一、心肌细胞的静息电位与神经、骨骼肌静息电位的区别及发生原理
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
第三节心肌的生理在循环系统中,心脏起着泵血的功能,推动血液循环。
心脏的这种功能是由于心肌进行节律性的收缩与舒张及瓣膜的活动而实现的。
心肌的收缩活动又决定心肌具有兴奋性,传导性等生理特性。
心肌细胞膜的生物电活动是兴奋性和传导性等生理特性的基础。
故本节先讨论心肌细胞的生物电活动,进而阐明心肌的生理特性。
在此基础上,再进一步讨论心脏的生理功能。
心肌的生理特性心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。
兴奋性、自律性和传导性是以肌膜的生物电活动为基础的,故又称为电生理特性。
心肌细胞的生物电现象和神经组织一样,心肌细胞在静息和活动时也伴有生物电变化(又称跨膜电位)。
研究和了解心肌的生物电现象,对进一步理解心肌生理特性具有重大意义。
从组织学,电生理特点和功能可将心肌细胞分为两大类。
一类是普通细胞,含有丰富的肌原纤维,具有收缩功能,称为工作细胞,工作细胞属于非自律性细胞,它不能产生节律性兴奋活动,但它具有兴奋性和传导兴奋的能力。
它们包括心房肌和心室肌。
另一类是一些特殊分化了的心肌细胞,它们含肌原纤维很少或完全缺乏;故已无收缩功能,它们除具有兴奋性、传导性外,还具有自动产生节律性兴奋的能力,故又称自律细胞。
主要包括P细胞和浦肯野细胞。
它们与另一些既不具有收缩功能又无自律性,只保留很低的传导性的细胞组成心脏中的特殊传导系统。
特殊传导系统是心脏中发生兴奋和传导兴奋的组织,起着控制心脏节律性活动的作用。
特殊传导系统包括窦房结、房室交界、房室束和末梢浦肯野纤维。
一、心肌的兴奋性心肌细胞有两类,一类是具有收缩能力的心房肌和心室肌,称工作细胞即非自律细胞;另一类是特殊分化的细胞,自律细胞,构成心脏的特殊传导系统(一)心室肌细胞跨膜电位(非自律细胞)静息电位(Rp)及其形成机制心肌细胞和骨骼肌一样在静息状态下膜内为负,膜外为正,呈极化状态。
这种静息状态下膜内外的电位差称为静息电位。
不同心肌的静息电位的稳定性不同,人和哺乳类动物心脏的非自律细胞的静息电位稳定,膜内电位低于膜外电位/90mV左右(以膜外为零电位,膜内侧为-90mV)。
心肌细胞的电生理特性5篇以下是网友分享的关于心肌细胞的电生理特性的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇(一)心肌细胞的电生理特性心肌细胞有自律性、兴奋性、传导性和收缩性,前三者和心律失常关系密切。
1.自律性:部分心肌细胞能有规律地反复自动除极(由极化状态转为除极状态),导致整个心脏的电—机械活动,这种性能称为自律性,具有这种性能的心肌细胞,称为自律细胞。
窦房结、结间束、房室交接处、束支和蒲肯野纤维网均有自律性;腔静脉和肺静脉的入口、冠状窦邻近的心肌以及房间隔和二尖瓣环也具有自律性,而心房肌、房室结的房—结区和结区以及心室肌则无自律性。
2.兴奋性(即应激性):心肌细胞受内部或外来适当强度刺激时,能进行除极和复极,产生动作电位,这种性能称为兴奋性或应激性。
不足以引起动作电位的刺激,称为阈值下刺激,能引起动作电位的最低强度的刺激,称为阈值刺激。
心肌在发生兴奋时,首先产生电变化,并由电变化进而引起心肌的收缩反应。
心肌的兴奋性在心动周期的不同时期有很大变化,根据这一变化可将心动周期分为反应期和不应期,后者又可分为绝对不应期、有效不应期、相对不应期和超常期。
(1)绝对不应期和有效不应期:从除极开始,在一段时间内心肌细胞对任何强度的刺激均不起反应,称为绝对不应期。
有效不应期是刺激不能引起动作电位反应的时期,在时间上略长于绝对不应期。
在有效不应期的后期,刺激可引起局部兴奋,但不能传布,从而影响下一个动作电位,形成隐匿传导。
这一时期相当于QRS波群开始至接近T波顶峰这一段时间。
