坐标系11.3直角坐标系中的图形11.4函数与图象11.5一次函数和它的图象第12章二元一次方程组12.1重新认识二元一次方程组12.2向一元一次方程转变12.3图象的妙用12.4列方程组求解应用题第13章来到概率13.1天有不测风云13.2确认事件与不能确认事件13.3可能性的大小13.4概率的直观排序课题自学掷币中的思索第14章整式的乘法14.1同底数幂的乘法与乘法14.2指数可以就是零和负整数吗14.3科学记数法14.4内积的乘方与幂的乘方14.5单项式的乘法14.6多项式乘坐多项式第15章平面图形的重新认识15.1三角形15.2多边形15.3多边形的密铺15.4圆的初步重新认识15.5用直尺和圆规作图八年级上册第1章轴对称与轴对称图形1.1我们身边的轴对称图形1.2线段的垂直平分线1.3角的平分线1.4等腰三角形1.5成轴对称的图形的性质1.6镜面等距1.7直观的图案设计第2章乘法公式与因式分解2.1平方差公式2.2全然平方公式2.3用提公因式法进行因式分解2.4用公式法进行因式分解第3章分式3.1分式的基本性质3.2分式的约分3.3分式的乘法与除法3.4分式的通分3.5分式的加法与减法3.6比和比例3.7分式方程第4章样本与估计4.1普查与抽样调查4.2样本的选取4.3加权平均数4.4中位数4.5众数4.6用计算器谋平均数课题学习学生课外生活情况的调查第5章实数5.1算术平方根5.2勾股定理5.32就是有理数吗5.4由边长认定直角三角形5.5平方根5.6立方根5.7方根的估计5.8用计算器求平方根和立方根5.9实数第6章一元一次不等式6.1左右关系和不等式6.2一元一次不等式6.3一元一次不等式组八年级下册第7章二次根式7.1二次根式及其性质7.2二次根式的加减法7.3二次根式的秦九韶法第8章平面图形的全等与相似8.1全等形与相似形8.2全等三角形8.3怎样判定三角形全等8.4相似三角形8.5怎样判定三角形相似8.6相似多边形课题学习有趣的分形图第9章解直角三角形9.1锐角三角比9.230?,45?,60?角的三角比9.3用计算器谋锐角三角比9.4求解直角三角形9.5求解直角三角形的应用领域第10章数据线性程度的度量10.1数据的线性程度10.2极差10.3方差与标准差10.4用科学计算器计算方差和标准差第11章几何证明初步11.1定义与命题11.2为什么要证明11.3什么是几何证明11.4三角形内角和定理11.5几何证明举例11.6反证法九年级下册第1章特殊四边形1.1平行四边形及其性质1.2平行四边形的判定1.3特殊的平行四边形1.4图形的中心对称1.5梯形1.6中位线定理第2章图形变换2.1图形的平移2.2图形的旋转2.3图形的位似第3章一元二次方程3.1一元二次方程3.2用配方法解一元二次方程3.3用公式法解一元二次方程3.4用因式分解法解一元二次方程3.5一元二次方程的应用第4章对圆的进一步认识4.1圆的对称性4.2确定圆的条件4.3圆周角4.4直线与圆的边线关系4.5三角形的内切圆4.6圆与圆的边线关系4.7弧长及扇形面积的排序九年级下册第5章对函数的再积极探索5.1函数与它的表示法5.2一次函数与一元一次不等式5.3反比例函数5.4二次函数5.5二次函数y?ax2的图象和性质5.6二次函数y?ax2?bx?c的图象和性质5.7确定二次函数的解析式5.8二次函数的应用5.9用图象法解一元二次方程第6章频率与概率6.1频数与频率6.2频数原产直方图6.3用频率估算概率6.4用树状图排序概率课题自学质数的原产第7章空间图形的初步重新认识7.1几种常用的几何体7.2棱柱的侧面进行图7.3圆柱、圆锥的侧面进行图第8章投影与Arracourt8.1从相同的方向看看物体8.2盲区8.3影子和投影8.4正投影8.5物体的三视图。
