3.1.1 两角差的余弦公式 学案(人教A版必修4)
- 格式:doc
- 大小:158.50 KB
- 文档页数:7
两角差的余弦公式(选自人教版高中数学必修4第三章3.1.1节)一、教材分析《两角差的余弦公式》是人教A版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。
本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。
二、学情分析1.本节课的授课对象是高二学生,他们已经了解高中数学的教学模式,并形成自己独特的掌握新知识的方法,具有强烈的好奇心和求知欲;2.在知识水平上,高二学生之前学习了三角函数的性质,以及平面向量的运算和应用,教师在教学新内容前可以先对这些知识进行适当回顾,为学生本节课的学习奠定良好的基础;3.教师在学生已经掌握三角函数的性质,以及平面向量的运算和应用的基础上,引导学生如何利用差角的正弦余弦值来表示任意角,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。
三、教学目标(一)知识与技能引导学生建立两角差的余弦公式,通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。
(二)过程与方法通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。
(三)情感态度与价值观在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。
四、教学重难点1.教学重点通过探索得到两角差的余弦公式以及两角差余弦公式的应用。
2.教学难点探索过程中的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程所必备的基础知识是否已掌握的问题以及运用已学知识和方法的能力问题等等。
五、教学方法与手段启发式讲授法,并用多媒体展示、计算机辅助教学。
六.教学关键注意恰时恰点的提出问题,引导学生用对比,联系,化归的观点去分析,处理问题,使他们能依据三角函数式的特点,逐渐明确三角恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,引导学生逐渐拓广有关公式在变换过程中的作用,强化运用数学思想方法指导设计变换思路的意识,并且也注意了这种引导的渐进性和层次性。
《二倍角的正弦、余弦、正切公式》教学设计教学内容:《普通高中课程标准实验教书(数学)》必修4(人教A版),第三章3.1.3节、第132-135页。
教学目标:1.知识与技能目标:能从两角和的正弦、余弦、正切公式出发推导出二倍角的正弦、余弦、正切公式,理解它们的内在联系,从中体会数学的化归思想和数学规律的发现过程。
2.过程与方法目标:掌握二倍角的正弦、余弦、正切公式,通过对二倍角公式的正用、逆用、变形使用,提高三角变形的能力,以及应用转化、化归、换元等数学思想方法解决问题的能力。
3.情感态度价值观目标:通过一题多解、一题多变,激发学生的学习兴趣,培养学生的发散性思维、创新意识和数学情感,提高数学素养。
教学重点:使学生在掌握了和角、差角公式后如何将和角公式化为二倍角公式,以及公式成立的条件。
教学难点:灵活应用二倍角公式变形,熟练解三角综合题。
教学过程:一、复习启发、设置情景、引出正题1、(复习性提问)请同学回顾两角和的公式(学生回答,白板展示)2、(探索性提问)当上述公式中角、具有特殊化关系=时,公式变为什么形式?3、引导学生观察其结构,并指名回答观察结果。
(学生回答左边角均为,右边角均为,具有“二倍”关系)4、引入正题(板书课题)二、引导探究、深化认识1、对: 中的平方联想到,有无其他变式?(学生探索、总结得出两种变式)2、二倍角公式是和角公式的特殊情形,知道二者之间的联系,二倍角公式不仅限于是的二倍形式,其他如是的二倍,是的二倍,是的二倍等等都适用,要熟悉这些多形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活应用公式的关键。
3、 有了这组二倍角公式,我们是否可以放心的应用呢?引导学生联想和角公式的条件,利用类比的方法,探索出二倍角公式的条件【设计意图: 引导学生应用联想、类比的教学思想、得出公式成立的条件】三、例题讲解例1 已知sin2α=135,4π<α<2π,求sin4α,cos4α,tan4α的值. 引导:本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角(注意角的范围),因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,让学生自己独立探究完成。
第三章 三角恒等变换§3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式自主学习知识梳理1.如图所示,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B ,则A 点坐标是________________,B 点坐标是______________,向量OA →=______________,向量OB →=______________.OA →·OB →=______________.另一方面OA →·OB →=|OA →| ·|OB →|·cos ∠AOB =____________.2.两角差的余弦公式C (α-β):cos(α-β)=________________________________.自主探究灵活拆分角是三角恒等变换的一种常用方法.例如α=(α+β)-β;β=(α+β)-α等.请你利用拆分角方法,结合公式cos(α-β)=cos αcos β+sin αsin β计算cos 15°的值.对点讲练知识点一 给角求值例1 求下列各式的值.(1)sin 195°+cos 105°;(2)cos(α-45°)cos(15°+α)+cos(α+45°)cos(105°+α).回顾归纳 (1)公式C (α-β)是三角恒等式,既可以正用,也可以逆用;(2)在利用两角差的余弦公式求某些角的三角函数值时,关键在于把待求的角转化成已知特殊角(如30°,45°,60°,90°,120°,150°,…)之间和与差的关系问题.然后利用公式化简求值.变式训练1 求下列各式的值.(1)cos π12; (2)cos(x +20°)cos(x -40°)+cos(x -70°)sin(x -40°).知识点二 给值求值例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2.回顾归纳 三角变换是三角运算的灵魂与核心,它包括角的变换、函数名称的变换、三角函数式结构的变换.其中角的变换是最基本的变换.例如:α=(α+β)-β,α=β-(β-α),α=(2α-β)-(α-β),α=12[(α+β)+(α-β)],α=12[(β+α)-(β-α)]等. 变式训练2 已知α,β均为锐角,sin α=817,cos(α-β)=2129,求cos β的值.知识点三 给值求角型 例3 已知cos α=17,cos(α+β)=-1114,且α、β∈⎝⎛⎭⎫0,π2,求β的值.回顾归纳 (1)本题属“给值求角”问题,实际上也可转化为“给值求值”问题,求一个角的值,可分以下三步进行:①求角的某一三角函数值;②确定角所在的范围(找一个单调区间);③确定角的值.(2)确定用所求角的哪种三角函数值,要根据具体题目而定.如本题求β的余弦值比求β的正弦值要好.变式训练3 已知cos(α-β)=-1213,cos(α+β)=1213,且α-β∈⎝⎛⎭⎫π2,π,α+β∈⎝⎛⎭⎫3π2,2π,求角β的值.1.公式C (α-β)是三角恒等式,既可正用,也可逆用,要注意公式的结构名称、特征、灵活变换角或名称.2.公式C (α-β)中的角α、β为任意角,既可以代表具体的角,也可以代表代数式.可以把α、β视为一个“代号”,将公式标记作:cos(▭-△)=cos ▭cos △+sin ▭sin △.课时作业一、选择题1.