浙江省杭州市萧山九中高一数学寒假作业试题(一)新人教A版
- 格式:doc
- 大小:377.00 KB
- 文档页数:5
萧山九中寒假作业(一)高二(理) 数学学科一、选择题(1)下列命题为真命题的是( )(A )平行于同一平面的两条直线平行 (B )垂直于同一平面的两条直线平行 (C )与某一平面成等角的两条直线平行 (D )垂直于同一直线的两条直线平行 (2)若一个角的两边分别和另一个角的两边平行,那么这两个角( )(A )相等 (B )互补 (C )相等或互补 (D )无法确定 (3)正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积为( )(A (B(C (D (4)已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )(A )2对 (B )3对 (C )4对 (D )5对(5)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )(A )2 (B )12+ (C )22+ (D )1(6)点P(x,y)在直线x+y-4=0上,O 是坐标原点,则│OP │的最小值是( ) (A )7 (B ) 6 (C )2 2 (D ) 5(7)直线L 1:ax+3y+1=0, L 2:2x+(a+1)y+1=0, 若L 1∥L 2,则a=( ) A .-3 B .2 C .-3或2 D .3或-2(8)过点P (4,-1)且与直线3x -4y +6=0垂直的直线方程是( )(A )4x +3y -13=0 (B )4x -3y -19=0 (C )3x -4y -16=0 (D )3x +4y -8=0 (9)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )(A )2 (B )22- (C )12- (D )1+2 (10)若圆1)2()2(:221=-++y x C ,16)5()2(:222=-+-y x C ,则1C 和2C 的位置关系是( )(A )外离 (B )相交 (C )内切 (D )外切 二、填空题(11)底面直径和高都是4cm 的圆柱的侧面积为 cm 2. (12)若两个球的表面积之比是4∶9,则它们的体积之比是 .(13)图①中的三视图表示的实物为_____________;图②为长方体积木块堆成的几何体的三视图,此几何体共由_______块木块堆成.(14)直线33+=x y 的倾斜角的大小为 .(15)方程03=-+y kx 所确定的直线必经过的定点坐标是 .(16)设M 是圆9)3()5(22=-+-y x 上的点,则M 到直线0243=-+y x 的最长距离是 . 三、解答题(17)如图,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)PA ∥平面BDE ;(Ⅱ)平面PAC ⊥平面BDE .(18)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.(Ⅰ)求该圆台的母线长; (Ⅱ)求该圆台的体积.(19)已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点.图①正视图 左视图 俯视图(Ⅰ)求AB 边所在的直线方程; (Ⅱ)求中线AM 的长.(20))一圆与y 轴相切,圆心在直线03=-y x 上,在x y =上截得的弦长为72,求此圆的方程.(21)为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC 的草坪,且PQ ∥BC,RQ ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m .(1) 求直线EF 的方程(4 分 ).(2) 应如何设计才能使草坪的占地面积最大?萧山九中寒假作业(二)高二(理) 数学学科一、选择题1、命题:“若12<x ,则11<<-x ”的逆否命题是( )A.若12≥x ,则11-≤≥x x ,或 B.若11<<-x ,则12<x C.若11-<>x x ,或,则12>x D.若11-≤≥x x ,或,则12≥x 2.抛物线281x y -=的准线方程是( )A . 321=x B . 2=y C . 321=y D . 2-=y 3.设命题甲为:05x <<,命题乙为23x -<,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件4.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若⊿AB 2F 是正三角形,则这个椭圆的离心率为( )A.3 B.3 C.2 D.25.已知(1,1,),(1,,1)t t t t =+=-a b ,则||-a b 的最小值为( )ABC .2D .46.过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB =( )A. 6B. 8C. 9D. 107. 在直角坐标系中,)3,2(-A ,)2,3(-B 沿x 轴把直角坐标系折成0120的二面角,则此时线段AB 的长度为( )A .52B .112C . 25D .248.正方体A-C 1中,棱长为1,M 在棱AB 上,AM=1/3,P 是面ABCD 上的动点,P 到线A 1D 1的距离与P 到点M 的距离平方差为1,则P 点的轨迹以下哪条曲线上? ( ) A .圆 B. 椭圆 C.双曲线 D.抛物线二、填空题9.若方程11222=-+-k y k x 表示的图形是双曲线,则k 的取值范围为 . 10.已知空间三点的坐标为)2,5,1(-A ,)1,4,2(B ,)2,3,(+q p C ,若A 、B 、C 三点共线,则=+q p 。
高一数学寒假作业(人教A版必修一)集合的概念与运算1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( )A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}【答案】 B2.设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}【解析】由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.【答案】 B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}【解析】U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.【答案】 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ).A.2 B.3 C.4 D.5【解析】B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.【答案】 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【解析】若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.【答案】 A6.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}【解析】 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2].【答案】 B7.已知集合M ={x|(x -1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】 A8.若集合A ={x|x 2-2x -16≤0},B ={y|C 5y≤5},则A∩B 中元素个数为( )A .1个B .2个C .3个D .4个 【答案】 D【解析】 A =[1-17,1+17],B ={0,1,4,5},∴A∩B 中有4个元素.故选D.9.若集合M ={0,1,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y∈M},则N 中元素的个数为( )A .9B .6C .4D .2 【答案】 C【解析】 N ={(x ,y)|-1≤x-2y≤1,x ,y∈M},则N 中元素有:(0,0),(1,0),(1,1),(2,1).10.已知集合A ={1,3,zi}(其中i 为虚数单位),B ={4},A∪B=A ,则复数z 的共轭复数为( )A .-2iB .2iC .-4iD .4i 【答案】 D【解析】 由A∪B=A ,可知B ⊆A ,所以zi =4,则z =4i=-4i ,所以z 的共轭复数为4i ,故选D. 11.