第6章 大数据分析与挖掘习题答案
- 格式:doc
- 大小:33.00 KB
- 文档页数:1
大数据时代下数据挖掘试题与答案什么是数据挖掘?数据挖掘是从大量数据中自动或半自动的发现知识和信息的过程。
数据挖掘算法可以用于分类、聚类、预测和关联分析等领域。
随着大数据时代的到来,数据挖掘的应用越来越广泛,已成为数据科学家必备的技能之一。
数据挖掘的步骤数据挖掘一般需要经过以下步骤:1.数据预处理:包括数据清洗、数据集成、数据变换和数据规约等步骤,目的是去除噪声和错误,增加数据的质量。
2.特征选择:根据算法的需求选择样本的特定特征,去除无关特征和冗余特征。
3.算法选择:根据数据类型和建模需求选择相应的数据挖掘算法。
4.数据建模:将预处理后的数据输入到选择的算法中进行数据建模,得到模型。
5.模型评价:评估模型的准确率和可靠性,以改进模型和提高预测精度。
6.模型应用:将模型应用到新的数据中进行预测或分类等任务。
常用的数据挖掘算法1.KNN算法:K近邻算法是基于样本相似度进行分类的,分类时采用与待分类样本相似度最高的K个样本作为参照,根据它们的类别多数表决决定待分类样本的类别。
2.决策树算法:决策树算法通过对样本的不断划分,建立起一棵决策树,用于分类和预测。
3.聚类分析算法:聚类分析是将样本划分为不同的组或类别,使组内的样本相似度较高,组间的相似度较低,用于无监督学习。
4.关联分析算法:关联分析算法用于挖掘多个特征之间的关系和规律,常用于购物篮分析和客户分群等领域。
大数据时代下的数据挖掘挑战随着大数据的不断增长和数据种类的丰富多样,数据挖掘面临着以下挑战:1.数据质量问题:大数据中存在很多杂乱和不一致的数据,也存在许多错误和缺失,挖掘这些数据需要解决数据质量问题。
2.算法效率问题:由于大数据量和高复杂性,传统的算法可能无法处理这些数据,需要开发高效率和高并行度的算法。
3.隐私安全问题:随着数据的不断增长,数据隐私和安全问题日益严重,如何保证数据的安全性成为挖掘大数据的必要条件。
数据挖掘的应用场景数据挖掘的应用场景十分广泛,下面列出常见的场景:1.金融领域:货币流向分析、风险控制和金融市场预测等。
大学课程《数据挖掘》试题参考答案范围:∙ 1.什么是数据挖掘?它与传统数据分析有什么区别?定义:数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。
数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
区别:(1)数据挖掘的数据源与以前相比有了显著的改变;数据是海量的;数据有噪声;数据可能是非结构化的;(2)传统的数据分析方法一般都是先给出一个假设然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来。
即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。
在缺乏强有力的数据分析工具而不能分析这些资源的情况下,历史数据库也就变成了“数据坟墓”-里面的数据几乎不再被访问。
也就是说,极有价值的信息被“淹没”在海量数据堆中,领导者决策时还只能凭自己的经验和直觉。
因此改进原有的数据分析方法,使之能够智能地处理海量数据,即演化为数据挖掘。
∙ 2.请根据CRISP-DM(Cross Industry Standard Process for Data Mining)模型,描述数据挖掘包含哪些步骤?CRISP-DM 模型为一个KDD工程提供了一个完整的过程描述.该模型将一个KDD工程分为6个不同的,但顺序并非完全不变的阶段.1: business understanding: 即商业理解. 在第一个阶段我们必须从商业的角度上面了解项目的要求和最终目的是什么. 并将这些目的与数据挖掘的定义以及结果结合起来.2.data understanding: 数据的理解以及收集,对可用的数据进行评估.3: data preparation: 数据的准备,对可用的原始数据进行一系列的组织以及清洗,使之达到建模需求.4:modeling: 即应用数据挖掘工具建立模型.5:evaluation: 对建立的模型进行评估,重点具体考虑得出的结果是否符合第一步的商业目的.6: deployment: 部署,即将其发现的结果以及过程组织成为可读文本形式.(数据挖掘报告)∙ 3.请描述未来多媒体挖掘的趋势随着多媒体技术的发展,人们接触的数据形式不断地丰富,多媒体数据库的日益增多,原有的数据库技术已满足不了应用的需要,人们希望从这些媒体数据中得到一些高层的概念和模式,找出蕴涵于其中的有价值的知识。