心肌的不应期可保护心肌不至于因接受过频的刺激而发生频繁收缩。
房室结不应期最长,心室肌次之,心房肌最短。
心肌不应期的长短与其前一个搏动的心动周期长短有关。
心动周期越长,不应期越长,反之,则短。
(2)相对不应期:对弱刺激不起反应,对较强的刺激虽可产生兴奋反应,但这种兴反应较弱而不完全,表现在对兴奋传导速度缓慢和不应期缩短,二者均容易形成单向阻滞和兴奋的折返而发生心律失常。
生理学知识点归纳第一章:绪论一.生命活动的基本特征:新陈代谢,兴奋性,生殖。
二.内环境和稳态:体液量(占体重的60%):细胞内液40%、细胞外液20%(组织液、血浆、淋巴液等)1.内环境:细胞生存的液体环境,即细胞外液。
2.稳态:内环境的理化性质(如温度、PH、渗透压和各种液体成分等)的相对恒定状态称为稳态,是一种动态平衡状态,是维持生命活动的基础。
三.生理调节:神经调节、体液调节和自身调节。
神经调节是主要调节形式,基本过程:反射。
完成反射活动的基础是反射弧(感受器、传入神经、神经中枢、传出神经、效应器)。
神经调节的特点是作用迅速、准确、短暂。
体液调节的特点是缓慢、广泛、持久。
自身调节:心肌细胞的异长自身调节,肾血流量在一定范围内保持恒定的自身调节,小动脉灌注压力增高时血流量并不增高的调节都是自身调节。
四.生理功能的反馈控制:负反馈调节的意义在于维持机体内环境的稳态。
正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,是一种破坏原先的平衡状态的过程。
排便、排尿、射精、分娩、血液凝固、神经细胞产生动作电位时钠通道的开放和钠内流互相促进等。
五.应激与应急参与应激反应的主要激素:糖皮质激素、促肾上腺皮质激素ACTH 参与应急反应的主要激素:肾上腺素AD、去甲肾上腺素NA第二章:细胞的基本功能一.细胞膜的基本结构和跨膜物质转运功能1. 细胞膜的基本结构-液体镶嵌模型.基本内容①基架:液态脂质双分子层; ②蛋白质:具有不同生理功能; ③寡糖和多链糖.2.细胞膜的物质转运被动转运:⑴单纯扩散:小分子脂溶性物质、顺浓度、不耗能。
如O2、CO2、NH3等。
⑵易化扩散:非脂溶性小分子物质、顺浓度、不耗能、但转运依赖细胞膜上特殊结构的"帮助",包括离子通道和载体转运转运(葡萄糖、氨基酸等)。
载体转运的特异性较高,存在竞争性抑制现象。
主动转运:非脂溶性小分子物质、逆浓度、消耗能量。
分为原发性主动转运(离子泵钠泵)和继发性主动转运(肠上皮细胞、肾小管上皮细胞吸收葡萄糖)出胞和入胞:大分子物质或物质团块出入细胞的方式。
生理学学习重点笔记总结一绪论1.生命活动的基本特征: 新陈代谢,兴奋性,生殖。
2. 生命活动与环境的关系:对多细胞机体而言,整体所处的环境叫外环境,而构成机体的细胞所处的环境叫内环境。
当机体受到刺激时,机体内部代谢和外部活动,将会发生相应的改变,这种变化称为反应.反应有兴奋和抑制两种形式。
3. 自身调节:心肌细胞的异长自身调节,肾血流量在一定范围内保持恒定的自身调节,小动脉灌注压力增高时血流量并不增高的调节都是自身调节。
考生自己注意总结后面各章节学到自身调节。
4. 神经调节是机体功能调节的主要调节形式,特点是反应速度快、作用持续时间短、作用部位准确。
5. 体液调节的特点是作用缓慢、持续时间长、作用部位广泛。
6. 生理功能的反馈控制:负反馈调节的意义在于维持机体内环境的稳态。
正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,是一种破坏原先的平衡状态的过程。
排便、排尿、射精、分娩、血液凝固、神经细胞产生动作电位时钠通道的开放和钠内流互相促进等生理活动都是正反馈。
考生自己注意总结后面各章节学到的正反馈和负反馈调节。
〔二〕细胞的基本功能①基架:液态脂质双分子层;②蛋白质:具有不同生理功能;③寡糖和多链糖.2. 细胞膜的物质转运⑴小分子脂溶性物质可以自由通过脂质双分子层,因此,可以在细胞两侧自由扩散,扩散的方向决定于两侧的浓度,它总是从浓度高一侧向浓度低一侧扩散,这种转运方式称单纯扩散。
