江苏省苏州市高新区2019年中考数学一模试卷含答案解析
- 格式:pdf
- 大小:865.73 KB
- 文档页数:24
2019年江苏省苏州市中考数学一模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 3.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23−C . 23±D .32± 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .155. 已知 2 是关于y 的方程23202y a −=的一个解,则21a −的值是( ) A . 3B . 4C . 5D . 66.直线443y x =−−与两坐标轴围成的三角形面积是( ) A .3 B . 4 C . 6 D . 12 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .168.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个9.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯−=−;④(36)(9)4−÷−=−. 其中正确的有( ) A . 1个B . 2个C .3个D .4个二、填空题10.在 Rt △ABC 中,∠C= Rt ∠,AB=5 cm ,BC= 3 cm ,以 A 为圆心,4 cm 长为半径作圆,则:(1) 直线 BC 与⊙A 的位置关系是 ; (2)直线 AC 与⊙A 的位置关系是 .(3)以 C 为圆心,半径为 cm 的圆与直线 AB 相切.11.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 12.当a 时,二次根式3a −−−有意义. 13.二次根式14x −中,字母x 的取值范围是 .14.填空: (1)21122818323−+−= ; (2)2211()0.339+−= ; (3) 482375+− ; (4)3111212233−−= . 15.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为 .16.多项式24ax a −与多项式244x x −+的公因式是 .17.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.18.已知a 2-ab=15,ab-b 2= -10,则代数式a 2-b 2= .三、解答题19.已知二次函数y =x 2+ax +a -2,证明:不论a 取何值,抛物线的顶点总在x 轴的下方. Δ=(a-2)2+4>0,抛物线与x 轴有两个交点,又抛物线的开口向上,所以抛物线的顶点总在x 轴的下方.20.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值21.某人骑自行车以10km/h 的速度由 A 地到B 地,路上用了 6 h.(1)如果以 v(km/h)的速度行驶,那么需t(h)到达,写出 t 与 v 之间的函数关系式; (2)如果返回时以 12 km/h 的速度行进,求路上所需的时间? (3)如果要求在 4 h 内到达,那么速度至少要多少?22.用反证法证明:在一个三角形中,如果两条边不等,那么它们所对的角也不等.23.解下列方程:(1)0252=−−x x ; (2)0)52(4)32(922=−−+x x (3)3)76(2)76(222=−−−x x x x24.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台4325.如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D,过C 作BD的垂线交BD的延长线于E,交BA的延长线于F,请说明:(1)△BCF是等腰三角形;(2)△ABD≌△ACF;(3)BD=2CE.26.如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.球的体积公式为343r π,求地球的体积.(地球的半径6371 km ,结果保留2个有效数字)30.求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5 (4)132−与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.C6.C7.A8.B9.B二、填空题10.(1)相切;(2)相交;(3)12 511.12y x=−12. 3≤−13. 4x >14.(12)0. 3;(34) 15..2x − 17.△0AB ,418.5三、解答题 19. 20.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .21.(1)设 t 与 v 之间的函数关系式为st v =,其中 s 为A 地、B 地间距离. ∵当 t=6 时,v= 10,∴s =60,∴60t v=(2)v= 12 时,60512t ==,∴路上要用 5 h . (3)t=4 时,60154v ==,∴速度至少要 15 km/h . 22.略23.⑴2335,233521+=−=x x ;⑵219,10121−==x x ; ⑶61,1,31,234321==−==x x x x . 24.(1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.25.(1)利用△CBE≌△FBE来说明;(2)利用ASA说明;(3)利用CF=2CE而CF=BD来说明26.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合27.AB∥CD(同位角相等,两直线平行)28.略.29.1.O8×lO12km330.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。
2019 年江苏省苏州市高新区中考数学一模试卷一.选择题(共10 小题,满分30 分,每题 3 分)1.五个新篮球的质量(单位:克)分别是+5、﹣ 3.5 、+0.7、﹣ 2.5、﹣ 0.6 ,正数表示超出标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最靠近标准的篮球的质量是()A.﹣ 2.5B.﹣ 0.6C. +0.7D. +52.如图,是某个几何体从不一样方向看到的形状图(视图),这个几何体的表面能睁开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为 530060 人,用科学记数法可表示为()A. 53006×10 人B. 5.3006 ×105人C. 53× 104人D. 0.53 ×106 人4.以下图形是轴对称图形的有()A.2 个B.3个C.4 个D.5 个5.如图,A、 B两地被池塘分开,小康经过以下方法测出了A、 B间的距离:先在AB外选一他点C,而后测出AC, BC的中点M、 N,并丈量出MN的长为18m,由此他就知道了A、B间的距离.以下相关他此次研究活动的结论中,错误的选项是()A.=36B.∥C.=CB D.=ACABm MN AB MN CM6.如图,将△绕点顺时针旋转,点B 的对应点为点,点A的对应点为点,当点EABCC E D恰巧落在边上时,连结,若∠= 30°,则∠的度数是()AC AD ACB DACA. 60°B. 65°C. 70°D. 75°7.在兴趣运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24, 20, 19, 20, 22, 23, 20, 22.则这组数据中的众数和中位数分别是()A.22 个、 20 个B. 22 个、 21 个C.20 个、 21 个D.20 个、 22 个8.小李家距学校 3 千米,正午12 点他从家出发到学校,途中经过文具店买了些学惯用品,12 点 50 分到校.以下图象中能大概表示他离家的距离(千米)与离家的时间t (分钟)S之间的函数关系的是()A.B.C.D.9.以下不等式变形正确的选项是()A.由a>b,得a﹣2<b﹣ 2B.由a>b,得 | a| > | b| C.由a>b,得﹣ 2a<﹣ 2b D.由a>b,得a2>b210.已知:如在直角坐系中,有菱形OABC, A 点的坐(10,0),角OB、 AC 订交于 D点,双曲y=(x>0)D点,交BC的延于 E 点,且 OB?AC=160,点 E 的坐()A.( 5, 8)B.( 5, 10)C.( 4, 8)D.( 3, 10)二.填空(共8 小,分24 分,每小 3 分)11.函数y=中,自量 x 的取范是.12.已知x1,x2是一元二次方程222.x 2x 5=0的两个数根,x1+x2+3x1x2=13.有 4 根木棒,度分2cm, 3cm, 4cm, 5cm,从中任 3 根,恰巧能搭成一个三角形的概率是.14.已知a2+a 1= 0,a3+2a2+2018=.15.如,六形ABCDEF的六个角都是120°,AB= 1cm,BC= 3cm,CD= 3cm,DE=2cm,个六形的周是:.16.一按律摆列的式子:,,,,⋯( a≠0),此中第10 个式子是.17.如,已知l1∥l2∥l3,相两条平行直的距离相等.若等腰直角三角形ABC的直角点C 在l1 上,另两个点、分在l3、 2 上,tanα的是.A B l18.已知二次函数y= ax2+2ax+3a2+3(此中 x 是自量),当 x≥2,y 随 x 的增大而减小,且﹣ 4≤x≤1 时,y的最大值为7,则a的值为.三.解答题(共10 小题,满分96 分)19.( 10 分)( 1)计算:(﹣1)(+1) +(﹣1)0﹣(﹣)﹣2.( 2)化简:.( 3)解方程:.20.( 8 分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.( 8 分)一艘轮船由南向北航行,如图,在 A 处测得小岛P 在北偏西15°方向上,两个小时后,轮船在B处测得小岛P 在北偏西30°方向上,在小岛四周18 海里内有暗礁,问若轮船按 20 海里 / 时的速度持续向北航行,有无触礁的危险?22.( 8 分)某市举行“传承好家风”征文竞赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000 篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完好的两幅统计图表.征文竞赛成绩频数散布表分数段频数频次60≤< 70380.38m70≤m< 80a0.3280≤m< 90b c90≤m≤ 100100.1共计1请依据以上信息,解决以下问题:( 1)征文竞赛成绩频数散布表中 c 的值是;(2)补全征文竞赛成绩频数散布直方图;(3)若 80 分以上(含 80 分)的征文将被评为一等奖,试预计全市获取一等奖征文的篇数.23.( 8 分)为弘扬中华优异传统文化,某校睁开“经典朗读”竞赛活动,朗读资料有《论语》、《大学》、《中庸》(挨次用字母A,B, C表示这三个资料),将A, B,C分别写在3张完好同样的不透明卡片的正面上,反面向上洗匀后放在桌面上,竞赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行朗读竞赛.( 1)小礼朗读《论语》的概率是;(直接写出答案)( 2)请用列表或画树状图的方法求他俩朗读两个不一样资料的概率.24.( 8 分)已知:如图,在⊙O中,弦 CD垂直于直径AB,垂足为点E,假如∠ BAD=30°,且 BE=2,求弦 CD的长.25.( 9 分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角均分线,∠MAN=AM、 AN分别交两条角均分线于点M、 N,联络45°,将∠MAN绕着正方形的极点A旋转,边MN.( 1)求证:△ABM∽△ NDA;( 2)联络BD,当∠ BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.( 10 分)某品每件成本10 元,段每件品的售价x(元)与品的日售量 y(件)之的关系如表:x/元⋯152025⋯y/件⋯252015⋯已知日售量y 是售价 x 的一次函数.(1)求日售量y(件)与每件品的售价x(元)之的函数表达式;(2)当每件品的售价定35 元,此每天的售利是多少元?27.( 13 分)如1,在平面直角坐系中,一次函数y = 2 +8 的象与x,y分x交于点 A,点 C,点 A 作 AB⊥ x ,垂足点 A,点 C作 CB⊥ y ,垂足点 C,两条垂订交于点 B.( 1)段AB,BC,AC的分AB=, BC=, AC=;( 2)折叠 1 中的△ABC,使点A与点C重合,再将折叠后的形睁开,折痕DE交 AB于点D,交 AC于点 E,接 CD,如2.从以下、B 两中任一作答,我.AA:①求段AD的;②在 y 上,能否存在点P,使得△ APD等腰三角形?若存在,直接写出切合条件的所有点 P 的坐;若不存在,明原因.B:①求段DE的;②在座平面内,能否存在点P(除点 B 外),使得以点A, P, C 点的三角形与△ABC全等?若存在,请直接写出全部切合条件的点P的坐标;若不存在,请说明原因.28.( 14 分)已知,抛物线y =ax2++ (≠ 0)与直线y= 2+ 有一个公共点( 1,0),ax b a x m M且<.a b( 1)求b与a的关系式和抛物线的极点D坐标(用 a 的代数式表示);( 2)直线与抛物线的此外一个交点记为N,求△ DMN的面积与 a 的关系式;( 3)a=﹣ 1 时,直线y=﹣ 2x与抛物线在第二象限交于点G,点 G、H对于原点对称,现将线段 GH沿 y 轴向上平移t 个单位( t >0),若线段 GH与抛物线有两个不一样的公共点,试求t的取值范围.2019 年江苏省苏州市高新区文昌实验中学中考数学一模试卷参照答案与试题分析一.选择题(共10 小题,满分30 分,每题 3 分)1.【剖析】求它们的绝对值,比较大小,绝对值小的最靠近标准的篮球的质量.【解答】解: |+5| =5, | ﹣ 3.5| = 3.5 , |+0.7|=0.7,|﹣ 2.5|= 2.5,|﹣0.6|=0.6,∵5> 3.5 >2.5 > 0.7 > 0.6 ,∴最靠近标准的篮球的质量是﹣0.6 ,应选: B.【评论】本题考察了正数和负数,掌握正数和负数的定义以及意义是解题的重点.2.【剖析】由主视图和左视图可得此几何体为柱体,依据俯视图是圆可判断出此几何体为圆柱,进一步由睁开图的特点选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,所以图 A 是圆柱的睁开图.应选: A.【评论】本题由三视图判断几何体,用到的知识点为:三视图里有两个同样可确立该几何体是柱体,锥体仍是球体,由另一个视图确立其详细形状.3.【剖析】依据科学记数法的定义及表示方法进行解答即可.【解答】解:∵ 530060 是 6 位数,∴ 10 的指数应是5,应选: B.【评论】本题考察的是科学记数法的定义及表示方法,熟知以上知识是解答本题的重点.4.【剖析】依据轴对称图形的观点:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图( 1)有一条对称轴,是轴对称图形,切合题意;图( 2)不是轴对称图形,由于找不就任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不知足轴对称图形的定义.不切合题意;图( 3)有二条对称轴,是轴对称图形,切合题意;图( 3)有五条对称轴,是轴对称图形,切合题意;图( 3)有一条对称轴,是轴对称图形,切合题意.故轴对称图形有 4 个.