设集合M ={y|y =2sinx ,x∈[-5,5]},N ={x|y =log 2(x -1)},则M∩N=( )A .{x|1<x≤5}B .{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}【答案】 D【解析】∵M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.12.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】 D13.已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )A.∅B.{0}C.{-1,1} D.{-1,0,1}【答案】 C【解析】∵A∩B={0},A∪B={-1,0,1},∴∁A∪B(A∩B)={-1,1}.14.已知P={x|4x-x2≥0},则集合P∩N中的元素个数是( )A.3 B.4C.5 D.6【答案】 C【解析】因为P={x|4x-x2≥0}={x|0≤x≤4},且N是自然数集,所以集合P∩N中元素的个数是5,故选C.15.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.【解析】∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.【答案】 116.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.【解析】 若a =4,则a2=16∉(A∪B),所以a =4不符合要求,若a2=4,则a =±2,又-2∉(A∪B),∴a =2.【答案】 217.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.【答案】 ②18.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.【解析】 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.【答案】 819.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎪⎨⎪⎧ -a =-1+3=2,b = -1 ×3=-3,∴a =-2,b =-3.20.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.21.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .∴1a =3或1a =5,即a =13或a =15, ∴C =⎩⎨⎧⎭⎬⎫0,13,15. 22.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B={9},求A∪B.解 由9∈A,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B={9}满足题意,故A∪B={-7,-4,-8,4,9}; 当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A∪B={-8,-4,4,-7,9}.23.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈A∩B; (2){9}=A∩B .【答案】(1)a=5或a=-3 (2)a=-3【解析】(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a=-3.讲评9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.24.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,试求实数m的值.【答案】m=1或m=22};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或2.。
萧山九中寒假作业高一 数学学科一、选择题(每小题4分,共40分)1.已知集合{}{}M=1,1,N=21x x --<<,则M N =( )A .{}1,1-B .{}0C .{}1-D .{}1,0-2.函数y =( )A .()3,+∞B .[)3,+∞C .()4,+∞D .[)4,+∞ 3.下列等式一定成立的是( )A .2331a a ⋅=aB .2121a a⋅-=0C .(a 3)2=a9D .613121a a a =÷4.设()f x 是R 上的偶函数,且当()0,x ∈+∞时,()(1f x x =,则当(),0x ∈-∞时,()f x 等于A .(1x +B . (1x -+C . (1x -D . (1x -( )5.设()()()538210,2f x x ax bx f f =++--=且则等于( )A .10B .10-C .18-D .26-6.设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( )A .2{|1}a a <≤B .{|}2a a ≥C .3|}2{a a ≤≤D .{2,3}7.三个数0.760.76,0.7,log 6的大小关系为 ( ) A . 60.70.70.7log 66<<B . 60.70.70.76log 6<<C . 0.760.7log 660.7<<D .60.70.7log 60.76<<8.在区间上为增函数的是 ( ) A .()12log y x =-- B .1x y x =- C .()21y x =-+ D .21y x =+9.设函数()24x f x x =+-,则方程()0f x =一定存在根的区间是 ( ) A . ()1,1-B .()0,1C .()1,2D .()2,310.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为( ) A .12 B .13 C .14 D .15二、填空题(每小题4分,共20分)11.若103,104x y ==,,则210x y -= . 12.设{}{}{}1,2,3,4,5,6,7,8,3,4,5,4,7,8U A B ===,则()()U U C A C B = .13.函数222()(1)(2)(23)f x x x x x =-+--的零点个数是 . 14.函数的定义域是 .15.()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-()()5f f = .三、解答题(每小题10分,共40分)16.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,求()()()3f f f -.17.求函数11142xxy ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在[]3,2x ∈-上的值域18.已知函数()311221x f x x ⎛⎫=+ ⎪-⎝⎭。
高一寒假作业9(答案解析)一、选择题1.已知点(A ,(B -,则直线AB 的倾斜角是( ) A .60︒B .120︒C .30︒D .150︒2.已知0m ≠,若直线20mx y m ++=与直线()3170mx m y +-+=平行,则m 的值为( ) A .6B .7C .8D .93.直线340x y k -+=在两坐标轴上截距之和为2,则k 为( ) A .24B .12C .10D .24-4.直线()12230a x y --+=与直线320x y a ++=垂直,则实数a 的值为( ) A .52-B .72C .56D .165.直线l 过点()1,2P ,且()2,3A ,()4,5B -到l 的距离相等,则直线l 的方程是( ) A .460x y +-=B .460x y +-=C .3270x y +-=或460x y +-=D .2370x y +-=或460x y +-=6.直线()2610kx y k k +-+=∈R 经过定点P ,则点P 为( ) A .()1,3B .()3,1C .()1,3--D .()3,1-7.如下图,在同一直角坐标系中表示直线y ax =与y x a =+,正确的是( )A .B .C .D .8.斜率k 的变化范围是⎡-⎣,则其倾斜角的变化范围是( )A .π,πππ43k k ⎡⎤-++⎢⎥⎣⎦B .3π,4π⎡⎤-⎢⎥⎣⎦C .3π,34π⎡⎤--⎢⎥⎣⎦D .3π0π,,π34⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭9.