正常体液因子中仅有O2、CO2、NH3以这种方式跨膜转运,另外,某些小分子药物可以通过单纯扩散转运。
⑵非脂溶性小分子物质从浓度高向浓度低处转运时不需消耗能量,属于被动转运,但转运依赖细胞膜上特殊结构的"帮助",因此,可以把易化扩散理解成"帮助扩散"。
什么结构发挥"帮助"作用呢?--细胞膜蛋白,它既可以作为载体将物质从浓度高处"背"向浓度低处,也可以作为通道,它开放时允许物质通过,它关闭时不允许物质通过。
简介静息电位(Resting Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。
由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
形成机理静息电位产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。
细胞膜内K+浓度高于细胞外。
安静状态下膜对K+通透性大,K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。
这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。
膜内外电位差便维持在一个稳定的状态,即静息电位。
测定静息电位的方法插入膜内的是尖端直径<1μm的玻璃管微电极,管内充以KCl溶液,膜外为参考电极,两电极连接到电位仪测定极间电位差。
静息电位都表现为膜内比膜外电位低,即膜内带负电而膜外带正电。
这种内负外正的状态,称为极化状态。
静息电位是一种稳定的直流电位,但各种细胞的数值不同。
哺乳动物的神经细胞的静息电位为-70mV(即膜内比膜外电位低70mV),骨骼肌细胞为-90mV,人的红细胞为-10mV。
静息电位的产生与细胞膜内外离子的分布和运动有关。
正常时细胞内的K+浓度和有机负离子A-浓度比膜外高,而细胞外的Na+浓度和Cl-浓度比膜内高。
在这种情况下,K+和A-有向膜外扩散的趋势,而Na+和Cl-有向膜内扩散的趋势。
但细胞膜在安静时,对K+的通透性较大,对Na+和Cl-的通透性很小,而对A-几乎不通透。
因此,K+顺着浓度梯度经膜扩散到膜外使膜外具有较多的正电荷,有机负离子A-由於不能透过膜而留在膜内使膜内具有较多的负电荷。
这就造成了膜外变正、膜内变负的极化状态。
由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。
如何理解静息电位和动作电位的形成机制作者:陈学大来源:《中学课程辅导·教师教育》 2018年第10期高三教学复习中,“兴奋在神经纤维上的传导”是一个必讲内容,其中“静息电位和动作电位的形成机制”在书上(人教版必修三第18页)以小字呈现,且描述极为简略,学生看后还是不甚清楚,而高考命题又涉及此内容,如:如2009山东卷第8题和2010湖南卷第5题等,如何让学生彻底弄懂,在考试中遇到类似问题心里有底?首先它就要求老师必须清楚。
我参阅了《普通生物学》及《人体及动物生理学》等书籍,综述如下,供同行们参考。
一、静息电位(Resting Potential)指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。
也称跨膜静息电位。
(1)形成机制正常时胞内的K+浓度和有机负离子(A-)浓度比胞外高,而胞外的Na+浓度和CL-浓度比胞内高。
这种情况下,K+和A-有向膜外扩散的趋势,而Na+和CL-有向膜内扩散的趋势。
但细胞膜在安静时,对K+的通透性较大,对Na+和CL-的通透性很小,而对A-几乎不通透。
因此,K+顺浓度梯度由膜内扩散到膜外使膜外具有较多的正电荷,有机负离子A-由于不能透过膜而使膜内具有较多的负电荷。
造成了膜外变正、膜内变负的极化状态。
由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随K+外移的增加,阻止K+外移的电位差也增大。