应选: C.【评论】本题考察了轴对称图形的观点.轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合.5.【剖析】依据三角形的中位线定理即可判断;【解答】解:∵ CM=MA, CNB,∴MN∥ AB,MN= AB,∵MN=18m,∴ AB=36m,故A、B、D正确,应选: C.【评论】本题考察的是三角形的中位线定理在实质生活中的运用,锻炼了学生利用几何知识解答实质问题的能力.6.【剖析】由旋转性质知△ABC≌△ DEC,据此得∠ ACB=∠ DCE=30°、 AC=DC,既而可得答案.【解答】解:由题意知△ABC≌△ DEC,则∠ ACB=∠ DCE=30°, AC= DC,∴∠ DAC===75°,应选: D.【评论】本题主要考察旋转的性质,解题的重点是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【剖析】找中位数要把数据按从小到大的次序摆列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数能够不只一个.【解答】解:在这一组数据中20 出现了 3 次,次数最多,故众数是20;把数据按从小到大的次序摆列:19, 20, 20, 20, 22, 22, 23, 24,处于这组数据中间地点的数20 和 22,那么由中位数的定义可知,这组数据的中位数是21.应选: C.【评论】本题为统计题,考察众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数,假如中位数的观点掌握得不好,不把数据按要求从头摆列,就会犯错.8.【剖析】依据小李距家 3 千米,行程跟着时间的增大而增大确立适合的函数图象即可.【解答】解:∵小李距家 3 千米,∴离家的距离跟着时间的增大而增大,∵途中在文具店买了一些学惯用品,∴中间有一段离家的距离不再增添,综合以上 C切合,应选: C.【评论】本题考察了函数图象,比较简单,认识横、总坐标分别表示什么是解题的重点.9.【剖析】依据不等式的性质进行剖析判断.【解答】解: A、在不等式 a> b 的两边同时减去2,不等式仍建立,即a﹣2> b﹣2,故本选项错误;B、当 a>b>0时,不等式| a|>| b|建立,故本选项错误;C、在不等式a> b 的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣ 2b建立,故本选项正确;D、当 a>b>0时,不等式a2>b2建立,故本选项错误;应选: C.【评论】考察了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【剖析】过点C作CF⊥ x轴于点F,由OB?AC=160可求出菱形的面积,由 A 点的坐标为( 10, 0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC订交于D点可求出D点坐标,用待定系数法可求出双曲线y=( x>0)的分析式,由反比率函数的分析式与直线BC的分析式联立刻可求出 E 点坐标即可.【解答】解:过点 C作 CF⊥x 轴于点 F,∵ OB?AC=160, A 点的坐标为(10,0),∴ OA?CF= OB?AC=×160=80,菱形OABC的边长为10,∴ CF===8,在 Rt △OCF中,∵ OC=10,CF=8,∴OF===6,∴ C(6,8),∵点 D是线段 AC的中点,∴ D点坐标为(,),即( 8, 4),∵双曲线 y=(x>0)经过D点,∴ 4=,即k=32,∴双曲线的分析式为:y=(x>0),∵CF=8,∴直线 CB的分析式为y=8,∴,解得:,∴ E 点坐标为(4,8).【评论】本题考察了反比率函数图象上点的坐标特点,菱形的性质,以及勾股定理,娴熟掌握性质及定理是解本题的重点.二.填空题(共8 小题,满分24 分,每题 3 分)11.【剖析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:依据题意,得:,解得: x≤2且 x≠﹣2,故答案为: x≤2且 x≠﹣2.【评论】本题主要考察函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不可以为0;( 3)当函数表达式是二次根式时,被开方数非负.12.【剖析】依据根与系数的关系获取x 1+2=﹣, 1x2=﹣2,把x12+22+312变形为(1+2)x x x x x x x2+x1x2,而后利用整体代入的方法计算;【解答】解:依据题意得x 1+ 2 =2, 1 2=﹣5,x x x2222x1+x2 +3x1x2=(x1+x2)+x1x2=2 +(﹣ 5)=﹣ 1.故答案为﹣ 1.【评论】本题考察了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0( a≠0)的两根时, x1+x2=﹣,x1x2=.13.【剖析】依据题意,使用列举法可得从 4 根细木棒中任取 3 根的总合状况数量以及能搭成一个三角形的状况数量,依据概率的计算方法,计算可得答案.【解答】解:依据题意,从 4 根细木棒中任取 3 根,有 2、 3、4;3、 4、5;2、 3、 5;2、 4、5,共 4 种取法,而能搭成一个三角形的有2、 3、 4; 3、 4、 5;2, 4, 5,3 种;故其概率为:.【评论】本题考察概率的计算方法,使用列举法解题时,注意按必定次序,做到不重不漏.用到的知识点为:概率=所讨状况数与总状况数之比.14.【剖析】将已知条件变形为a 2= 1﹣、2+= 1,而后将代数式3+2a2+2018 进一步变形a a a a进行求解.【解答】解:∵ a2+a﹣1=0,∴a2=1﹣ a、 a2+a=1,∴a3+2a2+3,=a?a2+2(1﹣ a)+2018,=a(1﹣ a)+2﹣2a+2020,=a﹣ a2﹣2a+2020,=﹣ a2﹣ a+2020,=﹣( a2+a)+2020,=﹣ 1+2020,=2019 .故答案为: 2019.【评论】本题是一道波及因式分解的计算题,考察了拆项法分解因式的运用,提公因式法的运用.15.【剖析】凸六边形ABCDEF,其实不是一规则的六边形,但六个角都是120°,所以经过适当的向外作延伸线,可获取等边三角形,从而求解.【解答】解:如图,分别作直线AB、 CD、EF的延伸线和反向延伸线使它们交于点G、H、 P.∵六边形 ABCDEF的六个角都是120°,∴六边形 ABCDEF的每一个外角的度数都是60°.∴△ APF、△ BGC、△ DHE、△ GHP都是等边三角形.∴GC= BC=3cm, DH= DE=2cm.∴GH=3+3+2=8cm,FA= PA= PG﹣ AB﹣ BG=8﹣1﹣3=4cm,EF= PH﹣ PF﹣ EH=8﹣4﹣2=2cm.∴六边形的周长为 1+3+3+2+4+2= 15cm.故答案为: 15cm.【评论】本题考察了等边三角形的性质及判断定理;解题中奇妙地结构了等边三角形,从而求得周长.是特别完满的解题方法,注意学习并掌握.16.【剖析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a 的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(1)1+1?,=( 1)2+1?,=( 1)3+1?,⋯第 10 个式子是( 1)10+1?=.故答案是:.【点】本主要考了式子的特点,正确理解式子的律是解的关.17.【剖析】点A作AD⊥l1于D,点B作BE⊥l1于E,依据同角的余角相等求出∠CAD =∠ BCE,而后利用“角角” 明△ACD和△ CBE全等,依据全等三角形相等可得CD= BE,而后利用勾股定理列式求出AC,而后利用角的正切等于比列式算即可得解.【解答】解:如,点A 作⊥ 1 于,点B作⊥ 1 于,l1,2, 3 的距离AD l D BE l E l l1,∵∠ CAD+∠ACD=90°,∠BCE+∠ ACD=90°,∴∠ CAD=∠ BCE,在等腰直角△ABC中,AC=BC,在△ ACD和△ CBE中,,∴△ ACD≌△ CBE( AAS),∴CD= BE=1,∴DE=3,∴tan ∠ α=.故答案为:.【评论】本题考察了全等三角形的判断与性质,等腰直角三角形的性质,锐角三角函数的定义,作协助线结构出全等三角形是解题的重点.18.【剖析】依据题目中的函数分析式能够求得该函数的对称轴,而后依据当x≥2时, y随x 的增大而减小,且﹣4≤ ≤1 时,y的最大值为7,能够判断a的正负,获取对于a的x方程,从而能够求得 a 的值.【解答】解:∵二次函数y =ax2+2ax+32+3=(+1)2+32﹣ +3,a a x a a∴该函数的对称轴为直线x=﹣1,∵当 x≥2时, y 随 x 的增大而减小,且﹣4≤x≤ 1 时,y的最大值为7,∴a<0,当 x=﹣1时, y=7,∴7=a(x+1)2+3a2﹣a+3,解得, a1=﹣1, a2=(舍去),故答案为:﹣1.【评论】本题考察二次函数的性质、二次函数的最值,解答本题的重点是明确题意,利用二次函数的性质解答.三.解答题(共10 小题,满分96 分)19.【剖析】(1)依据零指数幂和负整数指数幂的意义获取原式=3﹣ 1+1﹣ 9,而后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,而后约分后进行同分母的加法运算;(3)先去分母获取整式方程,再解整式方程,而后查验即可.【解答】解:( 1)原式= 3﹣ 1+1﹣ 9=﹣ 6;( 2)原式=+?=+=;( 4)x(x+2) +6(x﹣ 2)=(x﹣ 2)(x+2),x2+2x+6x﹣12= x2﹣4,x=1,经查验, x=1是原方程的解.【评论】本题考察了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,而后归并同类二次根式.也考察了零指数幂和负整数指数幂.20.【剖析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x< 4在数轴上表示以下:所以,原不等式组的正整数解是1, 2,3.【评论】本题考察了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【剖析】作PD⊥AB交AB延伸线于D点,依照直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交 AB延伸线于 D点,∵∠ PBC=30°,∴∠ PAB=15°,∴∠ APB=∠ PBC﹣∠ PAB=15°,∴PB=AB=20×2=40(海里),在 Rt △BPD中,∴PD= PB=20(海里),∵20> 18,∴不会触礁.【评论】本题考察了等腰三角形的判断与性质,三角形的外角性质,以及含30°直角三角形的性质,此中轮船有没有危险由PD的长与18比较大小决定.22.【剖析】( 1)依照 1﹣0.38 ﹣ 0.32 ﹣ 0.1 ,即可获取 c 的值;(2)求得各分数段的频数,即可补全征文竞赛成绩频数散布直方图;(3)利用 80 分以上(含 80 分)的征文所占的比率,即可获取全市获取一等奖征文的篇数.【解答】解:( 1)1﹣ 0.38 ﹣ 0.32 ﹣ 0.1 = 0.2 ,故答案为: 0.2 ;(2) 10÷0.1 = 100,100× 0.32 = 32, 100× 0.2 = 20,补全征文竞赛成绩频数散布直方图:( 3)全市获取一等奖征文的篇数为:1000 ×( 0.2+0.1 )= 300(篇).【评论】本题考察了频数(率)散布直方图和利用统计图获守信息的能力;利用统计图获守信息时,一定仔细察看、剖析、研究统计图,才能作出正确的判断和解决问题.23.【剖析】( 1)直接利用概率公式计算;(2)画树状图展现全部 9 种等可能的结果数,再找出小红和小亮朗读两个不一样资料的结果数,而后依据概率公式计算.【解答】解:( 1)小红朗读《论语》的概率=故答案为.( 2)画树状图为:;共有 9 种等可能的结果数,此中小红和小亮朗读两个不一样资料的结果数为6,所以小红和小亮朗读两个不一样资料的概率==.【评论】本题考察了列表法与树状图法:利用列表法或树状图法展现全部等可能的结果n,再从中选出切合事件 A 或 B的结果数量 m,而后利用概率公式计算事件A或事件 B 的概率.24.【剖析】连结OD,设⊙O的半径为r,则OE=r﹣ 2,再依据圆周角定理得出∠DOE=60°,由直角三角形的性质可知= 2,由此可得出r 的长,在 Rt △中依据勾股定理求出DEOD OE OED的长,从而可得出结论.【解答】解:连结 OD,设⊙ O的半径为 r ,则 OE= r ﹣2,∵∠ BAD=30°,∴∠ DOE=60°,∵CD⊥ AB,∴CD=2DE,∠ ODE=30°,∴OD=2OE,即 r =2( r ﹣2),解得 r =4;∴OE=4﹣2=2,∴DE===2,∴ CD=2DE=4.【评论】本题考察的是垂径定理,熟知均分弦的直径均分这条弦,而且均分弦所对的两条弧是解答本题的重点.25.【剖析】( 1)由正方形ABCD, BM、 DN分别是正方形的两个外角均分线,可证得∠ABM=∠ ADN=135°,又由∠ MAN=45°,可证得∠ BAM=∠ AND=45°﹣∠ DAN,即可证得△ ABM ∽△ NDA;( 2)由四边形BMND为矩形,可得BM=DN,而后由△ ABM∽△ NDA,依据相像三角形的对应22边成比率,可证得BM= AB,既而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ ABC=∠ ADC=∠ BAD=90°,∵BM、 DN分别是正方形的两个外角均分线,∴∠ ABM=∠ ADN=135°,∵∠ MAN=45°,∴∠ BAM=∠ AND=45°﹣∠ DAN,∴△ ABM∽△ NDA;(2)解:∵四边形BMND为矩形,∴ BM= DN,∵△ ABM∽△ NDA,∴=,2 2∴BM= AB,∴BM= AB,∴∠ BAM=∠ BMA== 22.5 °.【评论】本题考察了相像三角形的判断与性质、正方形的性质以及矩形的性质.注意能证得当四边形 BMND为矩形时,△ ABM是等腰三角形是难点.26.【剖析】( 1)依据题意能够设出y 与 x 的函数关系式,而后依据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;( 2)依据题意能够计算出当每件产品的销售价定为35 元时,此时每天的销售收益.【解答】解:( 1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y =kx +b,,解得,,改日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣ x+40;( 2)当每件产品的销售价定为35 元时,此时每天的销售收益是:(35﹣ 10)(﹣35+40)= 25× 5=125(元),即当每件产品的销售价定为35 元时,此时每天的销售收益是125 元.【评论】本题考察一次函数的应用,解题的重点是明确题意,找出所求问题需要的条件.27.【剖析】( 1)先确立出OA=4,OC=8,从而得出AB=8,BC=4,利用勾股定理即可得出 AC;(2)A、①利用折叠的性质得出BD= 8﹣AD,最后用勾股定理即可得出结论;②分三种状况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠ APC=90°,再分状况议论计算即可.