3、|a-2|+b2-2b+1=0,求a=( ), b=( ).
4、计算(a+b+c)2-(a-b-c)2 5、已知两个正方形的边长之差为2,面积之 差84,求两个正方形的边长。
相 信 你 能 行
整体思想,转化思想
智力冲浪
(1)不论a、b为何数,代数式a2+b2-2a+4b+5的 值总是 (
D
) B.负数 C.正数 D.非负数
A.0
思考和感悟
因式分解不可怕, 简化计算需要它, 条件求值应用它, 数学问题想到它, 我们真的喜欢它 .
五.本课小结
1.复习因式分解概念 2.重温因式分解步骤 3.领略因式分解应用
有没有? 能不能?
知识回顾题组
A组练习
自主探究
将下列各式分解因式:
⑴ -a² -ab; ⑵ m² -n² ; ⑶ x² +2xy+y²(4)3am² -3an² ; (5)x3-2x2+x;(6)x2(x-y)+y2(y-x)
提醒:
(1) a+b与b+a
(a+b)n = (b+a)n
互为相同数,
(n是整数)
(2)a-b 与 -a+b
(a-b)n = (b-a)n
互为相数.
(n是偶数)
(a-b)n = -(b-a)n (n是奇数)
(3)a+b 与 -a-b
(-a-b)n = (a+b)n (-a-b)n = -(a+b)n
互为相反数.
(n是偶数) (n是奇数)
互为相反数的偶次幂相等,奇次幂仍互为相反数
七年级下册(青岛版)