已知点()1,2A ,()3,1B ,则线段AB 的垂直平分线的方程是( ) A .425x y +=B .425x y -=C .25x y +=D .25x y -=10.若动点()111,p x y ,()222,p x y 分别在直线1:50l x y --=,2:150l x y --=上移动,则12P P 的中点P 到原点的距离的最小值是( )A .BC .D 11.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称为欧拉线,已知ABC △的顶点()2,0A ,()0,4B ,若其欧拉线方程为20x y -+=,则顶点C 的坐标为( ) A .()0,4-B .()4,0-C .()4,0或()4,0-D .()4,012.如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则ABC △的边长是( )A .BC D二、填空题13.已知过点)A的直线l 倾斜角为π2,则直线l 的方程为_________. 14.与两平行直线1:390l x y -+=,23:30l x y --=等距离的直线方程为_____________. 15.已知直线l 的斜率为1,与两坐标轴围成三角形的面积为4,则直线l 的方程为________.16.在平面直角坐标系中,已知()2,2A ,()1B -,若过点()1,1P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是____________.三、解答题17.(1)求两条平行直线3460x y +-=与840ax y +-=间的距离; (2)求两条垂直的直线280x my +-=和210x y -+=的交点坐标.18.已知ABC △的顶点()3,1A -,AB 边上的中线所在直线方程为610590x y +-=,B ∠的平分线所在直线方程为4100x y -+=,求BC 边所在直线的方程.高一寒假作业9(答案解析)一、选择题 1.【答案】B【解析】因为(A ,(B -,根据斜率公式可得k ==设直线的倾斜角为(),0180αα︒≤<︒,所以tan α=,解得120α=︒,故选B .2.【答案】B【解析】直线的斜率显然存在,因此由题意有3172m m m m-=≠,解得7m =.故选B . 3.【答案】D【解析】因为直线的方程为340x y k -+=,令0x =,可得4ky =,令0y =, 可得3k x =-,故直线在两坐标轴上的截距之和为243k k-=,解得24k =-.故选D .4.【答案】D【解析】∵直线()12230a x y --+=与直线320x y a ++=垂直, ∴()31220a --=,∴16a =,故选D . 5.【答案】C【解析】设所求直线为l ,由条件可知直线l 平行于直线AB 或过线段AB 的中点, ①AB 的斜率为35424+=--,当直线l AB ∥时,l 的方程是()241y x -=--, 即460x y +-=;②当直线l 经过线段AB 的中点()3,1-时,l 的斜率为213132+=--, l 的方程是()3212y x -=--,即3270x y +-=, 故所求直线的方程为3270x y +-=或460x y +-=,故选C . 6.【答案】D【解析】直线()2610kx y k k +-+=∈R 的方程可化为()123y k x +=--, 当3x =,1y =-时方程恒成立,∴直线过定点()3,1-,故选D . 7.【答案】A【解析】逐一考查所给的函数图像:对于选项A ,y ax =过坐标原点,则0a <,直线y x a =+在y 轴的截距应该小于零, 题中图像符合题意;对于选项C ,y ax =过坐标原点,则0a >,直线y x a =+在y 轴的截距应该大于零, 题中图像不合题意;y ax =过坐标原点,直线y x a =+的倾斜角为锐角,题中BD 选项中图像不合题意;本题选择A 选项. 8.【答案】D【解析】设直线的倾斜角为θ,则[)0,πθ∈,由斜率的定义可得:1tan θ-≤≤据此求解三角不等式可得倾斜角的变化范围是3π0π,,π34⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭,本题选择D 选项. 9.【答案】B【解析】由斜率公式可得211132AB k -==--, 由中点坐标公式可得AB 的中点坐标为1321,22M ++⎛⎫ ⎪⎝⎭,即32,2M ⎛⎫⎪⎝⎭, 据此可得线段AB 的垂直平分线的方程是()3222y x -=-, 整理可得425x y -=,本题选择B 选项. 10.【答案】A【解析】因为12l l ∥,所以12P P 的中点P 轨迹为直线:15502x y +--=,即100x y --=, 因此P=A .11.【答案】B【解析】设C 坐标(),x y ,所以重心坐标为24,33x y ++⎛⎫⎪⎝⎭,因此2+42033x y +-+=,40x y ∴-+=,从而顶点C 的坐标可以为()4,0-,故选B .12.【答案】D 【解析】设AC 与直线2l 交于点D .作2AE l ⊥于E ,BG AC ⊥于G ,2CF l ⊥于F . 设AD x =,则可得3AC x =,于是2xDG =,3BG x = 由题意得BDG CDF Rt Rt △∽△,∴BG DGCF DF=,即222xDF =,解得DF =,∴DE在ADE Rt △中,可得222228127AD AE DE =+=+=,∴AD ==,∴正ABC △的边长33AC AD ==,故选D .二、填空题 13.【答案】x =【解析】因为直线l 倾斜角为π2,直线l 的斜率不存在,又因为直线过点)A,∴直线方程为x =x =14.【答案】330x y -+=【解析】设与直线1:390l x y -+=,23:30l x y --=等距离的直线l 的方程为30x y c -+=,则93c c -=--,解得3c =,∴直线l 的方程为330x y -+=. 15.【答案】y x =±【解析】设直线方程为1x y a a -=,两坐标轴围成三角形的面积为2142a =,解得a =±y x =± 16.【答案】([),1,-∞+∞【解析】如图可得12112PA K --==--,PB K == 所以直线l斜率的取值范围是([),1,-∞+∞.三、解答题 17.【答案】(1)45;(2)()3,2. 【解析】(1)由84346a -=≠-,得6a =, 两条直线的方程分别为3460x y +-=,6840x y +-=,即3420x y +-=,45=. (2)由220m -=,得1m =,由280210x y x y +-=-+=⎧⎨⎩,得32x y =⎧⎨⎩=, 所以交点坐标为()3,2. 18.【答案】29650x y +-=.【解析】设点B 的坐标为()11410,y y -,则AB 的中点坐标为 ∵AB 的中点在直线610590x y +-=上,∴ 解得15y =,∴()10,5B .设点A 关于直线4100x y -+=的对称点为(),A x y ''',,解得17x y ''==⎧⎨⎩,即()1,7A '.又BC 边所在的直线经过点A ',B ,∴BC边所在直线的方程为整理得29650+-=.x y。
【高一】2021学年高一数学寒假作业试题及答案【导语】数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
逍遥右脑准备了高一数学寒假作业试题及答案,具体请看以下内容。
一、多项选择题1.对于集合a,b,“ab”不成立的含义是( )a、 B是a的子集b.a中的元素都不是b的元素c、 a中至少有一个元素不属于Bd.b中至少有一个元素不属于a[答:]C[解析] “ab”成立的含义是集合a中的任何一个元素都是b的元素.不成立的含义是a中至少有一个元素不属于b,故选c.2.如果设置M=x<6,a=35,则以下结论是正确的()a.a?mb.a?mc、a∈md.am[答案] a[分析]∵ a=35<36=6,即a<6,∴a∈x,∴A.∈M∴A.M[点拨] 描述法表示集合时,大括号内的代表元素和竖线后的制约条件中的代表形式与所运用的符号无关,如集合a=x>1=by,但是集合m=y=x2+1,x∈r和n=y的意思就不一样了,前者和后者有本质的区别.3.以下四组中,空集为()a.0b.x>8,且x<5c、x∈nd。
x> 四,[答案] b[parse]选项a、C和d都包含元素选项B没有元素,所以选择B4.设集合a=x,b=x=2k-1,k∈z,则集合a,b间的关系为( )a、 a=bb。