化简cos(α+β)cos α+sin(α+β)sin α得( )A .cos αB .cos βC .cos(2α+β)D .sin(2α+β)2.满足cos αcos β=32-sin αsin β的一组α,β的值是( ) A .α=1312π,β=54π B .α=1312π,β=34π C .α=π2,β=π6 D .α=π4,β=π63.若cos(α-β)=55,cos 2α=1010,并且α、β均为锐角且α<β,则α+β的值为( ) A.π6 B.π4 C.3π4 D.5π64.若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( )A .-55 B.55 C.11525D. 5 5.若sin α+sin β=1-32,cos α+cos β=12,则cos(α-β)的值为( ) A.12 B .-32 C.34 D .1二、填空题6.cos 47°cos 77°-sin 47°cos 167°=________.7.若cos(α-β)=13,则(sin α+sin β)2+(cos α+cos β)2=________.三、解答题8.已知tan α=43,cos(α+β)=-1114,α、β均为锐角,求cos β的值.9.已知cos(α-β)=-45,sin(α+β)=-35,π2<α-β<π,3π2<α+β<2π,求β的值.第三章 三角恒等变换§3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式答案知识梳理1.(cos α,sin α) (cos β,sin β) (cos α,sin α) (cos β,sin β) cos αcos β+sin αsin β cos(α-β)2.cos αcos β+sin αsin β自主探究解 方法一 15°=60°-45°cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45°=12×22+32×22=2+64. 方法二 15°=45°-30°,cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. 对点讲练例1 解 (1)原式=cos 105°+sin 195° =cos 105°+sin(90°+105°)=cos 105°+cos 105° =2cos 105°=2cos(135°-30°)=2×(cos 135°cos 30°+sin 135°sin 30°)=2×⎝⎛⎫-22×32+22×12=2-62. (2)原式=cos(α-45°)cos(15°+α)+sin(45°-α)·cos(15°+90°+α)=cos(α-45°)cos(15°+α)-sin(45°-α)sin(15°+α)=cos(α-45°)cos(15°+α)+sin(α-45°)sin(15°+α)=cos[(α-45°)-(15°+α)]=cos(-60°)=cos 60°=12.变式训练1 解 (1)原式=cos ⎝⎛⎭⎫π4-π6=cos π4cos π6+sin π4sin π6=2+64. (2)cos(x +20°)cos(x -40°)+cos(x -70°)·sin(x -40°) =cos(x +20°)cos(x -40°)+cos(70°-x )·sin(x -40°) =cos(x +20°)cos(x -40°)+sin(x +20°)·sin(x -40°) =cos[(x +20°)-(x -40°)]=cos 60°=12. 例2 解 ∵α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2, ∴α-β2∈⎝⎛⎭⎫π4,π,α2-β∈⎝⎛⎭⎫-π4,π2, ∴sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-181=459, cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β= 1-49=53. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2·sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. 变式训练2 解 因为α∈⎝⎛⎭⎫0,π2,sin α=817<12, 所以0<α<π6. 又因为α-β∈⎝⎛⎭⎫-π2,π6,cos(α-β)=2129<32, 所以-π2<α-β<-π6, 所以cos α=1-sin 2α=1-⎝⎛⎭⎫8172=1517,sin(α-β)=-1-cos 2(α-β)=-1-⎝⎛⎭⎫21292=-2029, 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =1517×2129+817×⎝⎛⎭⎫-2029=155493. 例3 解 ∵α、β∈⎝⎛⎭⎫0,π2且cos α=17, cos(α+β)=-1114, ∴sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314.又∵β=(α+β)-α,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝⎛⎭⎫-1114×17+5314×437=12.又∵β∈⎝⎛⎭⎫0,π2,∴β=π3. 变式训练3 解 由α-β∈⎝⎛⎭⎫π2,π,且cos(α-β)=-1213, 得sin(α-β)=513, α+β∈⎝⎛⎭⎫3π2,2π,且cos(α+β)=1213, 得sin(α+β)=-513. cos 2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=1213×⎝⎛⎭⎫-1213+⎝⎛⎭⎫-513×513=-1. 又∵α+β∈⎝⎛⎭⎫32π,2π, α-β∈⎝⎛⎭⎫π2,π⇒2β∈⎝⎛⎭⎫π2,3π2. ∴2β=π,则β=π2. 课时作业1.B 2.A3.C [sin(α-β)=-255(-π2<α-β<0). sin 2α=31010, ∴cos(α+β)=cos[2α-(α-β)]=cos 2αcos(α-β)+sin 2αsin(α-β) =1010·55+⎝⎛⎭⎫31010·⎝⎛⎭⎫-255=-22, ∵α+β∈(0,π),∴α+β=3π4.] 4.B [∵sin(π+θ)=-35, ∴sin θ=35,θ是第二象限角, ∴cos θ=-45. ∵sin ⎝⎛⎭⎫π2+φ=-255,∴cos φ=-255, φ是第三象限角,∴sin φ=-55. ∴cos(θ-φ)=cos θcos φ+sin θsin φ=⎝⎛⎭⎫-45×⎝⎛⎭⎫-255+35×⎝⎛⎭⎫-55=55.]5.B [由题意知⎩⎨⎧ sin α+sin β=1-32 ①cos α+cos β=12② ①2+②2⇒cos(α-β)=-32.] 6.327.83解析 原式=2+2(sin αsin β+cos αcos β)=2+2cos(α-β)=83. 8.解 ∵α∈⎝⎛⎭⎫0,π2,tan α=43, ∴sin α=437,cos α=17. ∵α+β∈(0,π),cos(α+β)=-1114, ∴sin(α+β)=5314. ∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝⎛⎭⎫-1114×17+5314×437=12.9.解 ∵π2<α-β<π,cos(α-β)=-45, ∴sin(α-β)=35. ∵3π2<α+β<2π, sin(α+β)=-35, ∴cos(α+β)=45. ∴cos 2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=45×⎝⎛⎭⎫-45+⎝⎛⎭⎫-35×35=-1. ∵π2<α-β<π,3π2<α+β<2π, ∴π2<2β<3π2,∴2β=π,∴β=π2.。
探究点一 两角和与差的正切公式的推导
问题 1 你能根据同角三角函数基本关系式tan α=sin α
cos α
,从两角和与差的正弦、余弦公式出发,推导出
用任意角α,β的正切值表示tan(α+β),tan(α-β)的公式吗?试一试.