【解答】解:( 1)∵一次函数y=﹣2x+8的图象与 x 轴, y 轴分别交于点A,点 C,∴A(4,0), C(0,8),∴OA=4,OC=8,∵AB⊥ x 轴, CB⊥ y 轴,∠ AOC=90°,∴四边形 OABC是矩形,∴ AB= OC=8, BC=OA=4,在 Rt △ABC中,依据勾股定理得,AC==4,故答案为: 8, 4, 4;(2)A、①由( 1)知,BC= 4,AB=8,由折叠知, CD= AD,在 Rt △BCD中,BD=AB﹣AD= 8﹣AD,依据勾股定理得,2=2+2,CD BC BD 即:2= 16+( 8﹣)2,AD AD∴AD=5,②由①知, D(4,5),设 P(0,y),∵ A(4,0),∴2= 16+ 2,2= 16+(﹣5)2,APy DP y∵△ APD为等腰三角形,∴Ⅰ、 AP=AD,∴16+y2= 25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、 AP= DP,∴16+y2= 16+(y﹣ 5)2,∴y=,∴P(0,),Ⅲ、 AD= DP,25=16+( y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由 A①知, AD=5,由折叠知, AE=AC=2,DE⊥ AC于E,在 Rt △ADE中,DE==,②、∵以点A, P,C为极点的三角形与△ABC全等,∴△ APC≌△ ABC,或△ CPA≌△ ABC,∴∠ APC=∠ ABC=90°,∵四边形 OABC是矩形,∴△≌△,此时,切合条件,点P 和点重合,ACO CAB O 即: P(0,0),如图 3,过点 O作 ON⊥ AC于 N,易证,△ AON∽△ ACO,∴,∴,∴AN=,过点 N作 NH⊥ OA,∴NH∥ OA,∴△ ANH∽△ ACO,∴,∴,∴NH=, AH=,∴OH=,∴N(,),而点 P2与点 O对于 AC对称,∴P2(,),同理:点B 对于的对称点1,同上的方法得,1(﹣,),AC P P即:知足条件的点P 的坐标为:(0,0),(,),(﹣,).【评论】本题是一次函数综合题,主要考察了矩形的性质和判断,勾股定理,折叠的性质,对称的性质,解( 1)的重点是求出相像三角形的判断和性质,AC,解(2)的重点是利用分类议论的思想解决问题.28.【剖析】( 1)把M点坐标代入抛物线分析式可获取 b 与 a 的关系,可用 a 表示出抛物线分析式,化为极点式可求得其极点D的坐标;( 2)把点M( 1, 0)代入直线分析式可先求得m的值,联立直线与抛物线分析式,消去y,可获取对于x 的一元二次方程,可求得另一交点N的坐标,依据a< b,判断 a<0,确立 D、M、 N的地点,绘图1,依据面积和可得△DMN的面积即可;( 3)先依据a 的值确立抛物线的分析式,画出图2,先联立方程组可求适当与抛物线只GH有一个公共点时, t 的值,再确立当线段一个端点在抛物线上时,t的值,可得:线段 GH 与抛物线有两个不一样的公共点时t 的取值范围.【解答】解:( 1)∵抛物线y=ax2+ax+b有一个公共点M( 1, 0),∴ a+a+b=0,即 b=﹣2a,∴ y= ax2+ax+b= ax2+ax﹣2a= a(x+)2﹣,∴抛物线极点 D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴ 0= 2× 1+m,解得m=﹣ 2,∴ y=2x﹣2,则,得 ax2+( a﹣2) x﹣2a+2=0,∴( x﹣1)( ax+2a﹣2)=0,解得 x=1或 x=﹣2,∴ N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴ a<0,如图 1,设抛物线对称轴交直线于点E,∵抛物线对称轴为 x=﹣=﹣,∴ E(﹣,﹣3),∵M(1,0), N(﹣2,﹣6),设△ DMN的面积为 S,∴ S= S△DEN+S△DEM=| (﹣2)﹣1| ?|﹣﹣(﹣3)|=,( 3)当a=﹣ 1 时,抛物线的分析式为:y=﹣ x2﹣x+2=﹣( x+)2+,有,﹣x2﹣ x+2=﹣2x,解得: x1=2, x2=﹣1,∴ G(﹣1,2),∵点 G、 H对于原点对称,∴ H(1,﹣2),设直线 GH平移后的分析式为:y=﹣2x+t ,﹣x2﹣ x+2=﹣2x+t ,x2﹣ x﹣2+t =0,△= 1﹣ 4(t﹣ 2)= 0,t =,当点 H平移后落在抛物线上时,坐标为(1, 0),把( 1, 0)代入y=﹣ 2x+t,t= 2,∴当线段 GH与抛物线有两个不一样的公共点,t 的取值范围是2≤t<.【评论】本题为二次函数的综合应用,波及函数图象的交点、二次函数的性质、根的鉴别式、b 与a 的关系是解题的重点,在(2)中联三角形的面积等知识.在(1)中由M的坐标获取立两函数分析式,获取对于x 的一元二次方程是解题的重点,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的重点,本题考察知识点许多,综合性较强,难度较大.。
江苏省苏州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .42.一次函数21y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、404.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A .B .C .D .5.在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE ,BE 分别交于点G 、H .∠CBE=∠BAD ,有下列结论:①FD=FE ;②AH=2CD ;③2AE 2;④S △BEC =S △ADF .其中正确的有( )A .1个B .2个C .3个D .4个6.如图,已知D 是ABC V 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE 7.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-8.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为( )(精确到0.1米,参考数据:2 1.413 1.736 2.45≈≈≈,,)A .30.6米B .32.1 米C .37.9米D .39.4米9.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A .70°B .110°C .130°D .140°10.如图,直线a ∥b ,点A 在直线b 上,∠BAC=100°,∠BAC 的两边与直线a 分别交于B 、C 两点,若∠2=32°,则∠1的大小为( )A .32°B .42°C .46°D .48°11.3--的倒数是( )A .13- B .-3 C .3 D .1312.如果菱形的一边长是8,那么它的周长是( )A .16B .32C .16D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数2x y x =-中,自变量x 的取值范围是______. 14.点(1,–2)关于坐标原点 O 的对称点坐标是_____.15.如图,点 A 、B 、C 在⊙O 上,⊙O 半径为 1cm ,∠ACB=30°,则»AB 的长是________.16.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.17.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm 218.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.20.(6分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.21.(6分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.22.(8分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.23.(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.(10分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O 交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是⊙O的切线;(2)求证:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.25.(10分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.26.(12分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.分别求每台A 型, B 型挖掘机一小时挖土多少立方米?若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?27.(12分)计算:(﹣1)2018﹣.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C .考点:反比例函数与一次函数的交点问题.2.B【解析】【分析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b 10=-<,函数与y 轴交于y 轴负半轴,∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k 、b 对函数图象位置的影响3.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.4.D【解析】A ,B ,C 只能通过旋转得到,D 既可经过平移,又可经过旋转得到,故选D.5.C【解析】【分析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.【详解】∵在△ABC 中,AD 和BE 是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F 是AB 的中点,∴FD=12AB ,FE=12AB , ∴FD=FE ,①正确;∵∠CBE=∠BAD ,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C ,∴AB=AC ,∵AD ⊥BC ,∴BC=2CD ,∠BAD=∠CAD=∠CBE ,在△AEH 和△BEC 中,AEH CEB AE BEEAH CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEH ≌△BEC (ASA ),∴AH=BC=2CD ,②正确;∵∠BAD=∠CBE ,∠ADB=∠CEB ,∴△ABD ∽△BCE , ∴AB AD BC BE=,即BC•AD=AB•BE , ∵∠AEB=90°,AE=BE ,∴BEBE•BE ,∴AE 2;③正确;设AE=a ,则a ,∴a ﹣a ,∴BECABC CE?BE S CE 2AC?BE S AC 2===V V=22-,即BEC ABC S =V V , ∵AF=12AB , ∴ ADF ABD ABC 11S S S 24==V V V , ∴S △BEC ≠S △ADF ,故④错误,故选:C .【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6.C【解析】【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C ,∠B=∠B ,∴△BAC ∽△BDA .故A 正确.∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确.∴∠BFA=∠BEC ,∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误.故选C .【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.7.A【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.8.D【解析】解:延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示,则GH=DE=15米,EG=DH ,∵梯坎坡度i=1:BH :CH=1BH=x 米,则米,在Rt △BCH 中,BC=12米,由勾股定理得:()222+=,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),x x312EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9≈39.4(米).故选D.9.D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.10.D【解析】【分析】根据平行线的性质与对顶角的性质求解即可.【详解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.11.A【解析】【分析】--=-,再求倒数.先求出33【详解】。
2019年江苏省苏州市高新区第四中学中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 4.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.5.如图,要测量被池塘隔开的A,B两点的距离,小明在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,并分别找出它们的中点D,E,连接DE,现测得DE=45米,那么AB等于()A.90米B.88米C.86米D.84米6.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB =35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=47.一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A.0,2 B.1.5,2 C.1,2 D.1,38.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱9.若a<b,则下列各式一定成立的是()A.a+3>b+3 B.C.a﹣1<b﹣1 D.3a>3b 10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5二.填空题(共8小题,满分24分,每小题3分)11.函数y=的自变量x的取值范围是.12.已知a,b是方程x2﹣3x﹣1=0的两个根,则代数式a+b的值为.13.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.14.如图,边长为a,b的长方形的周长为16,面积为10,则a2b+ab2=15.在同一平面内,将一副直角三角板ABC和EDF如图放置(∠C=60°,∠F=45°),其中直角顶点D是BC的中点,点A在DE上,则∠CGF =°.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n为正整数).17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.如果二次函数y=x2+3kx+2k﹣4图象对称轴为直线x=3,那么二次函数的最小值是.三.解答题(共10小题,满分96分)19.(10分)(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.20.(8分)解不等式组:把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.21.