A.Bc.b?ad.以上都不对[答:]a[解析] a、b中的元素显然都是奇数,a、b都是有所有等数构成的集合.故a=b.选a.【研究】如果基于这个问题的绩效变成K怎么办∈ N答案是B,你知道吗?5.已知集合a=ax2+2x+a=0,a∈r,若集合a有且只有2个子集,则a的取值是( )a、 1b.-一c.0,1d.-1,0,1[答:]d[解析] ∵集合a有且仅有2个子集,∴a仅有一个元素,即方程ax2+2x+a=0(a∈r)仅有一个根.当a=0时,方程变为2x=0,∴x=0,此时a=0,符合题意.当≠ 0,δ=22-4aa=0,即A2=1,a=±1此时a=-1,或a=1,符合题意.A=0或A=±16.设集合p=x,集合q=(x,y)y=x2},则p,q的关系是( )a、 pqb。
高一数学寒假作业(1)一、 选择题,每小题只有一项是正确的。
1.下列关系中正确的个数为( ); ①R ∈21 ②Q ∉2 ③*|3|N ∉- ④Q ∈-|3|A .1 个B .2 个C .3 个D .4 个2.设集合A={x |-1≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )A .[0,2]B .[1,2]C .[0,4]D .[1,4]3.已知312.01.0)2(,)22(,2.1-===c b a ,则c b a ,,的大小关系是( ) A.c b a >> B .c a b >> C.a c b >> D .b a c >>4.对于任意实数a ,下列等式一定成立的是( )A .a a =33B . a a -=33C .a a =44D .a a -=445.下列各组函数中,表示同一函数的是 ( )A .xxy y ==,1 B .y y ==C .21,11x y y x x -==+- D . ||,y x y == 6.已知()f x 是R 上的奇函数,且当(],0x ∈-∞时,()lg(3)f x x x =--,那么(1)f 的值为( )A .0B .lg 3C .lg 3-D .lg 4-7.若函数()y f x =是函数()1x y a a a =>≠0,且的反函数,且()42f =-,则()f x =( )A .x 21B .x 21logC .x 2logD .2x8.下列函数中既是偶函数,又在区间(0,1)上是减函数的是A .||y x =B .2y x =-C .x x y e e -=+D .cos y x =9.若定义运算错误!未找到引用源。
,则函数错误!未找到引用源。
的值域是( )A .[1,+∞)B .(0,+∞)C .(-∞,+∞)D .(0,1]二、填空题10.A ={1,2},B ={2,3},则A ∪B = ______________.11.集合{}{}1,062-==<--=x y x B x x x A ,则A B ⋂=_____________12.已知上有两个不同的零点,则m 的取值范围是________.13.给出下列四个命题:①函数1y x=-在R 上单调递增;②若函数221y x ax =++在(,1]-∞-上单调递减,则1a ≤;③若0.70.7log (2)log (1)m m <-,则1m >-;④若()f x 是定义在R 上的奇函数,则(1)(1)0f x f x -+-=. 其中正确的序号是 .三、计算题14.(12分) 集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A ∩B =A ∪B ,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.15. 已知函数22()log (1)log (1)f x x x =--+(1)求函数()f x 的定义域;(2)求1111()()()()2014201520142015f f f f ++-+-的值. 16.已知函数()f x 是定义在()0,+∞上的函数,且对于任意的实数,x y 有()()()f xy f x f y =+,当1x >时,()0f x >.(1)求证:()f x 在()0,+∞上是增函数(2)若(2)1f =,对任意的实数t ,不等式22(1)(1)2f t f t kt +--+≤恒成立,求实数k 的取值范围。
【高一】高一数学上册寒假练习题(带答案)高一数学寒假作业六一.(每小题3分,共计30分)1.圆心在轴上,半径为1,且过点(1,2)的圆的方程为()A. B.C. D.2.已知全集 ,则等于(A)(B)(C)(D)3.三个数 ,则的大小关系是()4.已知函数 ,则()A.3B.2C. 1D. 05.下列函数中,在区间(0,1)上是增函数的是()6.为了得到函数的图象,可以把函数的图象()(A)向左平移1个单位长度(B)向右平移1个单位长度(C)向左平移3个单位长度(D)向右平移3个单位长度7.当a>1时,同一直角坐标系中,函数y=a-x,y=logax的图象是y y y y1 1 1 1O 1 x O 1 x O 1 x O 1 xA. B. C. D.8.函数.若在上存在 ,使得 ,则实数的取值范围是()A. B.C. D.9.如图8-25,在三棱柱的侧棱A1A和B1B上各有一动点P,Q,且满足A1P=BQ,过P.Q.C三点的截面把棱柱分成两部分,则其体积之比为()A.3∶1B.2∶1C.4∶1D.∶110.如图8-26,下列四个平面形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个立方体的图形是()二.题(每小题4分,共计24分)13. ,则;14.若a>0,且a≠1,函数的图象必过定点;15.函数的定义域是;16.已知函数① ;② ;③ ;④同时具有性质:(1)图象过点(0,1)(2)在区间上是减函数;(3)是偶函数的函数是(填正确序号): .三.解答题:(共46分,其中17题10分,其他各题12分)解答题应写出文字说明.证明过程或演算步骤.17. 已知(1)求定义域;(2)求单调区间(3)求最大值,并求取最大值时x的值18.已知函数f (x )的定义域为 [-2,2],函数g (x ) = f (x -1)-f (3-2x )(1)求函数g (x )的定义域;(2)若函数f (x )在定义域上单调递减,求不等式g (x )<0的解集.19.已知曲线C:x2+y2-2x-4y+m=0(1)当m为何值时,曲线C表示圆;(2)若曲线C与直线x+2y-4=0交于M.N两点,且OM⊥ON(O为坐标原点),求m的值.20.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①.②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.高一数学寒假作业六参考答案一、(每小题3分,共计30分)1-5 ACADA 6-10 BABBC二.题(每小题4分,共计24分)13. 14.(2,-1) 15.[-1,2) 16.(2)三.解答题:(共46分,其中17题10分,其他各题12分)解答题应写出文字说明.证明过程或演算步骤.17.(1)定义域(-1,3)(2)增区间(-1,1],减区间[1,3)(3)当x=1时,y取最大值为118解:(1). 解得:所以,函数定义域为: .(2).由g(x)<0,即:因为f(x)为减函数,所以得不等式的解集为: .19.已知曲线C:x2+y2-2x-4y+m=0(1)当m为何值时,曲线C表示圆;(2)若曲线C与直线x+2y-4=0交于M.N两点,且OM⊥ON(O为坐标原点),求m的值..解(1)由D2+E2-4F=4+16-4m=20-4m>0,得m<5.(2)设M(x1,y1),N(x2,y2),由OM⊥ON得x1x2+ y1y2=0.将直线方程x+2y-4=0与曲线C:x2+y2-2x-4y+m=0联立并消去y得5x2-8x+4m-16=0,由韦达定理得x1+x2= ①,x1x2= ②,又由x+2y-4=0得y= (4-x), ∴x1x2+y1y2=x1x2+ (4-x1)? (4-x2)= x1x2-( x1+x2)+4=0.将①.②代入得m= .20.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①.②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.感谢您的阅读,祝您生活愉快。
高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。