探究点二 两角和与差的正切公式的变形公式 两角和与差的正切公式变形形式较多,例如:
tan α±tan β=tan(α±β)(1∓tan αtan β), tan αtan β=1-
tan α+tan βtan α+β=
tan α-tan β
tan α-β
-1.
答 当cos(α+β)≠0时,tan(α+β)=sin (α+β)cos (α+β)=sin αcos β+cos αsin β
cos αcos β-sin αsin β
.
当cos αcos β≠0时,分子分母同除以cos αcos β,得
tan(α+β)=tan α+tan β
1-tan αtan β
.
根据α,β的任意性,在上面式子中,以-β代替β得
tan(α-β)=tan α+tan (-β)1-tan αtan (-β)=tan α-tan β
1+tan αtan β
.
问题2 在两角和与差的正切公式中,α,β,α±β的取值是任意的吗?
答 在公式T (α+β),T (α-β)中α,β,α±β都不能等于k π+π2(k ∈Z ).
=tan 120°=- 3.。
高中数学人教A版必修4第三章《3.1.1两角差的余弦公式》(第一学时)教学设计一、教学目标:1. 通过对两角差的余弦公式的猜想和探究过程,培养学生通过交流,探索,发现和获得新知(二)新知探究在平面直角坐标系xOy 中内作单位圆O ,以Ox 为始边作角βα,,它们的终边与单位圆的交 点分别为B A ,,则()(),sin ,cos ,sin ,cos ββαα==OB OA 由向量数量积的坐标表示有:βαβαsin sin cos cos +=⋅OB OA 。
设向量OA 与OB 的夹角为θ,由向量数量积的定义有:θθcos ==⋅OB OA ,所以βαβαθsin sin cos cos cos +=。
已知()()Z k k Z k k ∈+=∈++=πθβαπθβα2-2或,所以()Z k k ∈±=-θπβα2,所以()θβαcos cos =-,又因为βαβαθsin sin cos cos cos +=,所以可知对任意角βα,,都有()βαβαβαsin sin cos cos cos +=-。
(三)巩固理解例1、利用差角余弦公式求o15cos 的值。
分析:本题关键是将o15角分成o45与o30的差或者分解成o60与o45的差,再利用两角差的余弦公式即可求解。
例2、已知,135cos ,,2,54sin -=⎪⎭⎫⎝⎛∈=βππααβ是第三象限角,求()βα-cos 的值。
分析:观察公式()βα-cos 与本题已知条件应先计算出αcos ,βsin ,再代入公式求值。
求βαsin ,cos 的值可借助于同角三角函数的平方关系,并注意βα,的取值范围来求解。
例3、求值(1)oooo35sin 65sin 35cos 65cos + (2)απααπαsin 3sin cos 3cos ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+(3)oooo 40cos 110sin 50cos 110cos + (4)oooo42sin 78cos 42cos 12cos +为o50sin ,再逆向使用两角差余弦公,即可将原式化为o60cos ;对于(4),可先用诱导公式化o 78cos 为o 12sin ,再逆向使用两角差余弦公,即可将原式化为o 30cos 。
《两角差的余弦公式》教学设计教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修4课题:3.1.1 两角差的余弦公式课时:1课时一、教学内容分析三角恒等变换处于三角函数与数学变换的结合点和交汇处,是前面所学三角函数知识的继续与发展,是培养学生推理能力与运算能力的重要素材.由于和与差内在的联系性与统一性,教材选择两角差的余弦公式作为基础,使公式的证明过程尽量简洁明了,易于学生理解和掌握.教学没有直接给出两角差的余弦公式,而是分探求结果、证明结果两步进行探究,并从简单情况入手得出结果.这样安排不仅使探究更加真实,也有利于学生学会探究、发展思维.因此,本节课的教学重点是:利用诱导公式发现两角差的余弦公式,并运用向量方法证明公式.二、教学目标1.掌握两角差的余弦公式,并能正确运用公式进行简单的求值运算;2.经历用向量的数量积推导两角差的余弦公式的过程,进一步体会向量方法的作用;3.在利用诱导公式进行两角差余弦公式的探究过程中,体会“特殊到一般”、“数形结合”、“归纳猜想”等数学思想方法和思维方法,能体会到数学思维的合理性与条理性.三、学生学情分析学生此前已经掌握了任意角三角函数的概念、诱导公式的推导、向量的坐标表示以及向量数量积的坐标运算等知识.同时,学生多次经历了由特殊到一般,归纳猜想等数学思维方法,基本具备数形结合的能力,这些都为本节课的学习建立了良好的知识基础.教材根据一个实例提出本章所要研究的主要内容,然后直接提出研究两角差的余弦公式,学生会感到有些突然;教材中用几何方法研究两角差的余弦公式学生不易想到用“割补法”求正弦线、余弦线;用向量的数量积公式证明两角差的余弦公式,学生容易犯思维不严谨、不严密的错误.因此,我将本节课的教学难点确定为:发现并证明两角差的余弦公式.四、教学过程设计1.创设情景【情境问题】如图,某城市的电视发射塔CB 建筑市郊的一座小山CD 上,从山脚A 测得AC=50m,塔顶B的仰角(DAB ∠)为60︒,从A 点观测塔顶B 的视角(CAB ∠)约为45︒,求:A,B 两点间的距离.(请学生思考求解过程,某生表述:AB=2AD=2×50×()cos 6045︒-︒=100cos15︒.教师引导说明15︒角的余弦值是未知的,而60︒角、45︒角的三角函数值是已知的,不妨用它们来求差角6045︒-︒的余弦值.)【设计意图】从实际问题出发,有利于强调数学与实际的联系,增强学生的应用意识,激发学生学习的积极性,使其感受到实际问题中对研究差角公式的需要.【思考1】()cos 6045︒-︒如何求角60︒,45︒的正弦、余弦值来表示呢? (请学生大胆尝试说明,并根据自己的结论计算验证.在这个过程中,可将问题一般化:两角差αβ-的余弦值与这两个角,αβ的三角函数值之间有怎样的关系呢?引入课题:两角差的余弦公式)【设计意图】让学生体验如何用反例进行反驳,明确常犯的直接性错误为什么是错的,提出本节课的研究内容,统一对探究目标中“恒等”要求的认识.2.新知探究【思考2】在已学过的知识中,有没有类似求两角差余弦的式子呢?(请学生思考说明:诱导公式()cos cos πββ-=-,cos sin 2πββ⎛⎫-= ⎪⎝⎭.) ()()cos cos cos 2πβαβπβ--−−−→⎛⎫- ⎪⎝⎭特殊化 【说明】观察以上两式就是把角α用特殊角π、2π来替换.