大数据分析与挖掘复习题集附答案大数据分析与挖掘复习题集附答案一、选择题1. 数据挖掘的主要任务是:A. 模式发现和模型评估B. 数据收集和整理C. 数据分析和可视化D. 数据传输和存储答案:A2. 在数据挖掘过程中,数据预处理的目的是:A. 提取有价值的信息B. 去除异常值和噪声C. 构建合适的模型D. 优化数据存储结构答案:B3. 关联规则挖掘是指:A. 发现不同属性之间的关联关系B. 预测未来事件的发生C. 分析数据的变化趋势D. 构建数据的分类模型答案:A4. 在数据挖掘中,分类和聚类的主要区别在于:A. 数据来源的不同B. 目标的不同C. 算法的不同D. 结果的不同答案:B5. 大数据分析的核心挑战是:A. 数据存储和处理速度B. 数据质量和准确性C. 数据安全和隐私保护D. 数据可视化和展示答案:A二、填空题1. __________是指通过对海量数据进行深入分析和挖掘,从中发现有价值的信息。
答案:大数据分析与挖掘2. 在数据挖掘过程中,将数据按照一定的规则进行重新排列,以便更方便地进行分析和挖掘,这个过程称为__________。
答案:数据预处理3. 数据挖掘中的分类算法主要是通过对已有的样本进行学习和训练,从而预测新的样本所属的__________。
答案:类别4. 聚类算法是将相似的数据样本归为一类,不需要事先知道数据的__________。
答案:类别5. 在大数据分析中,数据的__________对于结果的准确性和可靠性至关重要。
答案:质量三、简答题1. 请简要说明大数据分析与挖掘的步骤和流程。
答:大数据分析与挖掘的步骤主要包括数据收集与清洗、数据预处理、模式发现、模型评估和应用。
首先,需要从各个数据源收集所需数据,并对数据进行清洗,去除异常值和噪声。
然后,通过数据预处理,对数据进行规范化、离散化等处理,以便于后续的分析和挖掘。
接着,利用合适的算法和技术,进行模式发现,例如关联规则挖掘、分类和聚类等。
数据挖掘习题答案数据挖掘习题答案数据挖掘作为一门重要的技术和方法,广泛应用于各个领域。
在学习数据挖掘的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以更好地理解和掌握数据挖掘的原理和应用。
以下是一些常见的数据挖掘习题及其答案,供大家参考。
一、选择题1. 数据挖掘的目标是什么?A. 发现隐藏在大数据中的模式和关联B. 提供数据存储和管理的解决方案C. 分析数据的趋势和变化D. 优化数据的存储和传输速度答案:A. 发现隐藏在大数据中的模式和关联2. 下列哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 回归D. 排序答案:D. 排序3. 数据挖掘的过程包括以下几个步骤,哪个是第一步?A. 数据清洗B. 数据集成C. 数据转换D. 数据选择答案:B. 数据集成4. 下列哪个不是数据挖掘中常用的算法?A. 决策树B. 支持向量机C. 朴素贝叶斯D. 深度学习答案:D. 深度学习5. 下列哪个不是数据挖掘的应用领域?A. 金融B. 医疗C. 娱乐D. 政治答案:D. 政治二、填空题1. 数据挖掘是从大量数据中发现________和________。
答案:模式,关联2. 数据挖掘的主要任务包括分类、聚类、回归和________。
答案:预测3. 数据挖掘的过程包括数据集成、数据清洗、数据转换和________。
答案:模式识别4. 决策树是一种常用的________算法。
答案:分类5. 数据挖掘可以应用于金融、医疗、娱乐等多个________。