杭州钱江学校高一数学寒假作业检测(答案在最后)一、单选题:本题共8小题,每小题5分,共40分.每小题给出的选项中,只有一项是符合题目要求.1.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆ ,则实数m 的取值范围为()A.{}|21m m -≤≤ B.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C.1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D.11|24m m ⎧⎫-≤≤⎨⎬⎩⎭【答案】B 【解析】【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论.【详解】由题意,A ∪B ={x |﹣1<x <2},∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0;②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1,综上所述,12-≤m ≤1,故选:B .【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.2.三角函数值1sin ,2sin ,3sin 的大小顺序是A.123sin sin sin >> B.213sin sin sin >>C.132sin sin sin >> D.3 2 1sin sin sin >>【答案】B 【解析】【分析】先估计弧度角的大小,再借助诱导公式转化到090θ<< 上的正弦值,借助正弦函数在090θ<< 的单调性比较大小.【详解】解:∵1弧度≈57°,2弧度≈114°,3弧度≈171°.∴sin 1≈sin 57°,sin 2≈sin 114°=sin 66°.sin 3≈171°=sin 9°∵y =sin x 在090θ<< 上是增函数,∴sin 9°<sin 57°<sin 66°,即sin 2>sin 1>sin 3.故选B .【点睛】本题考查了正弦函数的单调性及弧度角的大小估值,是基础题.3.设a =log 54,b =(log 53)2,c =log 45,则()A.a <c <b B.b <c <aC.a <b <cD.b <a <c【答案】D 【解析】【详解】∵a =log 54<log 55=1,b =(log 53)2<(log 55)2=1,c =log 45>log 44=1,所以c 最大单调增,所以又因为所以b<a 所以b<a<c.故选D .4.已知函数74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭y x x 的图象与直线y m =有三个交点的横坐标分别为()123123,,x x x x x x <<,那么1232x x x ++的值是()A.34πB.4π3 C.5π3D.3π2【答案】C 【解析】【分析】先作出74sin 20,66ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭y x x 的图像,结合图像利用对称性即可求得结果.【详解】先作出函数74sin 20,66y x x ππ⎛⎫⎛⎫⎡⎤=+∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭的图象,如图,令4sin 246y x π⎛⎫=+=± ⎪⎝⎭,可得6x π=和23x π=,所以由对称性可得1223242,26333x x x x ππππ+=⨯=+=⨯=,故123523x x x π++=,故选:C.5.设(),0,παβ∈,()5sin 13αβ+=,1tan 22α=,则cos β的值是()A.1665-B.1665C.3365- D.3365【答案】A 【解析】【分析】根据半角公式得出α的正切值,继而得出其正弦值和余弦值,再根据α的取值范围和题意判断出π,π2αβ⎛⎫+∈ ⎪⎝⎭,并得出αβ+的余弦值,最后根据恒等变换公式计算[]cos cos ()βαβα=+-即可.【详解】22tan142tan tan 12231tan 2αααα=⇒==>- ,因为(),0,παβ∈,ππ,42α⎛⎫∴∈ ⎪⎝⎭,且4sin cos 3αα=,又223sin cos 1cos 5ααα+=⇒=,得4sin 5α=.因为()0,πβ∈,则π3π,42αβ⎛⎫+∈⎪⎝⎭,又5sin()132αβ+=<,所以π,π2αβ⎛⎫+∈ ⎪⎝⎭,12cos()13αβ∴+=-,[]16cos cos ()cos()cos sin()sin 65βαβααβααβα=+-=+++=-.故选:A.6.设函数()2sin()f x x ωϕ=+,x R ∈,其中0ω>,||ϕπ<.若5()28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A.23ω=,12πϕ= B.23ω=,12ϕ11π=-C.13ω=,24ϕ11π=- D.13ω=,724πϕ=【答案】A 【解析】【详解】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕπ<得12πϕ=,故选A.【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.7.设()|31|x f x =-,c b a <<且()()()f c f a f b >>,则下列关系中一定成立的是A .3c >3bB.3b >3aC.3c +3a >2D.3c +3a <2【答案】D 【解析】【分析】画出()|31|x f x =-的图象,利用数形结合,分析可得结果.【详解】作出()131xf x =-的图象,如图所示,要使c b a <<,且()()()f c f a f b >>成立,则有0c <且0a >,313c a ∴<<,()()13,31c a f c f a ∴=-=-,又()()f c f a >,1331c a ∴->-,即332a c +<,故选D.【点睛】通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.8.已知()f x 是偶函数,且()f x 在[0,)+∝上是增函数,若()()12f ax f x +≤-在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,则实数a 的取值范围是()A.[﹣2,1] B.[﹣5,0]C.[﹣5,1]D.[﹣2,0]【答案】D 【解析】【分析】利用函数的奇偶性和单调性,可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦恒成立,再分离参数利用函数单调性求最值即可求解【详解】由题意可得|ax +1|≤|x ﹣2|对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,得x ﹣2≤ax +1≤2﹣x 对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,从而3x a x -≥且1x a x -≤对112x ⎡⎤∈⎢⎥⎣⎦,恒成立,又3x y x -=单调递增∴a ≥﹣21xy x-=;单调递减,所以a ≤0,即a ∈[﹣2,0],故选D .【点睛】本题考查的是不等式、函数性质以及恒成立有关的综合类问题.在解答的过程当中充分体现了函数的性质、恒成立的思想以及问题转化的能力,属于中档题.二、多选题:本题共4小题,共20分.每小题给出的选项中,有多项符合题目要求.9.存在函数()f x 满足:对任意x ∈R 都有()A.()sin cos f x x =B.()sin sin 2f x x =C.()cos cos 2f x x =D.()sin sin 3f x x=【答案】CD 【解析】【分析】分别取0x =、x π=可得()01f =、()01f =-,A 错误;同理,取3x π=、23x π=可得(22f =、(22f =-,B 错误;利用三角恒等变换将cos 2x 整理为关于cos x 的二次函数可判断C ;同理可判断D.【详解】A :取0x =时,sin 0,cos 1x x ==,()01f =,取x π=时,sin 0,cos 1x x ==-,()01f =-,故A 不正确;B :取3x π=时,sin ,sin 222x x ==,(22f =,取23x π=时,sin ,sin 222x x ==-,(22f =-,故B 错误;C :()2cos cos 22cos 1f x x x ==-,令cos ,[1,1]t x t =∈-,则()221f t t =-,C 正确;D :()sin sin 3sin(2)sin 2cos cos 2sin f x x x x x x x x==+=+222sin (1sin )(12sin )sin x x x x=⨯-+-⨯3332sin 2sin sin 2sin 3sin 4sin x x x x x x=-+-=-令sin ,[1,1]t x t =∈-,则()334,[1,1]f t t t t =-∈-,D 正确.故选:CD10.下列不等式中,正确的是().A.13π13πtan tan 45< B.