(8分)小亮一家到桃林口水库游玩.在岸边码头P处,小亮和爸爸租船到库区游玩,妈妈在岸边码头P处观看小亮与爸爸在水面划船,小船从P处出发,沿北偏东60°方向划行,划行速度是20米/分钟,划行10分钟后到A处,接着向正南方向划行一段时间到B处,在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)22.(8分)我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2);(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?23.(8分)不透明的袋子中装有4个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率(2)随机摸出两个小球,直接写出“两次取出的球标号和等于4”的概率.24.(8分)如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.25.(9分)已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC 和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x >5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?27.(13分)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动.(1)求直线l的解析式;(2)过点P作l的平行线交直线y=x于点D,当m=3时,求△PCD 的面积;(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年江苏省苏州市高新区第四中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】先化简,再利用负数的意义判定.【解答】解:A、|﹣2|=2,是正数;B、(﹣2)2=4,是正数;C、﹣(﹣2)=2,是正数;D、﹣|﹣2|=﹣2,是负数.故选:D.【点评】此题考查绝对值、相反数以、乘方以及负数的意义等基础知识.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D 是轴对称图形.故选:D.【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.5.【分析】根据中位线定理可得:AB=2DE=90米.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=45米,∴AB=2DE=90米,故选:A.【点评】本题考查了三角形的中位线定理,属于基础题,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半.6.【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD =60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【解答】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.7.【分析】把这组数据按照从小到大的顺序排列,第3、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【解答】解:把这组数据按照从小到大的顺序排列﹣3,﹣1,0,2,2,3,第3、4个两个数的平均数是(0+2)÷2=1,所以中位数是1;在这组数据中出现次数最多的是2,即众数是2,故选:C.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.8.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.9.【分析】利用不等式的基本性质化简,判断即可.【解答】解:由a<b,得到a+3<b+3,<,a﹣1<b﹣1,3a<3b,故选:C.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.10.【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=1,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k 值性质.解题关键是通过勾股定理构造方程.二.填空题(共8小题,满分24分,每小题3分)11.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.【点评】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为0.12.【分析】根据根与系数的关系可得出a+b=3,此题得解.【解答】解:∵a、b是方程x2﹣3x﹣1=0的两个根,∴a+b=3.故答案为:3.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.13.【分析】根据题意可以写出所有的可能性,从而可以求得能组成三角形的概率.【解答】解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.【点评】本题考查列表法和树状图法、三角形三边关系,解答此类问题的关键是写出所有的可能性.14.【分析】根据长方形的周长及面积可得出a+b=8、ab=10,将其代入a2b+ab2=ab(a+b)中即可求出结论.【解答】解:∵长方形的周长为16,面积为10,∴a+b=8,ab=10,∴a2b+ab2=ab(a+b)=10×8=80.故答案为:80.【点评】本题考查了因式分解的应用以及长方形的周长及面积,根据长方形的周长及面积找出a+b=8、ab=10是解题的关键.15.【分析】根据直角三角形的性质得到AD=CD,求得∠DAC=∠C=60°根据三角形的内角和和对顶角的性质即可得到结论.【解答】解:∵∠BAC=90°,D为BC的中点,∴AD=CD,∴∠DAC=∠C=60°,∴∠EAG=120°,∴∠AGE=180°﹣120°﹣45°=15°,∴∠CGF=∠QGE=15°,故答案为:15.【点评】本题考查了等边三角形的判定和性质,直角三角形的性质,等边三角形的判定和性质,熟练掌握等腰三角形的判定和性质是解题的关键.16.【分析】观察分母的变化为a的1次幂、2次幂、3次幂…n次幂;分子的变化为:2、5、10、17…n2+1;分式符号的变化为:+、﹣、+、﹣…(﹣1)n+1.【解答】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE 全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据二次函数y=x2+3kx+2k﹣4图象对称轴为直线x=3,可以求得k的值,然后将函数解析式化为顶点式,即可求得该函数的最小值,本题得以解决.【解答】解:∵二次函数y=x2+3kx+2k﹣4图象对称轴为直线x=3,∴=3,得k=﹣2,∴y=x2﹣6x﹣8=(x﹣3)2﹣17,∴当x=3时,y取得最小值,此时y=﹣17,故答案为:﹣17.【点评】本题考查二次函数的性质、最值和图象,解答本题的关键是明确题意,求出k的值,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)利用零指数幂、负整数指数幂的意义和绝对值的意义进行计算;(2)先把分子分母因式分解,再把除法运算化为乘法运算,然后约分后进行通分即可.【解答】解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式的混合运算.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x≤3,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤3,在数轴上表示为:.其整数解为:﹣1,0,1,2,3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【分析】作PQ⊥AB于Q,根据已知,∠APQ=30°.解直角三角形求出PB即可;【解答】解:作PQ⊥AB于Q,根据已知,∠APQ=30°.则AQ=AP∵AP=20×10=200∴AQ=100∴PQ==100,在Rt△BPQ中,sin B=,∴PB=100÷0.60≈288米∴此时,小亮与妈妈相距288米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.【分析】(1)根据成绩段160≤x<170的频数与频率求出抽取学生总数,进而求出a,b,c的值即可;(2)根据成绩段180≤x<190的频数,补全图2即可;(3)根据)“跳绳”数在180(包括180)以上人数的频率乘以1000即可得到结果.【解答】解:(1)根据题意得:5÷0.1=50;a=10÷50=0.2;b=50×0.14=7;c=16÷50=0.32;故答案为:50;0.2;7;0.32;(2)成绩段180≤x<190的频数为7,补全图2,如图所示:;(3)根据题意得:1000×(0.14+0.32+0.24)=700(名),则估计全校九年级有700名学生在此项成绩中获满分.【点评】此题考查了频数分布直方图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.23.【分析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和等于4的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为4,所以“两次取的球标号相同”的概率==;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和等于4的结果数为2,所以“两次取出的球标号和等于4”的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接AO,交BC于点E,连接BO,求出=,根据垂径定理得出OA⊥BC,BC=2BE,设AE=x,则BE=3x,OE=5﹣x,根据勾股定理得出方程(3x)2+(5﹣x)2=52,求出方程的解即可.【解答】解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.【点评】本题考查了圆心角、弧、弦之间的关系,垂径定理,解直角三角形,勾股定理的应用,解此题的关键是构造直角三角形,用了方程思想,难度适中.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)证出四边形BMND是平行四边形,再证出∠BDN=90°,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.27.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得直线l 的解析式;(2)联立直线l和直线y=x,可求得C点坐标,由条件可求得直线PD 的解析式,同理可求得D点坐标,则可分别求得△POD和△POC的面积,则可求得△PCD的面积;(3)由P、A、C的坐标,可分别表示出PA、PC和AC的长,由等腰三角形的性质可得到关于m的方程,则可求得m的值,则可求得P的坐标.【解答】解:(1)设直线l解析式为y=kx+b,把A、B两点坐标代入可得,解得,∴直线l解析式为y=﹣2x+12;(2)解方程组,可得,∴C点坐标为(4,4),设PD解析式为y=﹣2x+n,把P(3,0)代入可得0=﹣6+n,解得n=6,∴直线PD解析式为y=﹣2x+6,解方程组,可得,∴D点坐标为(2,2),∴S△POD=×3×2=3,S△POC=×3×4=6,∴S△PCD=S△POC﹣S△POD=6﹣3=3;(3)∵A(6,0),C(4,4),P(m,0),∴PA2=(m﹣6)2=m2﹣12m+36,PC2=(m﹣4)2+42=m2﹣8m+32,AC2=(6﹣4)2+42=20,当△PAC为等腰三角形时,则有PA=PC、PA=AC或PC=AC三种情况,①当PA=PC时,则PA2=PC2,即m2﹣12m+36=m2﹣8m+32,解得m=1,此时P点坐标为(1,0);②当PA=AC时,则PA2=AC2,即m2﹣12m+36=20,解得m=6+2或m=6﹣2,此时P点坐标为(6+2,0)或(6﹣2,0);③当PC=AC时,则PC2=AC2,即m2﹣8m+32=20,解得m=2或m=6,当m=6时,P与A重合,舍去,此时P点坐标为(2,0);综上可知存在满足条件的点P,其坐标为(1,0)或(6+2,0)或(6﹣2,0)或(2,0).【点评】本题为一次函数的综合应用,涉及待定系数法、函数图象的交点、三角形的面积、等腰三角形的性质、勾股定理、分类讨论思想及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中求得C、D的坐标是解题的关键,在(3)中用P点坐标分别表示出PA、PC的长是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,难度适中.28.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD 的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ =90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年江苏省苏州市高新区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是.12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.14.已知a2+a﹣1=0,则a3+2a2+2018=.15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:.16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是.17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C 在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年江苏省苏州市高新区文昌实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C 作CF ⊥x 轴于点F , ∵OB •AC =160,A 点的坐标为(10,0),∴OA •CF =OB •AC =×160=80,菱形OABC 的边长为10,∴CF ===8,在Rt △OCF 中, ∵OC =10,CF =8,∴OF ===6,∴C (6,8),∵点D 是线段AC 的中点,∴D 点坐标为(,),即(8,4), ∵双曲线y =(x >0)经过D 点,∴4=,即k =32,∴双曲线的解析式为:y =(x >0),∵CF =8,∴直线CB 的解析式为y =8,∴,解得:,∴E 点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE 的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M (1,0),∴a +a +b =0,即b =﹣2a ,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣); (2)∵直线y =2x +m 经过点M (1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2019年苏州市中考数学第一次模拟试卷及答案一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,02.