1.4 线段的比较与作法第1课时教学目标:1.知识与技能会比较两条线段的长短,理解线段等分点的意义,了解“两点之间线段最短”的性质2.过程与方法培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法3.情感态度与价值观积极参与数学实验活动,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并应用于生活.重点:两点之间线段最短难点:比较两条线段的长短是一个重点,教学手段:多媒体教学教学过程一、引入新课提出问题:有一根长木棒,如何从它上面截下一段,•使截下的木棒等于另一根木棒的长?二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法.教师活动:参与学生小组讨论,指导学生探索问题的解决方法.从中得出数学问题:如何比较两条线段的长短?比较两条线段AB与CD的长短,可以采用叠合的方法.将AB,CD放在同一条直线上,如图,使端点A与C重合,端点B与D落在A的同一侧.(1)(2)(3)1.当点D与B重合时,线段AB与线段CD相等,记作AB=CD2.当点D在线段AB内部时,线段AB大于线段CD,记作AB>CD.3.当点D在线段AB延长线上时,线段AB小于线段CD,记作AB<CD.我们也可以利用刻度尺量出线段的长度,来比较它们的长短.探索线段的性质.请同学们思考教材中的思考题引导学生积极发言,最终老师得出结论:两点之间的所有连线中,线段最短.两点的距离两点之间线段的长度,叫做这两点之间的距离.三、例题分析例1:如图1-30,比较点A,B和C两两之间距离的大小.解:连接AB,BC,CA.用刻度尺量得线段AB=2.6 厘米,线段BC =2.4 厘米,线段CA=2.2 厘米,因为2.2 厘米<2.4 厘米<2.6 厘米所以CA<BC<AB例2:线段AB和CD,如果将CD移动到AB的位置,使点C与点A重合,CD与AB叠合,如果点D在AB的延长线上,那么AB______________CD.(填“>”、“<”或“=”)【解析】解:如图所示,AB<CD,【答案】<四、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短. 2.本节课学习了线段的性质和两点间距离的定义.五、布置作业。
1.4 线段的比较与作法教学目标:1、会利用圆规比较两条线段的大小,并会用符号“>”“<”“=”表示2、掌握“两点之间线段最短”的基本性质。
理解两点间距离的意义,能度量两点之间的距离。
3、会用直尺和圆规作一条线段,使它等于已知线段。
4、理解线段的和、差以及线段中点的意义,能用直尺和圆规作出线段的和、差,会用刻度尺画出一条线段的中点,并能用符号语言表示出来,感受符号语言在描述图形中的重要作用。
教学重点:理解两点间距离的意义,能度量两点之间的距离;掌握线段的基本性质;用直尺和圆规作一条线段等于已知线段.教学难点:线段的基本性质的理解及文字语言和符号语言的表述;理解线段的和、差及中点的意义,并会用刻度尺和圆规画出线段的和、差、倍、分。
教学辅助:多媒体教学过程:一、课前准备阅读教材18—21页的内容,回答下面问题:1、请指出能够测量线段长度的工具:。
2、两点之间的所有连线中,最短。
3、,叫做两点之间的距离。
4、请你画一条长为4cm的线段,并用刻度尺找出它的中点。
二、课内探究合作交流要求:小组或同桌讨论,解决以下问题:1、画一条线段AB,使它的长度等于已知线段a,与同学交流你的画法。
2、如图,线段AB上有一点C,那么BC AB;AB BC+AC;AB+BC AC.(填“>”、“=”或“<” ).3、如图,M是线段AC的中点,N是线段CB的中点.①如果AC=5cm,BC=3cm,那么MN= .②如果AM=2cm,NB=3cm,那么AB= .巩固练习:1、选择题:(1)在直线AB上有一点C,已知CB=2cm,AB=4cm,则AC等于().(A)6cm (B)2cm (C)6cm或2cm (D)无法确定(2)如图,一根10cm长的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度,能量出的长度有().(A)7个(B)6个(C)5个(D)4个2、填空题:(1)如图,从A地到B地的四条路中,最近的一条是 .(2)如图,已知直线上有四个点A、B、C、D,则AC= +BC=AD- ;AC+BD-BC= .达标检测:1、比较下列线段的长短(填“<”,“>”,或“=”).①AD BC;②AB CD;③AC BD;④AO CO.2、如图,比较线段DE和BC的大小,有DE BC.3、如图,已知AB=20cm,CD=8cm,E、F分别为AC、BD的中点,求EF的长.小结:如何比较线段的长度?你还记得线段的性质吗?你还有哪些收获?三、课后延伸量一量图中的长方形、正方形和等腰梯形相对两个顶点的连线(线段AC、BD)的长度,从中你发现了什么?。