ππsincos 57⎛⎫<- ⎪⎝⎭C.ππsin 55> D.ππtan 55>【答案】BC 【解析】【分析】利用诱导公式及三角函数的单调性判断A 、B ,利用三角函数线证明当π02x <<时sin tan <<x x x ,即可判断C 、D.【详解】对于A :13πππtantan 3πtan 1444⎛⎫=+== ⎪⎝⎭,13π2π2πtantan 3πtan 0555⎛⎫=-=-< ⎪⎝⎭,所以13π13πtan tan 45>,故A 错误;对于B :因为ππππ7654<<<,且sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,所以1πππ2sin sin sin 26542=<<=,又πππcos cos cos 7762⎛⎫-=>= ⎪⎝⎭,所以ππsincos 57⎛⎫<- ⎪⎝⎭,故B 正确;对于C 、D :首先证明当π02x <<时sin tan <<x x x ,构造单位圆O ,如图所示:则()1,0A ,设π0,2POA x ⎛⎫∠=∈ ⎪⎝⎭,则()cos ,sin P x x ,过点A 作直线AT 垂直于x 轴,交OP 所在直线于点T ,由=tan ATx OA,得=tan AT x ,所以()1,tan T x ,由图可知OPA TOA OPA S S S << 扇形,即21111sin 11tan 222x x x ⨯⨯<⨯⨯<⨯⨯,即sin tan <<x x x π02x ⎛⎫<< ⎪⎝⎭,所以ππsin 55>,ππtan 55<,故C 正确,D 错误;故选:BC11.关于函数()|ln |2||f x x =-,下列描述正确的有()A.()f x 在区间(1,2)上单调递增B.()y f x =的图象关于直线2x =对称C.若1212,()(),x x f x f x ≠=则124x x +=D.()f x 有且仅有两个零点【答案】ABD 【解析】【分析】作出函数()f x 的图象,由图象观察性质判断各选项.【详解】根据图象变换作出函数()f x 的图象(()ln 2f x x =-,作出ln y x =的图象,再作出其关于y 轴对称的图象,然后向右平移2个单位,最后把x 轴下方的部分关于x 轴翻折上去即可得),如图,由图象知()f x 在(1,2)是单调递增,A 正确,函数图象关于直线2x =对称,B 正确;12()()f x f x k ==,直线y k =与函数()f x 图象相交可能是4个交点,如图,如果最左边两个交点横坐标分别是12,x x ,则124x x +=不成立,C 错误,()f x 与x 轴仅有两个公共点,即函数仅有两个零点,D 正确.故选:ABD .12.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若对任意(],x m ∈-∞,都有()89f x ≥-,则实数m 的值可以是()A.94B.73C.52D.83【答案】AB 【解析】【分析】因为(1)2()f x f x +=,可得()2(1)f x f x =-,分段求解析式,结合图象可得.【详解】解:因为(1)2()f x f x +=,()2(1)f x f x ∴=-,函数图象如下所示:(0x ∈ ,1]时,1()(1)[4f x x x =-∈-,0],(1x ∴∈,2]时,1(0x -∈,1],1()2(1)2(1)(2)[2f x f x x x =-=--∈-,0];(2x ∴∈,3]时,1(1x -∈,2],()2(1)4(2)(3)[1f x f x x x =-=--∈-,0],当(2x ∈,3]时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(x ∈-∞,]m ,都有8()9f x - ,则73m .故选:AB .【点睛】本题考查分段函数的性质的应用,解答的关键是根据函数的性质画出函数图象,数形结合即可得解;三、填空题:本题共4小题,每小题5分,共20分.13.函数()()21256f x log x x =-+-的单调减区间是______.【答案】522,⎛⎫ ⎪⎝⎭【解析】【分析】根据对数函数的定义域及复合函数单调性的判断即可求得单调递减区间.【详解】因为()()21256f x log x x =-+-所以2560x x -+->解得()2,3x ∈因为()12f x log x =为单调递减函数,所以由复合函数单调性判断可知应该取()256f x x x =-+-的单调递增区间,即5,2x ⎛⎫∈-∞ ⎪⎝⎭结合定义域可得函数()()21256f x log x x =-+-的单调减区间是522,⎛⎫⎪⎝⎭【点睛】本题考查了复合函数单调区间的求法,注意对数函数的真数大于0,属于基础题.14.已知0a >,0b >,且111a b +=,则1411a b +--的最小值为___.【答案】4【解析】【分析】由等式111a b +=可得出1a >,1b >以及1a b a =-,代入1411a b +--可得出()14141111a ab a +=+----,利用基本不等式可求得结果.【详解】0a > ,0b >,且111a b +=,得1a >,1b >以及1ab a =-,()14141414111111a a ab a a a ∴+=+=+-≥=------,当且仅当32a =时,等号成立,因此,1411a b +--的最小值为4.故答案为:4.【点睛】本题考查利用基本不等式求最值,解题时注意对定值条件进行化简变形,考查计算能力,属于中等题.15.函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,则k 的取值范围是_____;②若f (x )的值域为R ,则k 的取值范围是_____.【答案】①.[0,34)②.k 34≥【解析】【分析】(1)根据()f x 的定义域为R ,对k 分成0,0,0k k k =><三种情况分类讨论,结合判别式,求得k 的取值范围.(2)当()f x 值域为R 时,由00k >⎧⎨∆≥⎩求得k 的取值范围.【详解】函数f (x )=log 2(kx 2+4kx +3).①若f (x )的定义域为R ,可得kx 2+4kx +3>0恒成立,当k =0时,3>0恒成立;当k >0,△<0,即16k 2﹣12k <0,解得0<k 34<;当k <0不等式不恒成立,综上可得k 的范围是[0,34);②若f (x )的值域为R ,可得y =kx 2+4kx +3取得一切正数,则k >0,△≥0,即16k 2﹣12k ≥0,解得k 34≥.故答案为:(1).[0,34)(2).k 34≥【点睛】本小题主要考查根据对数型复合函数的定义和值域求参数的取值范围,属于中档题.16.函数253sin cos 82y x a x a =+⋅+-在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值是1,则=a __________.【答案】32【解析】【分析】令[]cos ,0,1x t t =∈,即求25218y t at a =-++-在[]0,1上的最大值,需要根据对称轴的位置进行分类讨论即可求出结果.【详解】22535sin cos cos cos 82812y x a x a x a x a =+⋅+-=-+⋅+-,令[]cos ,0,1x t t =∈,则25218y t at a =-++-,对称轴2at =,若02a ≤,即0a ≤时,25218y t at a =-++-在0=t 处取得最大值,即51821a -=,解得125a =,与0a ≤矛盾,故不合题意,舍去;若012a <<,即12a <<时,25218y t at a =-++-在2a t =处取得最大值,即25122821a a a a ⎛⎫-+⋅+-= ⎪⎝⎭,即225120a a +-=,解得4a =-或32a =,因为12a <<,所以32a =;若12a ≥,即2a ≥时,25218y t at a =-++-在1t =处取得最大值,即251=1821a a -++-,解得2013a =,与2a ≥矛盾,故不合题意,舍去;综上:32a =.故答案为:32.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知a ∈R ,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若1a =,求A B ⋂;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1){}2,1-(2)71,3⎡⎤⎢⎥⎣⎦【解析】【分析】(1)首先解一元二次不等式求出集合A ,再根据条件求出集合B ,最后根据交集的定义计算可得;(2)依题意可得B A ⊆,则问题转化为关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,结合二次函数的性质计算可得.