由于特殊中往往能反映一般规律,我们不妨从上述公式出发,建立研究思路,寻找两角差的余弦公式的一般性规律.【设计意图】从学生的学习实际出发,回想已有的关于两角差的余弦的式子,寻找新旧知识之间的联系,使两角差的余弦公式的发现与推导是用“随机、自然进入”的方式呈现给学生.【探究1】()cos πβ-如何用角π和β的正弦、余弦值来表示呢?本环节以教师引导探究为主,展现知识的生成过程.【问题1】根据三角函数的定义,你能写出点12,P P 的坐标吗?(请学生说明,点 ()()12cos ,sin ,cos ,sin P P ππββ.)【问题2】根据三角函数的定义,()cos πβ-是角πβ-的终边与单位圆交点的横坐标.那么,你能在图1中画出角πβ-的终边吗?(请学生说明自己画图的过程,可能会有两种做法:方法一:由角β的终边画出角β-的终边,然后将角β-旋转角π,得角πβ-的终边;方法二:以角π的终边为始边旋转角β,得角πβ-的终边.设角πβ-的终边与单位圆交于点3P ,则点3P 的坐标为()()()cos ,sin πβπβ--)【过渡】在已知各点坐标的情况下,我们不妨用向量知识来解决问题.【问题3】观察图1,有几组向量的夹角相等?(请学生说明:0312P OP POP ∠=∠,又向量的模相等,0312OP OP OP OP ∴⋅=⋅,由向量数量积的坐标运算得:()cos cos cos sin sin πβπβπβ-=+.)【活动】根据上述推导过程,请同学们整理研究思路,在学案(附后表1)β的终边y x π-β的终边1,0()π的终边P3P1P2O P0上完成图1对应的表格.【设计意图】根据三角函数的定义及任意角三角函数的定义,建立几何图形与点的坐标之间的联系——向量,加强新旧知识之间的关联性,使向量方法的引入自然、合理.本环节设计为引导探究的学习方式,将探究一拆分为三个问题,帮助学生建立研究思路.【探究2】根据上述做法, cos 2πβ⎛⎫- ⎪⎝⎭的值如何用角,2πβ的正弦、余弦值来表示呢?(请学生根据学案中的图2,四人一组完成探究. 教师引导说明角2πβ-的终边的形成过程,学生类比()cos πβ-的推导过程,以向量为工具,根据向量的夹角相等,得:0312OP OP OP OP ⋅=⋅βπβπβπsin 2sin cos 2cos 2cos +=⎪⎭⎫ ⎝⎛-∴【设计意图】再一次经历由图形对称得等量关系,运用向量数量积的坐标运算建立数与形的联系,推导两脚差余弦的一个表达式.使学生从知识、方法、策略上多层次的感受式子的推导过程.【思考3】观察上面两个式子,猜想:若,αβ是任意角,那么()cos αβ-= ?(学生观察上式,归纳说明.)【设计意图】有特殊到一般,猜想任意角两角差的余弦公式,使学生成为数学结论的发现者,这对增强学生学习数学的信心、学会学习数学是有意义的.【探究3】你能否证明自己的猜想?π(请学生类比上面两式的推导过程,在学案中自主探究完成,并与周围同学相互交流,解决自己存在的问题.其中,差角αβ-的形成过程教师可利用几何画板旋转得到,帮助学生认识图形间的内在联系.之后投影展示某生的证明过程,并请该生解说: 0312OP OP OP OP ⋅=⋅()cos cos cos sin sin αβαβαβ∴-=+)【设计意图】通过对猜想进行证明,体现数学知识的严谨性、合理性,使学生对公式的认识上升到理性高度.同时,体会向量方法的作用.【归纳】两角差的余弦公式:()cos cos cos sin sin αβαβαβ-=+【问题4】观察两角差的余弦公式,我们如记忆公式呢?(请学生尝试说明,教师从式子左右两边的三角函数名及符号给予归纳:余余正正异相连.)【设计意图】引导学生总结公式特点,帮助学生记忆公式.3.应用举例例.求cos15︒的值.(本例由情景问题提出,可引导学生采用不同的方法求值,认识到拆分角的多样性.)【设计意图】帮助学生掌握两角差的余弦公式的应用,拓展数学思维,体会拆分的多样性,决定变换的多样性.4.课堂小结【问题5】本节课你学到了哪些知识,有什么样的心得体会?(学生说明,师生共同归纳总结.)(1)两角差的余弦公式:()cos cos cos sin sin αβαβαβ-=+;(2)向量作为工具性知识的运用;(3)解决数学问题的思路:由已知到未知、由特殊到一般.β的终边α)【设计意图】让学生对探究的过程、思路与方法有一个清晰的认识,获得知识和能力的共同进步.5.作业布置(1)课本127页,练习2,3题;(2)查一查“两角差的余弦公式”还有其他证明方法吗?【设计意图】巩固所学知识,拓展解决数学问题的思路.。
3.1 第1课时 两角差的余弦公式【课前准备】1.课时目标(1)了解两角差的余弦公式的推导过程,通过公式的推导了解角与角之间的内在联系;(2)正确理解与掌握两角差的余弦公式,并会进行化简、求值等应用.2.基础预探两角差的余弦公式:cos (α-β)=________________.【知识训练】1.下面等式中成立的是( )A .cos (α-β)=cos αcos β-sin αsin βB .cos (α-β)=cos αsin β-cos αsin βC .cos (α-β)=cos αcos β+sin αsin βD .cos (α-β)=cos αsin β+cos αsin β2.cos110ºcos20º+sin110ºsin20º的值为( )A .0B .-21C .21 D .1 3.化简cos (2x+y )cos (x+y )+sin (2x+y )sin (x+y )的值为( )A .cos (3x+2y )B .cosxC .sin (3x+2y )D .sinx4.化简:cos80°cos20°+sin80°sin20°=________.5.cos (-50º)cos20º-sin (-20º)sin50º的值为________.6.已知cos α=-54(2π<α<π),求cos (6π-α)的值. 【学习引领】两角差的余弦公式对任意的角都成立,是前面学习的诱导公式的一般化.在利用两角差的余弦公式时,运用两角差的三角函数求解问题一般分三步:第一步求某一个三角函数值;第二步确定角所在的范围;第三步得结论求得所求角的值.【典例导析】题型一:公式的直接应用例1.计算:cos80ºcos35º+sin80ºsin35º=( )A .1B .21C .22D .23 思路导析:直接利用两角差的余弦公式加以化简、计算.解析:cos80ºcos35º+sin80ºsin35º=cos (80º-35º)=cos45º=22,故选择答案:C . 点评:利用两角差的余弦公式进行化简或计算时,注意函数名称及其位置关系、运算符号等基本特征,直接结合公式加以应用.变式练习1:计算:cos (54º+α)cos (24º+α)+sin (54º+α)sin (24º+α)=________. 题型二:公式的间接应用例2.