当促使K+外移的浓度差和阻止K+外移的电位差这两种力量达到平衡时,经膜的K+净通量为零。
此时,膜两侧的电位差就稳定于某一数值不变,此电位差称为K+的平衡电位,神经细胞膜的静息电位在数值上接近于K+的平衡电位。
(2)静息电位值的大小及影响因素静息电位是一个相对静止的膜电位固定值,不同细胞的数值不同。
如:哺乳动物神经细胞的静息电位为-70mV,骨骼肌细胞为-90mV。
静息电位主要是由K+向膜外扩散而造成的。
如果人工改变细胞膜外K+的浓度,当K+浓度增高时测得的静息电位值减小,反之则增大。
动作电位静息电位1. 什么是动作电位和静息电位?动作电位和静息电位是神经元细胞膜的两种电位状态。
动作电位是指神经元细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。
而静息电位则是指神经元细胞膜在没有受到任何刺激时的电压状态。
2. 动作电位的过程当神经元受到足够强度的刺激时,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位的反转。
这种电位反转的过程被称为动作电位。
动作电位的过程可以分为四个阶段:- 静息状态:细胞膜内外的离子浓度分布保持不变,细胞膜内外电位差为-70mV左右。
- 起始阶段:细胞膜受到刺激后,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位差快速反转到+30mV左右。
- 上升阶段:细胞膜内外电位差继续上升到峰值,此时细胞膜内外电位差为+30mV左右。
- 下降阶段:细胞膜内外电位差开始迅速下降,恢复到静息状态。
3. 静息电位的维持静息电位的维持与神经元细胞膜内外的离子浓度分布有关。
在静息状态下,神经元细胞膜内外的离子浓度分布如下:- 细胞内钾离子(K+)浓度高,细胞外钠离子(Na+)浓度高。
- 细胞内氯离子(Cl-)浓度低,细胞外氯离子(Cl-)浓度高。
这种离子分布的差异导致了细胞膜内外的电位差,使得细胞膜内电位为负电荷,外电位为正电荷。
这种静息状态的电位差通常为-70mV左右。
维持这种静息状态需要通过细胞膜上的离子通道和离子泵来实现。
4. 总结动作电位和静息电位是神经元细胞膜的两种电位状态。
动作电位指细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。
静息电位指细胞膜在没有受到任何刺激时的电压状态。
神经元细胞膜内外离子浓度分布的差异是维持静息电位的主要原因。
通过细胞膜上的离子通道和离子泵来调节离子浓度分布,从而维持静息状态。
动作电位和静息电位的研究有助于人们更好地理解神经元的工作原理,为治疗神经系统相关疾病提供参考。
生理学复习思考题名词解释题1负反馈: Negative feedback:负反馈:在一个闭环系统中,控制部分活动受受控部分反馈信号(Sf)的影响而变化,若Sf为负,则为负反馈。
其作用是输出变量受到扰动时系统能及时反应,调整偏差信息(Se),以使输出稳定在参考点(Si)。
P62易化扩散:不溶或少溶于脂质的物质在一些特殊蛋白分子的协助下完成跨膜转运。
载体介导(结构特异性,饱和现象,竞争性抑制)和通道介导由高浓度到低浓度。
3 excitability兴奋性:细胞受刺激时产生动作电位的能力,称为兴奋性。
4兴奋: 兴奋:组织细胞产生动作电位的情况。
5阈值: 为临界值的意思,也就是刺激生体系等时,虽然对小刺激不反应,但当超过某限度时就会激烈反应的这种界限值6阈电位:能使Na+通道大量开放从而产生动作电位的临界膜电位。
(或能使膜出现Na内流与去极化形成负反馈的膜电位值)。
7后负荷:指肌肉开始收缩时遇到的阻力8红细胞沉降率: 通常以抗凝的血液在血沉管中单位时间内红细胞下沉的高度表示为红细胞沉降率。
9促红细胞生成素: 是细胞因子的一种,在骨髓造血微环境下促进红细胞的生成。
分类上是集落刺激因子。