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .25.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个6.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94 B .95分C .95.5分D .96分7.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12 B .x ≥1C .x >12D .x ≥128.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :3x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .129.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数ky x=(k >0)的图象上,且x 1=﹣x 2,则( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 210.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .811.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .12.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( ) A . B .C .D .二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 15.已知62x =,那么222x x -的值是_____.16.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).17.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.18.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.19.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB=22.故选C.5.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴2AB,∵2AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质6.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.9.D解析:D【解析】由题意得:1212k k y y x x ==-=- ,故选D. 10.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键11.D解析:D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .12.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h =≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率 解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=x=,∴(22∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.16.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 17.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD=2xCF=3x∴∴tan∠DCF=故答案为:【点【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD=.故答案为:5.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.(1)证明见解析;(2)2 【解析】 【分析】 (1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴BN=2. 考点:三角形的中位线定理,勾股定理. 23.(1)(-8,0)(2)k=-19225 (3)(﹣1,3)或(0,2)或(0,6)或(2,6) 【解析】【分析】(1)解方程求出OB 的长,解直角三角形求出OA 即可解决问题;(2)求出直线DE 、AB 的解析式,构建方程组求出点C 坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB 的长是方程x 2﹣2x ﹣8=0的解,∴OB=4,在Rt △AOB 中,tan ∠BAO=12OB OA =, ∴OA =8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。
2019年江苏省苏州市高新区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC 上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为()A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是.12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.14.已知a2+a﹣1=0,则a3+2a2+2018=.15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:.16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是.17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC 于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y 轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年江苏省苏州市高新区文昌实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND 为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x 的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN 的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y =ax 2+ax +b 有一个公共点M (1,0),∴a +a +b =0,即b =﹣2a ,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣); (2)∵直线y =2x +m 经过点M (1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2,∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2019年江苏省苏州市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列式子结果为负数的是()A.(﹣3)0B.﹣|﹣3| C.(﹣3)2D.(﹣3)﹣2【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【试题解析】解:A、(﹣3)0=1>0;C、(﹣3)2=9>0;D、(﹣3)﹣2=>0;B、﹣|﹣3|=﹣3<0.【答案】B.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5 D.2.1×10﹣5【考点】科学记数法—表示较小的数.【试题解析】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;【答案】:D3.下列计算正确的是()A.(2a2)3=8a5B.()2=9 C.3﹣=3 D.﹣a8÷a4=﹣a4【考点】幂的乘方与积的乘方;算术平方根;同底数幂的除法;二次根式的加减法.【试题解析】解:A、(2a2)3=8a6,原式计算错误,故本选项错误;B、()2=3,原式计算错误,故本选项错误;C、3﹣=2,原式计算错误,故本选项错误;D、﹣a8÷a4=﹣a4,原式计算正确,故本选项正确.【答案】D.4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【考点】全面调查与抽样调查.【试题解析】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;【答案】:B.5.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【试题解析】解:应该将②涂黑.【答案】B.6.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【试题解析】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;【答案】:A.7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【试题解析】解:从上面看,图2的俯视图是正方形,有一条对角线.【答案】C.8.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【试题解析】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB∥OE,∴∠DBF=∠OEF,在△BDF和△EOF中,,∴△BDF≌△EOF(AAS),∴S 阴影=S 扇形DOE =×π×12=.【答案】B .9.在△ABC 中,∠ABC=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A .3个B .4个C .5个D .6个【考点】勾股定理;含30度角的直角三角形.【试题解析】解:如图,过点A 作AD ⊥BC 于D ,∵∠ABC=30°,AB=10,∴AD=AB=5,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6个.【答案】D .10.二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m 、n (m <n ),关于x 的方程x 2+px+q﹣5=0的两个实数根是d 、e (d <e ),则m 、n 、d 、e 的大小关系是( )A .m <d <e <nB .d <m <n <eC .d <m <e <nD .m <d <n <e【考点】抛物线与x 轴的交点.【试题解析】解:二次函数y=x 2+px+q+1图象如图所示:结合图象可知方程x2+px+q﹣5=0的两个实数根即为函数y=x2+px+q+1和y=6的交点,即d<m<n<e,【答案】B.二、填空题(本大题共8小题,每小题3分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【考点】函数自变量的取值范围.【试题解析】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.【答案】x≥﹣1且x≠0.12.若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】点的坐标.【试题解析】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.【答案】0<a<2.13.分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【考点】提公因式法与公式法的综合运用.【试题解析】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.【答案】x(2x﹣y)2.14.方程x(x﹣2)=﹣(x﹣2)的根是x1=2,x2=﹣1.【考点】解一元二次方程-因式分解法.【试题解析】解:x(x﹣2)=﹣(x﹣2)移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.【答案】x1=2,x2=﹣1.15.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1=1.【考点】一次函数图象上点的坐标特征.【试题解析】解:∵点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,∴,解得,∴原式=﹣4×﹣1=1.【答案】1.16.某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【考点】规律型:数字的变化类.【试题解析】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:(+1)=2,(+1)=,(+1)=…(+1)=,(+1)=,故这样得到的20个数的积为:2×××…××=21,【答案】21.17.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【考点】旋转的性质;等边三角形的性质;正方形的性质.【试题解析】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,在△ABE与△ADF中,,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°【答案】15°或165°.18.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2019=32019.【考点】切线的性质;一次函数图象上点的坐标特征.【试题解析】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2019=32019.【答案】32019.三、解答题(本大题共10小题,共76分)19.计算:﹣2cos30°+()﹣2﹣|1﹣|.【考点】特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.【试题解析】解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.【答案】+5.20.化简:÷(x+2﹣)【考点】分式的混合运算.【试题解析】解:÷(x+2﹣)=÷()=•=.【答案】.21.解不等式组:,并求它的整数解的和.【考点】一元一次不等式组的整数解.【试题解析】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣2<x≤1∴不等式组的整数解的和为﹣1+0+1=0.【答案】022.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S,△ABC的面积为S△,试说明>π.