答案:领域三、简答题1. 请简要介绍数据挖掘的主要任务和应用领域。
答:数据挖掘的主要任务包括分类、聚类、回归和预测。
分类是将数据集划分为不同的类别,聚类是将数据集中相似的样本归为一类,回归是根据已有的数据预测未知数据的值,预测是根据已有的数据预测未来的趋势和变化。
数据挖掘的应用领域非常广泛,包括金融、医疗、娱乐等。
在金融领域,数据挖掘可以用于信用评估、风险管理等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面;在娱乐领域,数据挖掘可以用于推荐系统、用户行为分析等方面。
数据仓库与数据挖掘第一章课后习题一:填空题1)数据库中存储的都是数据,而数据仓库中的数据都是一些历史的、存档的、归纳的、计算的数据。
2)数据仓库中的数据分为四个级别:早起细节级、当前细节级、轻度综合级、高度综合级。
3)数据源是数据仓库系统的基础,是整个系统的数据源泉,通常包括业务数据和历史数据。
4)元数据是“关于数据的数据”。
根据元数据用途的不同将数据仓库的元数据分为技术元数据和业务元数据两类。
5)数据处理通常分为两大类:联机事务处理和联机事务分析6)Fayyad过程模型主要有数据准备,数据挖掘和结果分析三个主要部分组成。
7)如果从整体上看数据挖掘技术,可以将其分为统计分析类、知识发现类和其他类型的数据挖掘技术三大类。
8)那些与数据的一般行为或模型不一致的数据对象称做孤立点。
9)按照挖掘对象的不同,将Web数据挖掘分为三类:web内容挖掘、web结构挖掘和web 使用挖掘。
10)查询型工具、分析型工具盒挖掘型工具结合在一起构成了数据仓库系统的工具层,它们各自的侧重点不同,因此适用范围和针对的用户也不相同。
二:简答题1)什么是数据仓库?数据仓库的特点主要有哪些?数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
主要特点:面向主题组织的、集成的、稳定的、随时间不断变化的、数据的集合性、支持决策作用2)简述数据挖掘的技术定义。
从技术角度看,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们不知道的、但又是潜在有用的信息和知识的过程。
3)什么是业务元数据?业务元数据从业务角度描述了数据仓库中的数据,它提供了介于使用者和实际系统之间的语义层,使得不懂计算机技术的业务人员也能够读懂数据仓库中的数据4)简述数据挖掘与传统分析方法的区别。
本质区别是:数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。
数据挖掘所得到的信息应具有先前未知、有效和实用三个特征。
大数据挖掘技术练习(习题卷6)第1部分:单项选择题,共51题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]基于输入的用户信息,通过模型的训练学习,找出数据中的规律和趋势,以确定未来目标数据的预测值()A)聚类B)分类C)预测D)关联答案:C解析:2.[单选题]使用pip工具升级科学计算扩展库numpy的完整命令是()A)pip install --upgrade numpyB)pip list --upgrade numpyC)upgrade numpyD)upg numpy--pip install答案:A解析:3.[单选题]在一个表中有字段“专业”,要查找包含“信息”两个字的记录,正确的表达式是______。
A)LEFT(专业, 2)="信息"B)LIKE "%信息%"C)LIKE "_信息_"D)RIGHT(专业, 2)="信息"答案:B解析:4.[单选题]两台路由器成为OSPF邻居关系的必要条件不包括A)两台路由器的Hello时间一致B)两台路由器的Dead时间一致C)两台路由器的Router ID一致D)两台路由器所属区域一致答案:C解析:5.[单选题]自动化高级分析实验室,实现与统一数据资源库互联,实现数据的自助组表、自助分析功能,满足不同层级、不同水平的用户需求的是( )A)初级分析;B)综合分析C)典型分析D)高级分析答案:D解析:6.[单选题]关于 K 均值和 DBSCAN 的比较,以下说法不正确的是( )。