计算:cos65ºcos35º+cos25ºcos55º=( )A .1B .21C .22D .23思路导析:先利用诱导公式对cos25º及cos55º进行变换,再利用两角差的余弦公式加以化简、计算.解析:由于cos25º=sin (90º-25º)=sin65º,cos55º= sin (90º-55º)=sin35º, 则cos65ºcos35º+cos25ºcos55º= cos65ºcos35º+sin65ºsin35º=cos (65º-35º)=cos30º=23,故选择答案:D . 点评:利用两角差的余弦公式进行化简或计算时,如何函数名称不满足公式条件,往往可以结合诱导公式加以变换,转化为符号公式条件的等式后再利用相应的公式加以应用.变式练习2:计算:cos78ºsin72º+sin78ºcos72º=________.题型三:公式的综合应用例3.已知α、β、γ∈(0,2π),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值. 思路导析:根据题目条件,消去γ是解题关键,而通过同角三角函数的基本关系式是解决的关键所在,同时结合三角函数的图象与性质等知识.解析:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β,平方相加得(sin β-sin α)2+(cos α-cos β)2=1,即sin 2β-2sin αsin β+sin 2α+cos 2α-2cos βcos α+cos 2β=1, 亦即2-2(sin αsin β+cos βcos α)=1,∴-2cos (β-α)=-1,∴cos (β-α)=21, ∴β-α=±3π, ∵sin γ=sin β-sin α>0,∴β>α,∴β-α=3π. 点评:本题极易求出β-α=±3π,如不注意隐含条件sin γ>0,则产生增根.因此求值问题要注意分析隐含条件.变式练习3:已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=________. 【随堂练习】1.计算:cos75ºcos15º+sin75ºsin15º=( )A .1B .21C .22D .23 2.化简cos (x+y )cos (x -y )+sin (x+y )sin (x -y )的值为( )A .cos2xB .cos2yC .sin2xD .sin2y3.计算:cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=( )A .1B .21C .22D .23 4.计算:cos68ºcos8º+sin68ºcos82º=________.5.化简:cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β)=________.6.若锐角α、β满足cos α=54,cos (α+β)=53,求cos β的值. 【课后作业】1.化简:cos (α-β)cos (β-γ)+sin (α-β)sin (β-γ)=( )A .cos (α-2β+γ)B .cos (α-γ)C .sin (α-2β+γ)D .sin (α-γ)2.︒︒-︒70sin 20sin 10cos 2的值是( ) A .21 B .23 C .3 D .23.已知α、β∈(43π,π),sin (α+β)=-53,sin (β-4π)=1312,则cos (α+4π)=________. 4.已知:α+β∈(2π,π),α-β∈(0,2π),且sin (α-β)=734,cos (α+β)=-1411,则β=________. 5.已知sin α=32,α∈(2π,π),cos β=-43,β∈(π,23π),求cos (α-β)的值. 6.已知cos α=71,cos (α+β)=-1411,α、β∈(0,2π),求β的值.答案:【课前准备】2.基础预探cos αcos β+sin αsin β.【知识训练】1.C ;解析:根据两角差的余弦公式加以判断;2.A ;解析:cos110ºcos20º+sin110ºsin20º=cos (110º-20º)= cos90º=0;3.B ;解析:观察代数式,运用整体思想,逆用两角差的余弦公式加以判断;4.21;解析:cos80°cos20°+sin80°sin20°=cos (80°-20°)=cos60°=21; 5.23;解析:cos (-50º)cos20º-sin (-20º)sin50º=cos50ºcos20º+sin20ºsin50º=cos (50º-20º)= cos30º=23; 6.解析:因为cos α=-54,且2π<α<π,所以sin α=2)54(1--=53,那么cos (6π-α)=cos 6πcos α+sin 6πsin α 413)525-+⋅=10343-.【典例导析】变式练习1:23;解析:cos (54º+α)cos (24º+α)+sin (54º+α)sin (24º+α)= cos[(54º+α)-(24º+α)]= cos30º=23; 变式练习2:21;解析:cos78ºsin72º+sin78ºcos72º= cos78ºcos (90º-72º)+sin78ºsin (90º-72º)= cos78ºcos18º+sin78ºsin18º=cos (78º-18º)=cos60º=21; 变式练习3:7259;解析:由于(cos α-cos β)2=41,(sin α-sin β)2=91,两式相加,得2-2cos (α-β)=3613,∴cos (α-β)=7259; 【随堂练习】1.B ;解析:cos75ºcos15º+sin75ºsin15º=cos (75º-15º)=cos60º=21; 2.B ;解析:观察代数式,运用整体思想,逆用两角差的余弦公式加以判断;3.D ;解析:cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=cos[(38º-x )-(8º-x )]=cos30º=23; 4.21;解析:cos68ºcos8º+sin68ºcos82º=cos68ºcos8º+sin68ºsin (90º-8º)=cos68ºcos8º+sin68ºsin8º=cos (68º-8º)=cos60º=21; 5.cos (2βα+);解析:cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β)= cos [(α-2β)-(2α-β)]= cos (2βα+);6.解析:由于锐角α满足cos α=54,则sin α=α2cos 1-=2)54(1-=53, 又锐角α、β满足cos (α+β)=53,则sin (α+β)=)(cos 12βα+-=2)53(1-=54, 所以cos β=cos [(α+β)-α]= cos (α+β)cos α+ sin (α+β)sin α=53×54+54×53=2524. 