圆【考点】作图—复杂作图;勾股定理;三角形的外接圆与外心.【试题解析】解:(1)如图所示:,(2)∵△ABC的外接圆的面积为S圆=π×()2=π,∴S圆△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【答案】见解析23.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【试题解析】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【答案】见解析24.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(2019•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【试题解析】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【答案】见解析26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【试题解析】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.【答案】见解析27.如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P 从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【试题解析】解:(1)∵A(5,0),B(3,0),∴OA=5,OB=3,∵∠CBO=45°,∴OC=OB=3,∴点C的坐标(0,3);(2)①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∵CO=3,∴OP=CO=,∵Q(﹣4,0),∴QP=+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,②当P在点B的右侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∵CO=3,∴OP=CO=3,∵Q(﹣4,0),∴QP=3+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述当∠BCP=15°时,t的值为或;(3)①如图1,当PC⊥BC时,⊙P与BC相切,∵∠CBO=45°,∴∠CPB=45°,CP=BC,∵CO=3,∴PO=3,∴QP=QO﹣PO=4﹣3=1,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=0.5(秒),②如图2,当PC⊥CD时,⊙P与CD相切,∵QO=4,点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=4÷2=2(秒)③如图3,当PA⊥AD时,⊙P与AD相切,设PA=r∵OA=5,OC=3,∴OP2+OC2=PC2,即(5﹣r)2+32=r2,解得:r=,∴QP=4+5﹣=,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述t1=0.5秒,t2=2秒,t3=秒.【答案】见解析28.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.【试题解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t ﹣1,∵NL=AD=,∴FL=t ﹣,∴当<t ≤2时,S=S △FMN ﹣S △FKL =t 2﹣(t ﹣)(t ﹣1)=﹣t 2+t ﹣; ③如图⑤,当G 在CD 上时,B ′C :CH=B ′G :DH ,即B ′C :4=2:3,解得:B ′C=,∴EC=4﹣t=B ′C ﹣2=,∴t=,∵B ′N=B ′C=(6﹣t )=3﹣t ,∵GN=GB ′﹣B ′N=t ﹣1,∴当2<t ≤时,S=S 梯形GNMF ﹣S △FKL =×2×(t ﹣1+t )﹣(t ﹣)(t ﹣1)=﹣t 2+2t ﹣,④如图⑥,当<t ≤4时,∵B ′L=B ′C=(6﹣t ),EK=EC=(4﹣t ),B ′N=B ′C=(6﹣t ),EM=EC=(4﹣t ),S=S 梯形MNLK =S 梯形B ′EKL ﹣S 梯形B ′EMN =﹣t+.综上所述:当0≤t ≤时,S=t 2,当<t ≤2时,S=﹣t 2+t ﹣;当2<t ≤时,S=﹣t 2+2t ﹣,当<t ≤4时,S=﹣t+.【答案】见解析。
2019学年江苏省苏州市高新区九年级毕业暨升学模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如图,数轴上点A所表示的数的倒数是()A.-2 B.2 C. D.2. 下面是一位同学做的四道题:①;②;③;④其中做对了几道题()A.0 B.1 C.2 D.33. 某市轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学记数法表示为()A.253.7×108 B.25.37×109 C.2.537×1010 D.2.537×10114. 如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115° B.125° C.155° D.165°5. 已知点A(-1,)、B(2,)都在双曲线上,且,则m的取值范围是()A. B. C. D.6. 如图,有一锐角为30°的直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A.27° B.54° C.63° D.36°7. 如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A. B. C. D.8. 如图,D为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为()A. B.C. D.9. 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为()A.(3,0) B.(7,4) C.(8,1) D.((1,4)10. 如图,已知抛物线和直线,我们约定:当x任取一值时,x对应的函数值分别为、,若,取、中的较小值记为M;若,记M=.下列判断:①当x>2时,M=;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.①② B.①②③ C.②③ D.②③④二、填空题11. 函数的自变量x的取值范围是.12. 分解因式=.13. 若一元二次方程的两个实数根分别是2、,则=.14. 若干名同学制作迎世乒卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.(从大到小的顺序)15. 小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为 cm.16. 将正三角形、正四边形、正五边形按如图所示的位置摆放,如果∠3=32°,那么∠1+∠2=度.17. 某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.18. 已知点A(0,-4),B(8,0)和C(a,a),以线段AB的中点为圆心的圆过点C,则这个圆的半径的最小值等于.三、计算题19. (本题满分5分)计算:四、解答题20. (本题满分5分)解不等式组:21. (本题满分5分)先化简,再求值:,其中x是方程的根.22. (本题满分5分)解方程:23. (本题满分7分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.24. (本题满分7分)如图所示,A.B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=12km,∠A=45°,∠B=37°.桥DC和AB平行且等长,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据:≈l.41,sin37°≈0.60,cos37°≈0.80)25. (本题满分7分)某学校准备成立男女校足球队,为了解全校学生对足球的喜爱程度,该校设计了一个调查问卷,将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢),D(很不喜欢)四种类型,并派学生会会员进行市场调查,其中一名学生会会员小丽在校门口对上学学生进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图,请结合统计图所给信息解答下列问题:(1)在扇形统计图中C所占的百分比是;小丽本次抽样调查的人数共有人;请将折线统计图补充完整;(2)为了解少数学生很不喜欢足球的原因,小丽决定在上述调查结果中从“很不喜欢”足球的学生里随机选出两位进行回访,请你用列表法或画树状图的方法,求所选出的两位学生恰好是一男一女的概率.26. (本题满分8分)如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴,B(2,0),tan∠AOB=,过点A的双曲线为,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的对应线段O'B'.(1)当点O'与点A重合时,求直线l的解析式:(2)当点B'落在双曲线上时,求出点P的坐标.27. (本题满分8分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)试判断BF与⊙O的位置关系,并说明理由;(2)若BF=5,cos∠C=,求⊙O的直径;(3)若cos∠F=,则.(直接填写结果)28. (本题满分9分)已知直角坐标系中菱形ABCD的位置如图所示,C.D两点的坐标分别为(4,0)、(0,3).现有两动点P、Q分别从A、C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为ts.(1)菱形ABCD的边长是,面积是,高BE的长是.(直接填写结果)(2)探究下列问题:①若点P的速度为1cm/s,点Q的速度为2 cm/s.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;②若点P的速度为1cm/s,点Q的速度变为kcm/s,在运动过程中,任何时刻都有相应的k 值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t =4s时的情形,并求出k的值.29. (本题满分10分)已知抛物线的顶点是C(0,m)(m>0,m为常数),并经过点(2m,2m),点D(0,2m)为一定点.(1)求抛物线的解析式;(用含字母m的代数式表示)(2)设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,试探究PD与PH的大小关系,并说明理由;(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且=,求m的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
2019 年江苏省苏州市高新区中考数学一模试卷一.选择题(共10 小题,满分30 分,每小题 3 分)1.五个新篮球的质量(单位:克)分别是 +5、﹣ 3.5 、+0.7 、﹣ 2.5 、﹣ 0.6 ,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣ 2.5B.﹣ 0.6C. +0.7D. +52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.我县人口约为 530060 人,用科学记数法可表示为()A. 53006×10 人B. 5.3006 ×105人C. 53× 104人D. 0.53 ×106 人4.下列图形是轴对称图形的有()A.2 个B.3个C.4 个D.5 个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、 B间的距离:先在AB外选一他点 C,然后测出AC, BC的中点 M、 N,并测量出MN的长为18m,由此他就知道了A、 B 间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB= 36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点 C顺时针旋转,点B的对应点为点E,点 A 的对应点为点D,当点 E 恰好落在边AC上时,连接AD,若∠ ACB=30°,则∠ DAC的度数是()A. 60°B. 65°C. 70°D. 75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24, 20, 19, 20, 22, 23, 20, 22.则这组数据中的众数和中位数分别是()A.22 个、 20 个B. 22 个、 21 个C.20 个、 21 个D.20 个、 22 个8.小李家距学校 3 千米,中午12 点他从家出发到学校,途中路过文具店买了些学习用品,12 点 50 分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t (分钟)之间的函数关系的是()A.B.C.D.9.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣ 2B.由a>b,得 | a| > | b|C.由>,得﹣ 2<﹣ 2D.由>,得a 2>2a b a b a b b10.已知:如图在直角坐标系中,有菱形OABC, A 点的坐标为(10,0),对角线OB、 AC相交于D 点,双曲y=(> 0)D点,交的延于E点,且? = 160,x BC OBAC点 E 的坐()A.( 5, 8)B.( 5, 10)C.( 4, 8)D.( 3, 10)二.填空(共8 小,分24 分,每小 3 分)11.函数y=中,自量 x 的取范是.12.已知x1,x2是一元二次方程2的两个数根,22.x 2x 5=0x1+x2+3x1x2=13.有 4 根木棒,度分2cm, 3cm, 4cm, 5cm,从中任 3 根,恰好能搭成一个三角形的概率是.14.已知a2+a 1= 0,a3+2a2+2018=.15.如,六形ABCDEF的六个角都是120°,AB= 1cm,BC= 3cm,CD= 3cm,DE=2cm,个六形的周是:.16.一按律排列的式子:,,,,⋯( a≠0),其中第10 个式子是.17.如,已知l 1∥2∥3,相两条平行直的距离相等.若等腰直角三角形的直l l ABC角点 C在 l 1上,另两个点A、 B 分在 l 3、 l 2上,tanα的是.18.已知二次函数y= ax2+2ax+3a2+3(其中 x 是自量),当 x≥2,y 随 x 的增大而减小,且 4≤x≤1 ,y的最大7,a的.三.解答(共10 小,分96 分)19.( 10 分)( 1)计算:(﹣1)(+1) +(﹣1)0﹣(﹣)﹣2.( 2)化简:.( 3)解方程:.20.( 8 分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.( 8 分)一艘轮船由南向北航行,如图,在 A 处测得小岛P 在北偏西15°方向上,两个小时后,轮船在B处测得小岛P 在北偏西30°方向上,在小岛周围18 海里内有暗礁,问若轮船按 20 海里 / 时的速度继续向北航行,有无触礁的危险?22.