A)KB)KC)KD)K答案:A解析:7.[单选题]属于定量的属性类型是A)标称B)序数C)区间D)相异答案:C解析:8.[单选题]终端支持的频段,在下列哪个流程中会得以体现A)ATTACHB)DETACHC)切换流程D)呼叫流程答案:A解析:9.[单选题]概念分层图是____图。
A)无向无环B)有向无环C)有向有环D)无向有环答案:B解析:10.[单选题]关于OLAP和OLTP的区别描述,不正确的是:A)OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同.B)与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务.C)OLAP的特点在于事务量大,但事务内容比较简单且重复率高.D)OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的.答案:C解析:11.[单选题]在FP-GROWTH算法中,已构造FP-Tree如图则项 I3 的条件模式基为A)<(I1,I2:2)>、I2:2、 I1:2B)<(I2,I1:2)>、I2:1、 I1:1C)<(I2,I1:2)>、I2:2、 I1:2D)<(I2,I1:1)>、I2:2、 I1:2答案:C解析:12.[单选题]下面的代码其功能为()>>> x = [range(3*i, 3*i+5) for i in range(2)]>>> x = list(map(list, x))>>> x = list(map(list, zip(*x)))A)首先生成一个随机的列表,然后生成矩阵B)首先生成一个包含列表的列表,然后生成矩阵C)首先生成一个包含列表的列表,然后模拟矩阵转置D)首先排序列表,然后模拟矩阵转置答案:C解析:13.[单选题]下述方法不属于聚类方法的是( )A)K-均值B)K-中心性C)DBSCAN算法D)神经网络答案:D解析:14.[单选题]设有一个回归方程为y=2-2.5x,则变量x增加一个单位时()A)y平均增加2.5个单位B)y平均增加2个单位C)y平均减少2.5个单位D)y平均减少2个单位答案:C解析:15.[单选题]JSON 中的中括号一般来表示( )。
大数据分析与挖掘智慧树知到课后章节答案2023年下青岛黄海学院青岛黄海学院第一章测试1.下列选项中,用于搭建数据仓库和保证数据质量的是()。
A:数据展现 B:数据分析 C:数据收集 D:数据处理答案:数据处理2.HTML文档属于()。
A:不是数据 B:结构化数据 C:非结构化数据 D:半结构化数据答案:半结构化数据3.数据挖掘的英文缩写()。
A:DM B:DA C:DC D:DB答案:DM4.Hadoop的基础架构是()。
A:ABC都不正确B:分布式系统 C:操作系统 D:同步系统答案:分布式系统5.一般情况下,计算机处理的数据都是()。
A:无结构化的数据 B:非结构化的数据 C:半结构化的数据 D:结构化的数据答案:结构化的数据第二章测试1.在Python中实现多个条件判断需要用到与if语句的组合语句是()A:ABC均不是 B:elif C:pass D:else答案:elif2.Python 语言属于以下哪种语言()A:机器语言 B:ABC都不正确 C:高级语言 D:汇编语言答案:高级语言3.下列选项中,不是Python关键字的是()A:static B:pass C:yield D:from答案:static第三章测试1.已知x= np.array((1,2,3,4,5)),那么表达(x**2).max()的值为()。
A:20 B:25 C:15 D:30答案:252.已知x= np.array((1,2, 3, 4, 5)),那么表达式(x//5).sum()的值()。
A:2 B:3 C:4 D:1答案:13.已知x=np.array((1,2,3), 4, 5),那么表达式sum(x*x)的值()。