【课后作业】1.A ;解析:观察代数式,运用整体思想,逆用两角差的余弦公式加以判断;2.C ;解析:原式=︒︒-︒-︒70sin 20sin 2030cos 2)(=︒︒-︒⋅︒+︒⋅︒70sin 20sin 20sin 30sin 20cos 30cos 2)(=︒︒20cos 20cos 3=3; 3.-6556;解析:由已知可得α+β∈(23π,2π),β-4π∈(2π,43π),∴cos (α+β)=54,cos (β-4π)=-135,则cos (α+4π)=cos[(α+β)-(β-4π)]=cos (α+β)cos (β-4π)+sin (α+β)sin (β-4π)=-6556; 4.6π;解析:由题可得:cos (α-β)=71,sin (α+β)=1435,则cos2β=cos[(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β)=21,又2π<α+β<π,0<α-β<2π,则0<(α+β)-(α-β)=2β<π,有2β=3π,即β=6π; 5.解析:由sin α=32,α∈(2π,π)得cos α=-α2sin 1-=-2)32(1-=-35, 又由cos β=-43,β∈(π,23π)得sin β=-β2cos 1-=-2)43(1--=-47,所以cos (α-β)=cos αcos β+sin αsinβ=(-35)×(-43)+32×(-47). 6.解析:由于α、β∈(0,2π),则α+β∈(0,π), 由cos α=71,cos (α+β)=-1411, 可得sin α=α2cos 1-=734,sin (α+β)=)(cos 12βα+-=1435, 得cos β=cos [(α+β)-α]= cos (α+β)cos α+ sin (α+β)sin α=-1411×71+1435×734=21, 而由β∈(0,2π)可得β=3π.。
两角差的余弦公式预习课本P124~127,思考并完成以下问题(1)如何用α的三角函数与β的三角函数表示cos(α-β)? (2)两角差的余弦公式是如何推导的?新知初探两角差的余弦公式注意:(1)由C (α-β)可知,我们只要知道cos α,cos β,sin α,sin β的值,就可以求得cos(α-β)的值. (2)公式中的α,β都是任意角,既可以是一个角,也可以是几个角的组合.(3)要掌握公式的正用,如cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β.同样也要掌握公式的逆用,如cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=cos[(α+β)-(α-β)]=cos 2β.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)cos(60°-30°)=cos 60°-cos 30°.( )(2)对于任意实数α,β,cos(α-β)=cos α-cos β都不成立.( ) (3)对任意α,β∈R ,cos(α-β)=cos αcos β+sin αsin β都成立.( ) 2.cos 5π12cos π6+cos π12sin π6的值是( )A .0 B.12 C.22D.323.设α∈⎝⎛⎭⎫0,π2,若sin α=35,则2cos ⎝⎛⎭⎫α-π4等于( ) A.75 B.15 C .-75 D .-154.化简cos ⎝⎛⎭⎫α-π4sin α+cos α=________.[典例] (1)cos 50°cos 20°+sin 50°sin 20°的值为( )A.12 B.13 C.32D.33(2)cos(-15°)的值为( ) A.2-64 B.6-24C.6+24D .-6+24(3)化简cos(α+45°)cos α+sin(α+45°)sin α=________.利用公式C (α-β)求值的方法技巧在利用两角差的余弦公式解含有非特殊角的三角函数式的求值问题时,要先把非特殊角转化为特殊角的差(或同一个非特殊角与特殊角的差),正用公式直接化简求值,在转化过程中,充分利用诱导公式,构造出两角差的余弦公式的结构形式,正确地顺用公式或逆用公式求值.[活学活用]计算下列各式的值:(1)cos 56°cos 26°+sin 56°sin 26°;(2)cos(α-35°)cos(α+25°)+sin(α-35°)sin(α+25°).[典例] (1)已知cos α=45,cos(α+β)=35,且α,β均为锐角,求cos β的值.(2)若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,求cos(θ-φ)的值.给值求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β; ②α=α+β2+α-β2; ③2α=(α+β)+(α-β);④2β=(α+β)-(α-β). [活学活用]已知π4<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求cos 2α的值.[典例] (1)已知α,β均为锐角,且sin α=255,sin β=1010,则α-β=________.(2)已知cos α=17,cos(α+β)=-1114,α,β∈⎝⎛⎭⎫0,π2,则β=________.[一题多变]1.[变条件]若本例(1)中“sin α”变为“cos α”,“sin β ”变为“cos β ”,则α-β=________.2.[变条件]若本例(2)变为:已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β的值.已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(2)求所求角的某种三角函数值.为防止增解最好选取在上述范围内单调的三角函数. (3)结合三角函数值及角的范围求角.课后作业 层级一 学业水平达标1.cos5π24cos π24+sin 5π24sin π24的值为( ) A.12 B.22C.32D .12.sin 7°cos 23°+sin 83°cos 67°的值为( ) A .-12B.12C.32D .-323.已知α为锐角,β为第三象限角,且cos α=1213,sin β=-35,则cos(α-β)的值为( )A .-6365B .-3365C.6365D.33654.已知sin ⎝⎛⎭⎫π6+α=14,则cos α+3sin α的值为( ) A .-14B.12 C .2 D .