七年级上册第1章基本的几何图形1 . 1 我们身边的图形世界1 .2 几何图形1 . 3 线段、射线和直线1 . 4 线段的比较和作法第2章有理数2 . 1 有理数2 . 2 数轴2 .3 相反数与绝对值第3章有理数的运算3 . 1 有理数的加法与减法3 . 2 有理数的乘法与除法3 . 3 有理数的乘方3 .4 有理数的混合运算3 . 5 用计算器进行有理数运算第4章数据的收集、整理与描述4 . 1 普查与抽样调查4 . 2 简单随机抽样4 . 3 数据的整理4 . 4 扇形统计图第5章代数式与函数的初步认识5 . 1 用字母表示数5 . 2 代数式5 . 3 代数式的值5 . 4 生活中的常量与变量5 . 5 函数的初步认识第6章整式的加减6 . 1 单项式与多项式6 . 2 同类项6 . 3 去括号6 . 4 整式的加减第7章一元一次方程7 . 1 等式的基本性质7 . 2 一元一次方程7 . 3 一元一次方程的解法7 . 4 一元一次方程的应用七年级下册第8章角8 . 1 角的表示8 . 2 角的比较8 . 3 角的度量8 . 4 对顶角8 . 5 垂直第9章平行线9 . 1 同位角、内错角、同旁内角9 . 2 平行线和它的画法9 . 3 平行线的性质9 . 4 平行线的判定第1 0章一次方程组1 0 . 1 认识二元一次方程组1 0 .2 二元一次方程组的解法* 1 0 . 3 三元一次方程组1 0 . 4 列方程组解应用题第1 1章整式的乘除1 1 . 1 同底数幂的乘法1 1 .2 积的乘方与幂的乘方1 1 . 3 单项式的乘法1 1 . 4 多项式的乘法1 1 . 5 同底数幂的除法1 1 . 6 零指数幂和负整数指数幂第1 2章乘法公式和因式分解1 2 . 1 平方差公式1 2 . 2 完全平方公式1 2 . 3 用提公因式法进行因式分解1 2 . 4 用公式法进行因式分解第1 3章平面图形的认识1 3 . 1 三角形1 3 .2 多边形1 3 . 3 圆第1 4章位置与坐标1 4 . 1 用有序数对表示位置1 4 .2 平面直角坐标系1 4 . 3 直角坐标系中的简单图形1 4 . 4 用方向和距离描述两个物体。
青岛版(新)数学七年级上册 1.4线段的比较与作法一、引言在数学中,线段是一种基本的几何图形。
线段的比较与作法是数学七年级上册的重要内容之一,我们将在本文中详细介绍线段的比较与作法的概念、原理和方法。
二、线段的比较2.1 线段的比较概念在线段的比较中,我们主要涉及到线段的长度的比较。
线段的长度表示了线段的大小,可以通过比较线段的长度来确定它们的大小关系。
2.2 线段长度的比较原理在线段的比较中,我们可以使用比较符号(大于、小于、等于)来表示线段长度的大小关系。
具体比较原理如下:•当两条线段的长度相等时,我们可以使用等号(=)表示它们的大小关系。
•当一条线段的长度大于另一条线段时,我们可以使用大于号(>)表示它们的大小关系。
•当一条线段的长度小于另一条线段时,我们可以使用小于号(<)表示它们的大小关系。
2.3 线段比较的方法在线段的比较中,有几种常用的方法可以用来比较线段的长度:2.3.1 使用直观感受法进行线段比较直观感受法是一种直观比较线段长度的方法,通过目测直观地判断出线段长度的大小关系。
这种方法相对简便,但对于较长的线段可能会不太准确。
2.3.2 使用尺子法进行线段比较尺子法是一种利用尺子来测量线段长度,进而进行线段比较的方法。
使用尺子可以直接得到线段的准确长度,可以较为准确地比较线段的大小关系。
2.3.3 使用数值法进行线段比较数值法是一种使用数值来表示线段长度的方法,通过将线段的长度转化为数值,可以直接进行数值的比较。
这种方法较为准确,适用于较长的线段比较。
三、线段的作法3.1 线段的比较作法在线段的比较作法中,我们主要涉及到几何构造的方法,可以通过构造一些辅助线段来进行比较。
3.1.1 比较线段的长度比较线段的长度时,可以通过构造两个相等的辅助线段,然后比较它们与待比较线段的关系,进而得出待比较线段的大小关系。
3.1.2 比较线段的位置比较线段的位置时,可以通过考察线段的起点和终点的坐标,或通过画出线段在坐标系中的图像来进行比较。