A:50 B:55 C:60 D:65答案:554.在Matplotlib中,用于绘制散点图的函数是()。
A:pie() B:scatter() C:bar() D:hist()答案:scatter()5.下列选项中,不属于Seaborn库特点的是()A:多个内置主题及颜色主题 B:基于网格绘制出更加复杂的图像集合 C:可以处理大量的数据流 D:Seaborn是基于Matplotlib的可视化库答案:可以处理大量的数据流第四章测试1.下列不属于HTTP请求过程的是()A:请求重定向 B:超时设置 C:搜索文档 D:生成请求答案:搜索文档2.下列关于Python爬虫库的功能,描述不正确的是()A:通用爬虫库——urllib B:Html/Xml解析器——pycurl C:爬虫库——Scrapy D:通用爬虫库——requests答案:Html/Xml解析器——pycurl3.下列对于Scrapy常用命令及其作用描述错误的是()A:list是一个全局命令,主要用于列出项目中所有可用的爬虫 B:startproject 是一个全局命令,主要用于运行一个独立的爬虫 C:crawl是一个项目命令,主要用于启动爬虫 D:genspider是一个项目命令,主要用于创建爬虫模板答案:startproject是一个全局命令,主要用于运行一个独立的爬虫4.下列请求头中,可以记载用户信息实现模拟登录的是()A:Connection B:User-Agent C:Cookie D:Host答案:Cookie5.下列不属于Scrapy框架的基本组成部分的是()A:下载器与Spiders B:引擎与调度器 C:Item Pipelnes D:解析中间件答案:引擎与调度器第五章测试1.下列关于Pandas数据读/写说法错误的是()A:to_csv函数能够读取数据库的数据写入.csv文件 B:read_csv能够读取所有文本文档的数据 C:to_excel函数能够将结构化数据写入Excel文件D:read_sql能够读取数据库的数据答案:read_csv能够读取所有文本文档的数据2.下列关于时间相关类错误的是()A:Timestamp是存放某个时间点的类 B:两个数值上相同的Period和Timestamp所代表的意义相同 C:Period是存放某个时间段的类D:Timestamp数据可以使用标准的试卷字符串转换得来答案:两个数值上相同的Period和Timestamp所代表的意义相同3.使用pivot_table函数制作透视表设置行分组键的参数为()。
数据挖掘导论课后习题答案数据挖掘导论课后习题答案数据挖掘是一门涉及统计学、机器学习和数据库技术的跨学科领域,旨在从大量的数据中发现有价值的信息和模式。
在这门课程中,学生将学习数据挖掘的基本概念、方法和技术,并通过习题的解答来加深对这些概念的理解和应用。
下面是一些常见的数据挖掘导论课后习题及其答案,供学生参考。
1. 什么是数据挖掘?数据挖掘的目标是什么?答:数据挖掘是从大量的数据中提取出有用的信息和模式的过程。
其目标是发现隐藏在数据背后的知识和规律,以便支持决策和预测。
2. 数据挖掘的主要任务有哪些?答:数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据分为不同的类别;聚类是将数据分为相似的群组;关联规则挖掘是发现数据中的关联关系;异常检测是识别与其他数据不同的异常数据;预测是根据已有的数据来预测未来的趋势。
3. 数据挖掘的过程包括哪些步骤?答:数据挖掘的过程一般包括问题定义、数据收集、数据预处理、特征选择、模型建立、模型评估和结果解释等步骤。
问题定义是明确挖掘的目标和需求;数据收集是获取相关数据;数据预处理是对数据进行清洗、集成、转换和规约;特征选择是选择对挖掘任务有用的特征;模型建立是选择合适的模型并进行训练;模型评估是评估模型的性能;结果解释是对挖掘结果进行解释和应用。
4. 什么是分类算法?常见的分类算法有哪些?答:分类算法是将数据分为不同类别的算法。
常见的分类算法包括决策树、朴素贝叶斯、支持向量机和神经网络等。