-15.已知cos α=1213,α∈⎝⎛⎭⎫3π2,2π,则cos ⎝⎛⎭⎫α-π4的值为( ) A.5213 B.7213 C.17226D.72266.cos 75°cos 15°-sin 255°sin 15°=________.7.cos(x +270°)cos(x -180°)+sin(x +270°)sin(x -180°)的值为________. 8.已知sin α=1517,α∈⎝⎛⎭⎫π2,π,则cos ⎝⎛⎭⎫π4-α的值为________. 9.已知α,β为锐角,且cos α=45,cos(α+β)=-1665,求cos β的值.10.设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2的值.层级二 应试能力达标1.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A .-233B .±233C .-1D .±12.已知△ABC 的三个内角分别为A ,B ,C ,若a =(cos A ,sin A ),b =(cos B ,sin B ),且a ·b =1,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形3.已知α∈⎝⎛⎭⎫0,2π3,且cos ⎝⎛⎭⎫α+π3=-1114,则cos α=( ) A.17 B .-17C .-1314D.13144.若sin α-sin β=1-32,cos α-cos β=12,则cos(α-β)的值为( ) A.32 B.12 C.34D .15.已知α,β均为锐角,且cos α=255,sin β=31010,则β-α的值为________. 6.满足12sin x +32cos x =12的角x 的集合是________.7.已知cos(α-β)=-1213,cos(α+β)=1213,且α-β∈⎝⎛⎭⎫π2,π,α+β∈⎝⎛⎭⎫3π2,2π,求角β的值.8.已知函数f (x )=-cos 2x cos 5π4+sin 2x sin 9π4.(1)求函数f (x )的最小正周期;(2)若π8<α<β<π2,f (α)=2+64,且f (β)=6-24,求角2β-2α的大小.。
第三章 三角恒等变换§3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式自主学习知识梳理1.如图所示,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B ,则A 点坐标是________________,B 点坐标是______________,向量OA →=______________,向量OB →=______________.OA →·OB →=______________.另一方面OA →·OB →=|OA →| ·|OB →|·cos ∠AOB =____________.2.两角差的余弦公式C (α-β):cos(α-β)=________________________________.自主探究灵活拆分角是三角恒等变换的一种常用方法.例如α=(α+β)-β;β=(α+β)-α等.请你利用拆分角方法,结合公式cos(α-β)=cos αcos β+sin αsin β计算cos 15°的值.对点讲练知识点一 给角求值例1 求下列各式的值.(1)sin 195°+cos 105°;(2)cos(α-45°)cos(15°+α)+cos(α+45°)cos(105°+α).回顾归纳 (1)公式C (α-β)是三角恒等式,既可以正用,也可以逆用;(2)在利用两角差的余弦公式求某些角的三角函数值时,关键在于把待求的角转化成已知特殊角(如30°,45°,60°,90°,120°,150°,…)之间和与差的关系问题.然后利用公式化简求值.变式训练1 求下列各式的值.(1)cos π12; (2)cos(x +20°)cos(x -40°)+cos(x -70°)sin(x -40°).知识点二 给值求值例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos α+β2.回顾归纳 三角变换是三角运算的灵魂与核心,它包括角的变换、函数名称的变换、三角函数式结构的变换.其中角的变换是最基本的变换.例如:α=(α+β)-β,α=β-(β-α),α=(2α-β)-(α-β),α=12[(α+β)+(α-β)],α=12[(β+α)-(β-α)]等. 变式训练2 已知α,β均为锐角,sin α=817,cos(α-β)=2129,求cos β的值.知识点三 给值求角型 例3 已知cos α=17,cos(α+β)=-1114,且α、β∈⎝⎛⎭⎫0,π2,求β的值.回顾归纳 (1)本题属“给值求角”问题,实际上也可转化为“给值求值”问题,求一个角的值,可分以下三步进行:①求角的某一三角函数值;②确定角所在的范围(找一个单调区间);③确定角的值.(2)确定用所求角的哪种三角函数值,要根据具体题目而定.如本题求β的余弦值比求β的正弦值要好.变式训练3 已知cos(α-β)=-1213,cos(α+β)=1213,且α-β∈⎝⎛⎭⎫π2,π,α+β∈⎝⎛⎭⎫3π2,2π,求角β的值.1.公式C (α-β)是三角恒等式,既可正用,也可逆用,要注意公式的结构名称、特征、灵活变换角或名称.2.公式C (α-β)中的角α、β为任意角,既可以代表具体的角,也可以代表代数式.可以把α、β视为一个“代号”,将公式标记作:cos(▭-△)=cos ▭cos △+sin ▭sin △.课时作业一、选择题1.化简cos(α+β)cos α+sin(α+β)sin α得( )A .cos αB .cos βC .cos(2α+β)D .sin(2α+β)2.满足cos αcos β=32-sin αsin β的一组α,β的值是( ) A .α=1312π,β=54π B .α=1312π,β=34π C .α=π2,β=π6 D .α=π4,β=π63.若cos(α-β)=55,cos 2α=1010,并且α、β均为锐角且α<β,则α+β的值为( ) A.π6 B.π4 C.3π4 D.5π64.若sin(π+θ)=-35,θ是第二象限角,sin ⎝⎛⎭⎫π2+φ=-255,φ是第三象限角,则cos(θ-φ)的值是( )A .-55 B.55 C.11525D. 5 5.若sin α+sin β=1-32,cos α+cos β=12,则cos(α-β)的值为( ) A.12 B .-32 C.34 D .1二、填空题6.cos 47°cos 77°-sin 47°cos 167°=________.7.若cos(α-β)=13,则(sin α+sin β)2+(cos α+cos β)2=________.