1.4 线段的比较和作法知识点专项训练一、知识概述1、两点之间的所有连线中,线段最短.简单说成两点之间线段最短.2、两点之间线段的长度,叫做这两点间的距离.线段的长度可用有刻度的直尺测量.3、线段大小的比较方法(1)叠合法.如比较线段AB、CD的大小,可将线段AB、CD移到同一条射线上,使它们的端点A、C都与射线的端点重合,再由点B与点D的位置关系,就可得出线段AB和CD的三种大小关系.(2)度量法.先用刻度尺量每条线段的长度,再按照长度比较它们的大小.线段的大小关系和它们长度的大小关系是一致的.表示方法:用几何语言表述两线段比较可能出现的三种结果.若两线段为线段AB、线段CD,如上图,则分别有如下结论:AB<CD、AB=CD、AB>CD4、线段的中点如果点M把线段AB分成相等的两条线段AM与BM,那么点M叫做线段AB的中点,类似地,线段有三等分点、四等分点等.如图所示,若点M是线段AB的中点,则AM=BM=AB或AB=2AM=2BM.5、求线段长度通常有三种方法:①逐步计算求线段的值;②用字母代换求线段的值;③构造方程求线段的值.6、直线、射线、线段之间的联系与区别二、典例讲解例1、(1)如图,A、B是河流l两旁的两个村庄,若在河流l上建一个水厂,使它到两个村庄铺设的供水管道最短,请你在l上标出点C的位置,并说明理由.(2)一个圆柱形的柱子,一只蚂蚁由柱子的一条高AB的最底端B点沿侧面转圈爬到顶端A点,问小蚂蚁怎么走路线最短?例2、(1)C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是()A.CD=AC-BD B.C.CD=AD-BC D.(2)如果点B在线段AC上,那么下列表达式中:①,②AB=BC,③AC=2AB,④AB+BC=AC.能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个(3)已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上例3、如图所示,C是线段AB的中点,D是线段CB的中点,BD=2cm,求AD的长.例4、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长.三、基础训练题型一:作图问题1、如图,平面内的线段AB,BC,CD,DA 首尾相接,按照下列要求画图:(10分) (1)连接AC ,BD 相交于点O A (2)分别延长线段AD ,BC 相交于点P D (3)分别延长线段AB , DC 相交于点QC B2、 已知 线段a 、b ,用直尺和圆规作一条线段AB ,使它的长度等于2a-b线段a 线段b题型二:距离问题1.如图,从A 地到B 地的四条路中,最近的一条是 .2.从甲到乙有两条路径,其中一条要经过丙,小明画出了示意图,并注明了距离(单位:千米),小英认为他的标注有问题,说说你的看法。
1.4 线段的比较与作法【教师寄语】在活动中学会合作,在合作中学会交流,在交流中获得成功。
一、学习目标1、会用直尺和圆规作一条线段使它等于已知线段。
2、理解线段的和、差的意义,能用直尺和圆规作出两条线段的和、差、倍、分。
3、理解线段中点的意义,会用刻度尺画出一条线段的中点,并能用符号语言表示出来。
教学重点:会用直尺和圆规作图。
教学难点:理解线段的和、差及中点的意义,并会用刻度尺和圆规画出线段的和、差、倍、分。
二、自学指导带着以下问题阅读教材第20页~第21页:1、阅读例2,总结“用直尺和圆规作一条线段,使它等于已知线段”的步骤。
已知:线段a求作:线段AB,使AB=a.步骤:(1)用______作射线AC.(2)用______在射线AC上截取______.2、尝试用自己的语言描述什么是线段的和、差。
3、如图,如果点把线段分成相等的两条线段______与______,那么点叫做线段的中点.这时AM=______=________。
三、合作探究1、想一想,你能利用例2中的方法作出线段的和与差吗?和已知线段a,b(如图所示),用直尺和圆规画出一条线段c,使它的长度等于两条已知线段的长度的和.作法:(1)用直尺作射线AD。
(2)用圆规在射线AD上截取______________。