( 8 分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000 篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m< 70380.3870≤m< 80a0.3280≤m< 90b c90≤m≤ 100100.1合计1请根据以上信息,解决下列问题:( 1)征文比赛成绩频数分布表中 c 的值是;( 2)补全征文比赛成绩频数分布直方图;( 3)若 80 分以上(含80 分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.( 8 分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B, C表示这三个材料),将A, B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.( 1)小礼诵读《论语》的概率是;(直接写出答案)( 2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.( 8 分)已知:如图,在⊙O中,弦 CD垂直于直径AB,垂足为点E,如果∠ BAD=30°,且 BE=2,求弦 CD的长.25.( 9 分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边 AM、 AN分别交两条角平分线于点M、 N,联结MN.( 1)求证:△ABM∽△NDA;( 2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.( 10 分)某品每件成本10 元,段每件品的售价x(元)与品的日售量 y(件)之的关系如表:x/元⋯152025⋯y/件⋯252015⋯已知日售量y 是售价 x 的一次函数.(1)求日售量y(件)与每件品的售价x(元)之的函数表达式;(2)当每件品的售价定35 元,此每日的售利是多少元?27.( 13 分)如 1,在平面直角坐系中,一次函数y= 2x+8 的象与x,y分交于点 A,点 C,点 A 作 AB⊥ x ,垂足点 A,点 C作 CB⊥ y ,垂足点 C,两条垂相交于点 B.( 1)段,,的分=,=,=;AB BC AC AB BC AC( 2)折叠 1 中的△ABC,使点A与点C重合,再将折叠后的形展开,折痕DE交 AB于点D,交 AC于点 E,接 CD,如2.从下列、B 两中任一作答,我.AA:①求段AD的;②在 y 上,是否存在点P,使得△ APD等腰三角形?若存在,直接写出符合条件的所有点 P 的坐;若不存在,明理由.B:①求段DE的;②在坐平面内,是否存在点P(除点 B 外),使得以点A, P, C 点的三角形与△ABC全等?若存在,直接写出所有符合条件的点P的坐;若不存在,明理由.28.( 14 分)已知,抛物y= ax2+ax+b( a≠0)与直 y=2x+m有一个公共点M(1,0),且<.a b( 1)求b与a的关系式和抛物的点D坐(用 a 的代数式表示);( 2)直与抛物的另外一个交点N,求△ DMN的面与 a 的关系式;( 3)= 1 ,直y = 2x与抛物在第二象限交于点,点、关于原点称,将a G G H段 GH沿 y 向上平移 t 个位( t >0),若段 GH与抛物有两个不同的公共点,求 t 的取范.2019 年江苏省苏州市高新区文昌实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10 小题,满分30 分,每小题 3 分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5| =5, | ﹣ 3.5| = 3.5 , |+0.7|=0.7,|﹣ 2.5|= 2.5,|﹣0.6|=0.6,∵ 5> 3.5 >2.5 > 0.7 > 0.6 ,∴最接近标准的篮球的质量是﹣0.6 ,故选: B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图 A 是圆柱的展开图.故选: A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060 是 6 位数,∴10 的指数应是 5,故选: B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图( 2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图( 3)有二条对称轴,是轴对称图形,符合题意;图( 3)有五条对称轴,是轴对称图形,符合题意;图( 3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有 4 个.故选: C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA, CNB,∴MN∥ AB,MN= AB,∵MN=18m,∴ AB=36m,故A、B、D正确,故选: C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△ DEC,据此得∠ ACB=∠ DCE=30°、 AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△ DEC,则∠ ACB=∠ DCE=30°, AC= DC,∴∠ DAC===75°,故选: D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20 出现了 3 次,次数最多,故众数是20;把数据按从小到大的顺序排列:19, 20, 20, 20, 22, 22, 23, 24,处于这组数据中间位置的数20 和 22,那么由中位数的定义可知,这组数据的中位数是21.故选: C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家 3 千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家 3 千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上 C符合,故选: C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解: A、在不等式 a> b 的两边同时减去2,不等式仍成立,即a﹣2> b﹣2,故本选项错误;B、当 a>b>0时,不等式| a|>|b|成立,故本选项错误;C、在不等式 a> b 的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣ 2b成立,故本选项正确;、当a >> 0 时,不等式2>2成立,故本选项错误;D b a b故选: C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作 CF⊥ x 轴于点 F,由 OB?AC=160可求出菱形的面积,由 A 点的坐标为( 10, 0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于 D点可求出 D点坐标,用待定系数法可求出双曲线y=( x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出 E 点坐标即可.【解答】解:过点C作 CF⊥x 轴于点F,∵ ? =160,A 点的坐标为( 10, 0),OB AC∴ ? =?=×160= 80,菱形的边长为 10,OA CF OB AC OABC∴ CF===8,在 Rt △OCF中,∵ OC=10,CF=8,∴OF===6,∴ C(6,8),∵点 D是线段 AC的中点,∴ D点坐标为(,),即( 8, 4),∵双曲线 y=(x>0)经过D点,∴ 4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线 CB的解析式为y=8,∴,解得:,∴ E 点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8 小题,满分24 分,每小题 3 分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得: x≤2且 x≠﹣2,故答案为: x≤2且 x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不能为0;( 3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣22变形为( x1+x2),x1x2=﹣2,把 x1+x2 +3x1x22+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x+x=2,x x=﹣ 5,1212x 2+ 22x1+221+3 1 2=(2)+1 2 =2 +(﹣5)=﹣1.x x x x x x故答案为﹣ 1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0( a≠0)的两根时, x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从 4 根细木棒中任取 3 根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从 4 根细木棒中任取 3 根,有 2、 3、4;3、 4、5;2、 3、 5;2、 4、5,共 4 种取法,而能搭成一个三角形的有2、 3、 4; 3、 4、 5;2, 4, 5,3 种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣ a、 a2+a=1,∴a3+2a2+3,2= a?a +2(1﹣a) +2018,= a(1﹣ a)+2﹣2a+2020,= a﹣ a2﹣2a+2020,=﹣ a2﹣ a+2020,=﹣(2+ ) +2020,a a=﹣ 1+2020,= 2019 .故答案为: 2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形,并不是一规则的六边形,但六个角都是120°,所以通过适ABCDEF当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、 CD、EF的延长线和反向延长线使它们交于点G、H、 P.∵六边形 ABCDEF的六个角都是120°,∴六边形 ABCDEF的每一个外角的度数都是60°.∴△ APF、△ BGC、△ DHE、△ GHP都是等边三角形.∴GC= BC=3cm, DH= DE=2cm.∴GH=3+3+2=8cm,FA= PA= PG﹣ AB﹣ BG=8﹣1﹣3=4cm,EF= PH﹣ PF﹣ EH=8﹣4﹣2=2cm.∴六边形的周长为 1+3+3+2+4+2= 15cm.故答案: 15cm.【点】本考了等三角形的性及判定定理;解中巧妙地构造了等三角形,从而求得周.是非常完美的解方法,注意学并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是号,分子等于序号的平方,分母中a 的指数是:序号的 3 倍减去 1,据此即可求解.【解答】解:∵=( 1)1+1?,=( 1)2+1?,=( 1)3+1?,⋯第 10 个式子是( 1)10+1?=.故答案是:.【点】本主要考了式子的特征,正确理解式子的律是解的关.17.【分析】点A作AD⊥l1于D,点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠ BCE,然后利用“角角” 明△ ACD和△ CBE全等,根据全等三角形相等可得CD= BE,然后利用勾股定理列式求出AC,然后利用角的正切等于比列式算即可得解.【解答】解:如,点 A 作 AD⊥ l 1于 D,点 B 作 BE⊥ l 1于 E, l 1, l 2,l 3的距离1,∵∠ CAD+∠ACD=90°,∠BCE+∠ ACD=90°,∴∠ CAD=∠ BCE,在等腰直角△ABC中,AC=BC,在△ ACD和△ CBE中,,∴△ ACD≌△ CBE( AAS),∴CD= BE=1,∴DE=3,∴tan ∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时, y 随 x 的增大而减小,且﹣4≤x≤ 1 时,y的最大值为 7,可以判断a的正负,得到关于 a 的方程,从而可以求得 a 的值.【解答】解:∵二次函数y= ax2+2ax+3a2+3= a( x+1)2+3a2﹣ a+3,∴该函数的对称轴为直线x=﹣1,∵当 x≥2时, y 随 x 的增大而减小,且﹣4≤x≤ 1 时,y的最大值为7,∴a<0,当 x=﹣1时, y=7,∴7=a(x+1)2+3a2﹣a+3,解得, a1=﹣1, a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10 小题,满分96 分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣ 1+1﹣ 9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式= 3﹣ 1+1﹣ 9=﹣ 6;( 2)原式=+?=+=;( 4)x(x+2) +6(x﹣ 2)=(x﹣ 2)(x+2),x2+2x+6x﹣12= x2﹣4,x=1,经检验, x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x< 4在数轴上表示如下:所以,原不等式组的正整数解是1, 2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥ AB交 AB延长线于 D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作⊥交延长线于D 点,PD AB AB ∵∠ PBC=30°,∴∠ PAB=15°,∴∠=∠﹣∠=15°,APB PBC PAB∴PB=AB=20×2=40(海里),在 Rt △BPD中,∴PD= PB=20(海里),∵20> 18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据 1﹣0.38 ﹣ 0.32 ﹣ 0.1 ,即可得到 c 的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用 80 分以上(含 80 分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:( 1)1﹣ 0.38 ﹣ 0.32 ﹣ 0.1 = 0.2 ,故答案为: 0.2 ;(2) 10÷0.1 = 100,100× 0.32 = 32, 100× 0.2 = 20,补全征文比赛成绩频数分布直方图:( 3)全市获得一等奖征文的篇数为:1000 ×( 0.2+0.1 )= 300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9 种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.( 2)画树状图为:共有 9 种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件 A 或 B的结果数目m,然后利用概率公式计算事件A或事件 B 的概率.24.【分析】连接,设⊙O 的半径为r,则=﹣ 2,再根据圆周角定理得出∠= 60°,OD OE r DOE由直角三角形的性质可知OD=2OE,由此可得出 r 的长,在 Rt △OED中根据勾股定理求出DE的长,进而可得出结论.