三、解答题8.已知tan α=43,cos(α+β)=-1114,α、β均为锐角,求cos β的值.9.已知cos(α-β)=-45,sin(α+β)=-35,π2<α-β<π,3π2<α+β<2π,求β的值.第三章 三角恒等变换§3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式答案知识梳理1.(cos α,sin α) (cos β,sin β) (cos α,sin α) (cos β,sin β) cos αcos β+sin αsin β cos(α-β)2.cos αcos β+sin αsin β自主探究解 方法一 15°=60°-45°cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45°=12×22+32×22=2+64. 方法二 15°=45°-30°,cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. 对点讲练例1 解 (1)原式=cos 105°+sin 195° =cos 105°+sin(90°+105°)=cos 105°+cos 105° =2cos 105°=2cos(135°-30°)=2×(cos 135°cos 30°+sin 135°sin 30°)=2×⎝⎛⎫-22×32+22×12=2-62. (2)原式=cos(α-45°)cos(15°+α)+sin(45°-α)·cos(15°+90°+α)=cos(α-45°)cos(15°+α)-sin(45°-α)sin(15°+α)=cos(α-45°)cos(15°+α)+sin(α-45°)sin(15°+α)=cos[(α-45°)-(15°+α)]=cos(-60°)=cos 60°=12.变式训练1 解 (1)原式=cos ⎝⎛⎭⎫π4-π6=cos π4cos π6+sin π4sin π6=2+64. (2)cos(x +20°)cos(x -40°)+cos(x -70°)·sin(x -40°) =cos(x +20°)cos(x -40°)+cos(70°-x )·sin(x -40°) =cos(x +20°)cos(x -40°)+sin(x +20°)·sin(x -40°) =cos[(x +20°)-(x -40°)]=cos 60°=12. 例2 解 ∵α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2, ∴α-β2∈⎝⎛⎭⎫π4,π,α2-β∈⎝⎛⎭⎫-π4,π2, ∴sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-181=459, cos ⎝⎛⎭⎫α2-β= 1-sin 2⎝⎛⎭⎫α2-β= 1-49=53. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2·sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. 变式训练2 解 因为α∈⎝⎛⎭⎫0,π2,sin α=817<12, 所以0<α<π6. 又因为α-β∈⎝⎛⎭⎫-π2,π6,cos(α-β)=2129<32, 所以-π2<α-β<-π6, 所以cos α=1-sin 2α=1-⎝⎛⎭⎫8172=1517,sin(α-β)=-1-cos 2(α-β)=-1-⎝⎛⎭⎫21292=-2029, 所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =1517×2129+817×⎝⎛⎭⎫-2029=155493. 例3 解 ∵α、β∈⎝⎛⎭⎫0,π2且cos α=17, cos(α+β)=-1114, ∴sin α=1-cos 2α=437, sin(α+β)=1-cos 2(α+β)=5314.又∵β=(α+β)-α,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝⎛⎭⎫-1114×17+5314×437=12.又∵β∈⎝⎛⎭⎫0,π2,∴β=π3. 变式训练3 解 由α-β∈⎝⎛⎭⎫π2,π,且cos(α-β)=-1213, 得sin(α-β)=513, α+β∈⎝⎛⎭⎫3π2,2π,且cos(α+β)=1213, 得sin(α+β)=-513. cos 2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=1213×⎝⎛⎭⎫-1213+⎝⎛⎭⎫-513×513=-1. 又∵α+β∈⎝⎛⎭⎫32π,2π, α-β∈⎝⎛⎭⎫π2,π⇒2β∈⎝⎛⎭⎫π2,3π2. ∴2β=π,则β=π2. 课时作业1.B 2.A3.C [sin(α-β)=-255(-π2<α-β<0). sin 2α=31010, ∴cos(α+β)=cos[2α-(α-β)]=cos 2αcos(α-β)+sin 2αsin(α-β)=1010·55+⎝⎛⎭⎫31010·⎝⎛⎭⎫-255=-22, ∵α+β∈(0,π),∴α+β=3π4.] 4.B [∵sin(π+θ)=-35, ∴sin θ=35,θ是第二象限角, ∴cos θ=-45. ∵sin ⎝⎛⎭⎫π2+φ=-255,∴cos φ=-255, φ是第三象限角,∴sin φ=-55. ∴cos(θ-φ)=cos θcos φ+sin θsin φ=⎝⎛⎭⎫-45×⎝⎛⎭⎫-255+35×⎝⎛⎭⎫-55=55.]5.B [由题意知⎩⎨⎧ sin α+sin β=1-32 ①cos α+cos β=12② ①2+②2⇒cos(α-β)=-32.] 6.327.83解析 原式=2+2(sin αsin β+cos αcos β)=2+2cos(α-β)=83. 8.解 ∵α∈⎝⎛⎭⎫0,π2,tan α=43, ∴sin α=437,cos α=17. ∵α+β∈(0,π),cos(α+β)=-1114, ∴sin(α+β)=5314. ∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =⎝⎛⎭⎫-1114×17+5314×437=12.9.解 ∵π2<α-β<π,cos(α-β)=-45, ∴sin(α-β)=35. ∵3π2<α+β<2π, sin(α+β)=-35, ∴cos(α+β)=45. ∴cos 2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=45×⎝⎛⎭⎫-45+⎝⎛⎭⎫-35×35=-1. ∵π2<α-β<π,3π2<α+β<2π, ∴π2<2β<3π2,∴2β=π,∴β=π2.。