(3)用圆规在射线BD上截取_______________。
线段_____就是线段a与b的和,记作________,线段AC就是所要求的线段c。
差已知线段a,b(如图所示),用直尺和圆规画出一条线段c,使它的长度等于两条已知线段的长度的差.作法:(1)用直尺作射线AD。
(2)用圆规在射线AD 上截取AB=a 。
(3)用圆规在射线AD 上截取AC=b 。
线段BC 就是线段a 与b 的差,记作BC=a-b ,线段BC 就是所要求的线段c 。
2、现有一条绳子AB ,如果把绳子的两个端点重合,然后叠合在一起,再分开标上记号,如图大家想一想线段AM 与线段BM 之间有何关系呢?AM____BM (> = <).总结:线段中点的概念______________________________.四、当堂训练1、如图,下列各式中错误的是( )A、DB AD AB += B、AC AB CB -=C、CD DB CB =- D、AC DB CB =-2、如果线段AB=6cm ,BC=4cm ,且点A 、B 、C 在同一直线上,那么点A 、C 间的距离是()A 、10cmB 、2cmC 、10cm 或2cmD 、无法确定3、如图,已知点M 是线段AB 的中点,点P 是线段MB 的中点,如果MP=3cm ,求AP 的长.五、课堂小节本节课我们学习了:1、用尺规作一条线段等于已知线段的方法。
1.4 线段的比较与作法
【教师寄语】在活动中学会合作,在合作中学会交流,在交流中获得成功。
一、学习目标
1、会用直尺和圆规作一条线段使它等于已知线段。
2、理解线段的和、差的意义,能用直尺和圆规作出两条线段的和、差、倍、分。
3、理解线段中点的意义,会用刻度尺画出一条线段的中点,并能用符号语言表示出来。
教学重点:会用直尺和圆规作图。
教学难点:理解线段的和、差及中点的意义,并会用刻度尺和圆规画出线段的和、差、倍、分。
二、自学指导
带着以下问题阅读教材第20页~第21页:
1、阅读例2,总结“用直尺和圆规作一条线段,使它等于已知线段”的步骤。
已知:线段a
求作:线段AB,使AB=a.
步骤:(1)用______作射线AC.
(2)用______在射线AC上截取______.
2、尝试用自己的语言描述什么是线段的和、差。
3、如图,如果点M把线段AB分成相等的两条线段______与______,那么点M叫做线段AB的中点.这时AM=______=________。
三、合作探究
1、想一想,你能利用例2中的方法作出线段的和与差吗?
和已知线段a,b(如图所示),用直尺和圆规画出一条线段c,使它的长度等于两条已知线段的长度的和.
作法:(1)用直尺作射线AD。
(2)用圆规在射线AD上截取______________。
(3)用圆规在射线BD上截取_______________。
线段_____就是线段a与b的和,记作________,线段AC就是所要求的线段c。
差已知线段a,b(如图所示),用直尺和圆规画出一条线段c,使它的长度等于两条已知线段的长度的差.
作法:(1)用直尺作射线AD。
(2)用圆规在射线AD上截取AB=a。
(3)用圆规在射线AD上截取AC=b。
线段BC就是线段a与b的差,记作BC=a-b,线段BC就是所要求的线段c。
2、现有一条绳子AB ,如果把绳子的两个端点重合,然后叠合在一
起,再分开标上记号,如图
大家想一想线段AM 与线段BM 之间有何关系呢?AM____BM (> = <).
总结:线段中点的概念______________________________.
四、当堂训练
1、如图,下列各式中错误的是( )
A、DB AD AB += B、AC AB CB -=
C、CD DB CB =- D、AC DB CB =-
2、如果线段AB=6cm ,BC=4cm ,且点A 、B 、C 在同一直线上,那么点A 、C 间的距离是()
A 、10cm
B 、2cm
C 、10cm 或2cm
D 、无法确定
3、如图,已知点M 是线段AB 的中点,点P 是线段MB 的中点,如果MP=3c m ,求AP 的长.
五、课堂小节
本节课我们学习了:
1、用尺规作一条线段等于已知线段的方法。
2、用尺规作线段的和、差、倍。
3、线段中点的意义,用符号语言表示线段的和差倍分。