【小问1详解】由2230x x --≤,即()()130x x +-≤,解得13x -≤≤,所以{}{}2230|13A x x x x x =--≤=-≤≤当1a =时{}{}2202,1B x x x =--==-,所以{}2,1A B =- 【小问2详解】因为A B A ⋃=,所以B A ⊆,关于x 的方程220x ax --=,因为280a ∆=+>,所以关于x 的方程220x ax --=必有两个不相等的实数根,依题意关于x 的方程220x ax --=在区间[]1,3-上有两个不相等的实数根,所以()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为71,3⎡⎤⎢⎥⎣⎦.18.设集合{}12A x x =-≤≤,{}121B x m x m =-<<+.(1)若B A ⊆,求实数m 的取值范围;(2)若()R B A I ð中只有一个整数2-,求实数m 的取值范围.【答案】(1)(]1,20,2⎡⎤-∞-⎢⎥⎣⎦ ;(2)3,12⎛⎫-- ⎪⎝⎭.【解析】【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆列出关于实数m 的不等式(组),解出即可得出实数m 的取值范围;(2)求出集合R A ð,由题意得知B ≠∅,且有1213122213m m m m -<+⎧⎪-≤-<-⎨⎪-<+≤⎩,解该不等式组即可得出实数m 的取值范围.【详解】(1)集合{}12A x x =-≤≤,{}121B x m x m =-<<+.①当B =∅时,121m m -≥+,解得2m ≤-,符合要求;②当B ≠∅时,若B A ⊆,121m m -<+,则12111212m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得102m ≤≤.综上,实数m 的取值范围是(]1,20,2⎡⎤-∞-⎢⎥⎣⎦;(2) 集合{}12A x x =-≤≤,{1R A x x ∴=<-ð或}2x >,若()B A R ð中只有一个整数2-,则必有B ≠∅,1213122213m m m m -<+⎧⎪∴-≤-<-⎨⎪-<+≤⎩,解得312m -<<-,因此,实数m 的取值范围是3,12⎛⎫-- ⎪⎝⎭.【点睛】本题考查利用集合的包含关系求参数的取值范围,同时也考查了利用交集与补集的混合运算求参数,解题时要结合题意列出不等式组进行求解,考查分析问题和解决问题的能力,属于中等题.19.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域.【答案】(1)3,22ππ;(2)331,122⎡-+⎢⎣⎦.【解析】【分析】(1)由函数的解析式结合偶函数的性质即可确定θ的值;(2)首先整理函数的解析式为()sin y a x b ωϕ=++的形式,然后确定其值域即可.【详解】(1)由题意结合函数的解析式可得:()()sin f x x θθ+=+,函数为偶函数,则当0x =时,()02k k Z πθπ+=+∈,即()2k k Z πθπ=+∈,结合[)0,2θ∈π可取0,1k =,相应的θ值为3,22ππ.(2)由函数的解析式可得:22sin sin 124y x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭1cos 21cos 26222x x ππ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=+11cos 2cos 2226x x ππ⎡⎤⎛⎫⎛⎫=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦111cos 2sin 2sin 2222x x x ⎛⎫=--- ⎪ ⎪⎝⎭1331cos 2sin 2222x x ⎛⎫=-- ⎪ ⎪⎝⎭31sin 226x π⎛⎫=+- ⎪⎝⎭.据此可得函数的值域为:1,122⎡-+⎢⎣⎦.【点睛】本题主要考查由三角函数的奇偶性确定参数值,三角函数值域的求解,三角函数式的整理变形等知识,意在考查学生的转化能力和计算求解能力.20.已知函数())2πcos 204f x x x ωωω⎛⎫=-++> ⎪⎝⎭的最小正周期是π.(1)求函数()y f x =的单调递增区间;(2)若对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,求m 的取值范围.【答案】(1)62ππ,π,Zπ3k k k ⎡⎤-+-+∈⎢⎥⎣⎦(2)2,0⎤-⎦【解析】【分析】(1)利用二倍角公式及两角和的余弦公式化简,再根据周期公式求出ω,即可得到函数解析式,最后根据余弦函数的性质求出单调递增区间;(2)由x 的取值范围求出π23x +的范围,即可求出()f x 的值域,由()22m f x m -≤≤+恒成立得到关于m 的不等式组,解得即可.【小问1详解】因为()2πcos 24f x x x ωω⎛⎫=-++ ⎪⎝⎭πcos 224x x ωω⎛⎫=+ ⎪⎝⎭πcos 222x x ωω⎛⎫=++ ⎪⎝⎭cos 22x xωω=132cos 2sin 222x x ωω⎛⎫=- ⎪ ⎪⎝⎭π2cos 23x ω⎛⎫=+ ⎪⎝⎭,又0ω>且函数的最小正周期是π,所以2ππ2T ω==,解得1ω=,所以()π2cos 23f x x ⎛⎫=+ ⎪⎝⎭,令Z ππ2π22π,3k x k k -+≤+≤∈,解得2ππππ,Z 36k x k k ≤--+≤+∈,所以函数()y f x =的单调递增区间为62ππ,π,Z π3k k k ⎡⎤-+-+∈⎢⎥⎣⎦.【小问2详解】当π5π,1212x ⎡⎤∈-⎢⎣⎦,则ππ7π2,366x ⎡⎤+∈⎢⎥⎣⎦,所以πcos 21,32x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,则()f x ⎡∈-⎣,因为对任意的π5π,1212x ⎡⎤∈-⎢⎥⎣⎦,都有()2f x m -≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22f x m -≤-≤,即对任意的π5π,1212x ⎡⎤∈-⎢⎣⎦,都有()22m f x m -≤≤+,所以222m m ⎧+≥⎪⎨-≤-⎪⎩20m ≤≤,即m的取值范围为2,0⎤-⎦.21.已知函数()ln (0,e 2.71828e xaf x x a =->=L 为自然对数的底数).(1)当1a =时,判断函数()f x 的单调性和零点个数,并证明你的结论;(2)当[]1,e x ∈时,关于x 的不等式()2ln f x x a >-恒成立,求实数a 的取值范围.【答案】(1)函数()f x 的零点个数为1个,证明见解析(2)()e 1e,∞++【解析】【分析】(1)利用函数单调性证明,再利用零点存在性定理即可知零点个数.(2)将()2ln f x x a >-转化为ln ln e ln e ln a x x a x x -+-+>,构造函数()e xg x x =+,转化为ln ln a x x ->,即ln ln a x x >+,即()max ln ln a x x >+,求解即可.【小问1详解】函数()f x 的定义域为()0,∞+.当1a =时,函数()e1ln x f x x =-在()0,∞+上单调递减,证明如下:任取()12,0,x x ∈+∞,且12x x <,()()12121212211111ln ln ln ln e e e ex x x x f x f x x x x x -=--+=--211221e e ln e e x x x x x x -=+⋅∵120x x <<,∴21211,e e 0x x x x >->,21ln 0xx ∴>∴()()120f x f x ->,即()()12f x f x >.所以函数()e1ln x f x x =-在()0,∞+上单词递减.又1111(1)ln10,(e)ln e 10e e e ex x f f =-=>=-=-<∴()e 1ln xf x x =-在区间()1,e 上存在零点,且为唯一的零点.∴函数()f x 的零点个数为1个【小问2详解】()2ln f x x a >-可化为ln 2ln e xaa x x +>+.可化为ln e ln ln a x a x x x -+->+.可化为ln ln e ln e ln a x x a x x -+-+>.令()e xg x x =+,可知()e x g x x =+在R 单调递增,所以有ln ln a x x ->,即ln ln a x x>+令()ln h x x x =+,可知()ln h x x x =+在(0,)+∞上单调递增.