【解答】解:连接OD,设⊙ O的半径为 r ,则 OE= r ﹣2,∵∠ BAD=30°,∴∠ DOE=60°,∵CD⊥ AB,∴CD=2DE,∠ ODE=30°,∴OD=2OE,即 r =2( r ﹣2),解得 r =4;∴OE=4﹣2=2,∴DE===2,∴ CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD, BM、 DN分别是正方形的两个外角平分线,可证得∠ABM =∠ ADN=135°,又由∠ MAN=45°,可证得∠ BAM=∠ AND=45°﹣∠ DAN,即可证得△ ABM ∽△ NDA;( 2)由四边形BMND为矩形,可得BM=DN,然后由△ ABM∽△ NDA,根据相似三角形的对应22【解答】( 1)证明:∵四边形ABCD是正方形,∴∠ ABC=∠ ADC=∠ BAD=90°,∵BM、 DN分别是正方形的两个外角平分线,∴∠ ABM=∠ ADN=135°,∵∠ MAN=45°,∴∠ BAM=∠ AND=45°﹣∠ DAN,∴△ ABM∽△ NDA;( 2)解:∵四边形BMND为矩形,∴BM= DN,∵△ ABM∽△ NDA,∴=,2 2∴BM= AB,∴BM= AB,∴∠ BAM=∠ BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形 BMND为矩形时,△ ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y 与 x 的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;( 2)根据题意可以计算出当每件产品的销售价定为35 元时,此时每日的销售利润.【解答】解:( 1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y =kx +b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣ x+40;( 2)当每件产品的销售价定为35 元时,此时每日的销售利润是:(35﹣ 10)(﹣ 35+40)=25× 5=125(元),即当每件产品的销售价定为35 元时,此时每日的销售利润是125 元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】( 1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出 AC;(2)A、①利用折叠的性质得出BD= 8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠ APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与 x 轴, y 轴分别交于点A,点 C,∴A(4,0), C(0,8),∴OA=4,OC=8,∵AB⊥ x 轴, CB⊥ y 轴,∠ AOC=90°,∴四边形 OABC是矩形,∴ AB= OC=8, BC=OA=4,在 Rt △ABC中,根据勾股定理得,AC== 4,故答案为: 8, 4, 4;(2)A、①由( 1)知,BC= 4,AB=8,由折叠知, CD= AD,在 Rt △BCD中,BD=AB﹣AD= 8﹣AD,根据勾股定理得,222 CD= BC+BD,即:2= 16+( 8﹣)2,AD AD∴AD=5,②由①知, D(4,5),设 P(0,y),∵ A(4,0),2222∴ AP=16+y , DP=16+(y﹣5),∵△ APD为等腰三角形,∴Ⅰ、 AP=AD,∴16+y2= 25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、 AP= DP,∴16+y2= 16+(y﹣ 5)2,∴y=,∴P(0,),Ⅲ、 AD= DP,25=16+( y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由 A①知, AD=5,由折叠知, AE=AC=2,DE⊥AC于E,在 Rt △ADE中,DE==,②、∵以点A, P,C为顶点的三角形与△ABC全等,∴△ APC≌△ ABC,或△ CPA≌△ ABC,∴∠ APC=∠ ABC=90°,∵四边形 OABC是矩形,∴△ ACO≌△ CAB,此时,符合条件,点P 和点 O重合,即: P(0,0),如图 3,过点 O作 ON⊥ AC于 N,易证,△ AON∽△ ACO,∴,∴,∴AN=,过点 N作 NH⊥ OA,∴NH∥ OA,∴△ ANH∽△ ACO,∴,∴,∴NH=, AH=,∴OH=,∴N(,),∴P2(,),同理:点 B 关于 AC的对称点 P1,同上的方法得,P1(﹣,),即:满足条件的点P 的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到 b 与 a 的关系,可用 a 表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;( 2)把点M( 1, 0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于 x 的一元二次方程,可求得另一交点N的坐标,根据a< b,判断 a<0,确定 D、M、 N的位置,画图1,根据面积和可得△ DMN的面积即可;( 3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当与抛物线只GH有一个公共点时, t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段 GH 与抛物线有两个不同的公共点时t 的取值范围.【解答】解:(1)∵抛物线y =ax2++ 有一个公共点( 1, 0),ax b M∴ a+a+b=0,即 b=﹣2a,∴ y= ax2+ax+b= ax2+ax﹣2a= a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴ 0= 2× 1+m,解得m=﹣ 2,∴ y=2x﹣2,则,2得 ax +( a﹣2) x﹣2a+2=0,解得 x=1或 x=﹣2,∴ N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴ a<0,如图 1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴ E(﹣,﹣3),∵M(1,0), N(﹣2,﹣6),设△ DMN的面积为 S,∴ =S+S=| (﹣2)﹣ 1| ?| ﹣﹣(﹣ 3)| =,△DEN△ DEM( 3)当a=﹣ 1 时,抛物线的解析式为:y=﹣ x2﹣x+2=﹣( x+)2+,有,﹣x2﹣ x+2=﹣2x,解得: x1=2, x2=﹣1,∴ G(﹣1,2),∵点G、H关于原点对称,∴ H(1,﹣2),设直线 GH平移后的解析式为:y=﹣2x+t ,﹣x2﹣ x+2=﹣2x+t ,x2﹣ x﹣2+t =0,△= 1﹣ 4(t﹣ 2)= 0,t =,当点 H平移后落在抛物线上时,坐标为(1, 0),把( 1, 0)代入y=﹣ 2x+t,t= 2,∴当线段与抛物线有两个不同的公共点,t 的取值范围是2≤<.GH t【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到 b 与 a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2019年江苏省苏州市高新区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )A.﹣2.5B.﹣0.6C.+0.7D.+52.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为( )A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是( )A.AB=36m B.MN∥AB C.MN=CB D.CM=AC6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60°B.65°C.70°D.75°7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是( )A.22个、20个B.22个、21个C.20个、21个D.20个、22个8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是( )A.B.C.D.9.下列不等式变形正确的是( )A.由a>b,得a﹣2<b﹣2B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b210.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为( )A.(5,8)B.(5,10)C.(4,8)D.(3,10)二.填空题(共8小题,满分24分,每小题3分)11.函数y=中,自变量x的取值范围是 .12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2= .13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是 .14.已知a2+a﹣1=0,则a3+2a2+2018= .15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是: .16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是 .17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是 .18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为 .三.解答题(共10小题,满分96分)19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.(2)化简:.(3)解方程:.20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70380.3870≤m<80a0.3280≤m<90b c90≤m≤100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是 ;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.(1)求证:△ABM∽△NDA;(2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC 于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择 题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2019年江苏省苏州市高新区文昌实验中学中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.【解答】解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.【解答】解:∵小李距家3千米,∴离家的距离随着时间的增大而增大,∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C符合,故选:C.【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.9.【分析】根据不等式的性质进行分析判断.【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.【点评】考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF===8,在Rt△OCF中,∵OC=10,CF=8,∴OF===6,∴C(6,8),∵点D是线段AC的中点,∴D点坐标为(,),即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),∵CF=8,∴直线CB的解析式为y=8,∴,解得:,∴E点坐标为(4,8).【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.【解答】解:∵a2+a﹣1=0,∴a2=1﹣a、a2+a=1,∴a3+2a2+3,=a•a2+2(1﹣a)+2018,=a(1﹣a)+2﹣2a+2020,=a﹣a2﹣2a+2020,=﹣a2﹣a+2020,=﹣(a2+a)+2020,=﹣1+2020,=2019.故答案为:2019.【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴GC=BC=3cm,DH=DE=2cm.∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.∴六边形的周长为1+3+3+2+4+2=15cm.故答案为:15cm.【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.【解答】解:∵=(﹣1)1+1•,﹣=(﹣1)2+1•,=(﹣1)3+1•,…第10个式子是(﹣1)10+1•=.故答案是:.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.三.解答题(共10小题,满分96分)19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;(2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;(3)先去分母得到整式方程,再解整式方程,然后检验即可.【解答】解:(1)原式=3﹣1+1﹣9=﹣6;(2)原式=+•=+=;(4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),x2+2x+6x﹣12=x2﹣4,x=1,经检验,x=1是原方程的解.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.【解答】解:解不等式①,得x<4,解不等式②,得x≥﹣2,所以,原不等式组的解集是﹣2≤x<4在数轴上表示如下:所以,原不等式组的正整数解是1,2,3.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为:0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE的长,进而可得出结论.【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,∵∠BAD=30°,∴∠DOE=60°,∵CD⊥AB,∴CD=2DE,∠ODE=30°,∴OD=2OE,即r=2(r﹣2),解得r=4;∴OE=4﹣2=2,∴DE===2,∴CD=2DE=4.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;(2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:∵四边形BMND为矩形,∴BM=DN,∵△ABM∽△NDA,∴=,∴BM2=AB2,∴BM=AB,∴∠BAM=∠BMA==22.5°.【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。