10心动周期:心脏每一次收缩和舒张,构成一个机械活动周期,称为心动周期。
11心指数:以每平方米体表面积计算的心输出量。
正常成人安静时的心指数为3.0~3.5L/(min.m2)。
12 有效滤过压:是指促进超滤的动力与对抗超滤的阻力之间的差值. (肾小球有效滤过压=肾小球毛细血管血压+囊内液胶体渗透压(约为0))—(血浆胶体渗透压(可变)+肾小囊内压)。
13功能余气量:平静呼吸末尚存留在肺内的气量。
14 血氧饱和度: 血氧饱和度:即血红蛋白氧饱和度,血红蛋白氧含量和氧容量的比值。
15胃肠激素:在胃肠道粘膜下存在着数十种内分泌细胞,合成和释放多种有生物活性的化学物质,统称胃肠激素。
16胃排空: 食物由胃排入十二指肠的过程称为胃排空。
第一章1.1 知识点纲要1.1.2 细胞膜的结构特征是细胞功能的结构基础1.1.4 细胞的跨膜信号转导(transmembrane singal tranduction)定义:刺激携带着内外环境变化的信息(表现为一种能量形式)作用于细胞膜,通过细胞膜将该信息(能量)转换成一种新的信息(一种弱电能量)而传递到细胞内,这个转换过程叫细胞跨膜信号转导。
结构基础:在细胞膜的脂质双层结构中镶嵌着许多结构和功能不同的蛋白质:通道蛋白、受体蛋白、G蛋白、效应器酶是跨膜信号转导的结构基础。
1.离子通道蛋白:2.与信号跨膜转导有关的受体(receptor)蛋白受体蛋白是一种能识别和选择性结合某种配体(信号分子),起到传递化学信息的蛋白质。
3.G蛋白(guanine nucleotide-binding protein)、 G蛋白效应器(G protein effector)和第二信使(second messenger)4.细胞跨膜信号转导的基本特征①多途径、多层次的细胞跨膜信号转导通路具有汇聚或发散的特点。
每一种受体都能识别各自的特异配体,来自各非相关受体的信号可以在细胞内汇聚后激活同一个效应器酶而引起细胞的生理生化反应和行为的改变。
来自相同配体(如表皮生长因子或胰岛素)的信息可发散激活多种效应器酶,导致多样化的细胞应答。
②细胞跨膜信号转导既有专一性,又有作用机制的相似性。
配体与受体结构上的互补性是细胞跨膜信号转导专一性的重要基础,但千变万化的细胞外信号只需通过少数几种第二信使就可介导多种多样的细胞应答反应。
③细胞跨膜信号转导过程是一多级信号放大过程,但这种放大作用的启动和终止又是并存的,从而使信号转导精确而适度。
正常情况下,激素(配体)本身对受体的数目有上调和下调的影响(见第9章);信号分子的磷酸化和去磷酸化、G蛋白与GDP、GTP结合的可逆变化;Ca2+的释放与回收;第二信使的生成与降解等都是同时发生,对细胞外信号不会产生持续的反应,而是瞬间的反应。
1、心肌细胞可分为两大类:自律细胞和非自律细胞。
自律细胞有自律性起搏活动(舒张去极)不存在静息电位,而以动作电位最大程度复极时的膜电位——最大舒张电位(MDP)或最大复极电位来代表。
非自律细胞指工作心肌细胞,存在静息电位。
2、自律细胞又分为慢反应自律细胞和快反应自律细胞。
前者如窦房结和房室结细胞,
其最大舒张电位在-50mV~-70mV之间。
由于这类细胞的细胞膜上的内向整流性钾通道(IK1通道)比较贫乏甚或缺如,其最大舒张电位介于钾和钠的电化学平衡电位之间,故比较正。
快反应自律细胞为浦肯野细胞,其细胞膜上IK1通道密度很高,在最大舒张电位水平时对K+的通透性很高,膜电位趋近钾的电化学平衡电位,比较负,约-90mV。
3、非自律性细胞中,心室肌细胞的细胞膜上IK1通道密度比心房肌细胞高,而次于浦肯野细胞,其静息电位约为-80mV~-90mV,而心房肌细胞仅为-80mV 左右。
心房肌细胞的细胞膜上乙酰胆碱依赖性钾通道(IK-ACh通道)的密度比心室肌高5~6倍。
IK-ACh通道在静息时有自发性开放活动,又可以因为迷走神经兴奋、末梢释放乙酰胆碱而增加开放,从而使心房肌细胞的静息电位趋向于更负。
所以,心房肌细胞的静息电位易于变动,也是它的一个特点。