即()ln h x x x =+在[]1,e 上单调递增,max ()(e)ln e e 1eh x h ==+=+e 1max ln ()e 1ln e a h x +∴>=+=,e 1e a +∴>所以实数a 的取值范围是()e 1e,∞++.【点睛】方法点睛:本题考查不等式的恒成立问题,不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图像在()y g x =上方即可);③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.22.已知函数2()|2|f x x x x a =+-,其中a 为实数.(Ⅰ)当1a =-时,求函数()f x 的最小值;(Ⅱ)若()f x 在[1,1]-上为增函数,求实数a 的取值范围;(Ⅲ)对于给定的负数a ,若存在两个不相等的实数12,x x (12x x <且20x ≠)使得12()()f x f x =,求112x x x +的取值范围.【答案】(Ⅰ)12-(Ⅱ)2a ≤-或0a >;(Ⅲ)见解析【解析】【分析】(Ⅰ)由题可知2222,2()22,2x ax x af x x x x a ax x a⎧-≥=+-=⎨<⎩当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩,分别讨论该函数在各段上的最小值和区间端点值,进而求出在整个定义域上的最小值;(Ⅱ)因为()f x 在[1,1]-上为增函数,分0a >,0a =,0a =三种情况讨论即可(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=,分122aa x ≤<,12x a <两种情况具体讨论即可.【详解】解:2222,2()22,2x ax x a f x x x x a ax x a⎧-≥=+-=⎨<⎩(Ⅰ)当1a =-时,222,2()2,2x x x f x x x ⎧+≥-=⎨-<-⎩所以当12x =-时()()2222f x x x x +=≥-有最小值为1122f ⎛⎫-=- ⎪⎝⎭;当2x =-时,由()()22f x x x =-<-得()1242f -=>-,所以当1a =-时,函数()f x 的最小值为12-(Ⅱ)因为()f x 在[1,1]-上为增函数,若0a >,则()f x 在R 上为增函数,符合题意;若0a =,不合题意;若a<0,则12a≤-,从而2a ≤-综上,实数a 的取值范围为2a ≤-或0a >.(Ⅲ)因为a<0,则()f x 在(,)2a -∞上为减函数,在(,)2a +∞上为增函数,所以122ax x <<,令112x x M x +=1、若122a a x ≤<,则12x x a +=,由20x ≠知22a x a <≤-且20x ≠所以121222221x a x a x a x x a x x x -+=+-=--+令()1ag x x a x=--+,则()g x 在,[上为增函数,在)+∞,(-∞上为减函数(1)当4a ≤-时,2a≤a ->,则()g x 在,[上为增函数,在]a -,[2a上为减函数从而当22ax a <<-且20x ≠所以2()1g x a ≥-+或2()1g x a≤--+(2)当41a -<<-时,2a>且a ->,则()g x 在,[,0)2a上为增函数,在]a -上为减函数从而当22ax a <<-且20x ≠所以2()12ag x >+或2()1g x a ≤-+(3)当10a -≤<时,2a >且a -<,则()g x 在(0,]a -,[,0)2a上为增函数,从而当22ax a <<-且20x ≠所以2()12ag x >+或2()22g x a <-2、若12x a <,则2122222ax x ax =-,2212x x x a=-且2x a>-第21页/共21页2222222211222(,22)(11)1x x x x a x a a x a x x x x a+=+=--∞-∈+---因为221a a-≤-+综上所述,当4a ≤-时,112x x x +的取值范围为(,1]1,)a a -∞--+-++∞ ;当41a -<<-时,112x x x +的取值范围为(,1](1,)2a a +-∞--++∞ ;当10a -≤<时,112x x x +的取值范围为(,22)(1,)2a a -∞-++∞ .【点睛】本题考查函数的综合应用,包括求最值,单调性,分类讨论思想等,属于偏难题目.。
萧山九中寒假作业高一 数学学科
一、选择题(每小题4分,共40分)1.已知集合{}{}M=1,1,N=21x x --<<,则M N = ( )A .{}1,1-
B .{}0
C .{}1-
D .{}1,0-
2.函数y =的定义域是 ( )A .()3,+∞
B .[)3,+∞
C .()4,+∞
D .[)4,+∞
3.下列等式一定成立的是 ( )A .2
33
1a a ⋅=a
B .2
12
1a a
⋅-
=0
C .(a 3)2=a
9
D .6
13121
a a a =÷
4.设()f x 是R 上的偶函数,且当()0,x ∈+∞时,()(1f x x =,则当(),0x ∈-∞时,()f x 等于
A .(1x
B . (1x -
C . (1x -
D . (1x ( )
5.设()()()5
3
8210,2f x x ax bx f f =++--=且则等于 ( )A .10
B .10-
C .18-
D .26-
6.设1a >,若对于任意的[,2]x a a ∈,都有2
[,]y a a ∈满足方程log log 3a a x y +=,这
时a 的取值集合为 ( )A .2{|1}a a <≤
B .{|}2a a ≥
C .3|}2{a a ≤≤
D .{2,3}
7.三个数0.760.76,0.7,log 6的大小关系为 ( ) A . 60.70.70.7log 66<<
B . 60.70.70.76log 6<<
C . 0.760.7log 660.7<<
D .60.70.7log 60.76<<
8.在区间(,)-∞0上为增函数的是 ( ) A .()12log y x =-- B .1x y x =- C .()21y x =-+ D .21y x =+
9.设函数()24x f x x =+-,则方程()0f x =一定存在根的区间是 ( ) A . ()1,1-
B .()0,1
C .()1,2
D .()2,3
10.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单
价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为 ( ) A .12 B .13 C .14 D .15
二、填空题(每小题4分,共20分)
11.若103,104x y ==,,则210x y -= . 12.设{}{}{}1,2,3,4,5,6,7,8,3,4,5,4,7,8U A B ===,则()
()U U C A C B = .
13.函数222()(1)(2)(23)f x x x x x =-+--的零点个数是 . 14.函数y x
=-32
的定义域是 .
15.()f x 对于任意实数x 满足条件()()
1
2f x f x +=
,若()15,f =-()()5f f = .
三、解答题(每小题10分,共40分)
16.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪
==⎨⎪<⎩
,求()()()
3f f f -.
17.求函数11142x
x
y ⎛⎫⎛⎫
=-+ ⎪ ⎪⎝⎭⎝⎭
在[]3,2x ∈-上的值域
18.已知函数()31
1221x f x x ⎛⎫=+ ⎪-⎝⎭。
(1)求()f x 的定义域;
(2)判断()f x 的奇偶性; (3)证明 ()0f x >
19.已知()()1log 3,2log 2x x f x g x =+=,试比较()f x 与()g x 的大小.
附加题.(每小题10分,共20分)
20.已知函数()2
=++.
f x x ax b
(1)若对任意的实数x都有()()
+=-成立,求实数a的值;
11
f x f x
(2)若()
f x为偶函数,求实数a的值;
(3)若()
f x在[)
1,+∞内递增,求实数a的范围.
21.已知函数()x
x∈时,不等式
f x>;当()
0,1
f x a
=满足条件:当(),0
x∈-∞时,()1
()()()
2
->+->+恒成立,求实数m的取值范围。
3112
f mx f mx x f m
答案:CDDCD BDBCC
11 9 4
12 {}
1,2,6
13 4
14 {}0
x x>。