决策树通过构建树状结构来进行分类;朴素贝叶斯基于贝叶斯定理进行分类;支持向量机通过寻找最优超平面进行分类;神经网络模拟人脑神经元的工作原理进行分类。
5. 什么是聚类算法?常见的聚类算法有哪些?答:聚类算法是将数据分为相似群组的算法。
常见的聚类算法包括K均值聚类、层次聚类和DBSCAN等。
K均值聚类通过将数据分为K个簇来进行聚类;层次聚类通过构建树状结构来进行聚类;DBSCAN基于密度的聚类算法,将高密度区域看作簇。
数据挖掘习题参考答案数据挖掘习题参考答案数据挖掘作为一门热门的学科,已经在各个领域得到广泛应用。
它的目标是从大量的数据中发现有用的信息,并且用这些信息来解决实际问题。
为了帮助读者更好地理解数据挖掘的概念和技术,本文将提供一些数据挖掘习题的参考答案,希望能够对读者有所帮助。
习题一:什么是数据挖掘?它有哪些应用领域?答案:数据挖掘是指从大量的数据中发现有用的信息,并且用这些信息来解决实际问题的过程。
它可以帮助我们发现数据中的模式、规律和趋势,从而提供决策支持和预测能力。
数据挖掘的应用领域非常广泛,包括但不限于市场营销、金融风险管理、医疗诊断、社交网络分析等。
习题二:数据挖掘的主要任务有哪些?答案:数据挖掘的主要任务包括分类、聚类、关联规则挖掘和异常检测。
分类是指根据已有的数据样本来预测新的数据样本所属的类别。
聚类是指将数据样本分成几个不同的组,使得同一组内的数据样本相似度较高,而不同组之间的相似度较低。
关联规则挖掘是指发现数据中的关联关系,例如购物篮分析中的“如果购买了商品A,则更有可能购买商品B”。
异常检测是指发现与其他样本不同的数据点,可能是潜在的异常或异常行为。
习题三:数据挖掘的过程有哪些步骤?答案:数据挖掘的过程通常包括问题定义、数据收集、数据预处理、特征选择和转换、模型选择和建立、模型评估和模型应用等步骤。
首先,我们需要明确问题的定义,确定我们需要从数据中挖掘出什么样的信息。
然后,我们收集相关的数据,并对数据进行预处理,包括数据清洗、数据集成、数据变换和数据规约等。
接下来,我们选择合适的特征,并进行特征转换,以便于模型的建立和分析。
在模型选择和建立阶段,我们选择合适的数据挖掘算法,并进行模型的训练和优化。
最后,我们评估模型的性能,并将模型应用于实际问题中。
习题四:数据挖掘中常用的算法有哪些?答案:数据挖掘中常用的算法包括决策树、朴素贝叶斯、支持向量机、神经网络、聚类算法(如K-means算法和DBSCAN算法)、关联规则挖掘算法(如Apriori算法)等。
第六章作业1.数据挖掘与知识发现两个概念有什么不同?P116知识发现被认为是从数据中发现有用知识的整个过程。
数据挖掘被认为是知识发现过程中的一个特定步骤,它用专门算法从数据中抽取模式。
2.知识发现过程由哪三部分组成?每部分的工作是什么?P116KDD过程可以概括为三个子步骤:数据准备、数据挖掘和结果的解释和评价。
数据准备:数据准备又可分为三个子步骤:数据选取、数据预处理和数据变换。
数据选取的目的是确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据。
数据预处理一般可能包括消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换(如把连续值数据转换为离散型的数据,以便于符号归纳;或是把离散型的转换为连续值型的,以便于神经网络归纳)等。
当数据开采的对象是数据仓库时,一般来说,数据预处理已经在生成数据仓库时完成了。
数据变换的主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数。
数据挖掘:数据挖掘是利用一系列方法或算法从数据中获取知识。
按照数据挖掘任务的不同,数据挖掘方法分类分为聚类、分类、关联规则发现等。
结果的解释和评价:数据挖掘阶段发现的模式,经过用户或机器的评估,可能存在冗余或无关的模式,这时需要将其剔除;也有可能模式不满足用户要求,这时则需要让整个发现过程退回到发现阶段之前,如重新选取数据、采用新的数据变换方法、设定新的数据挖掘参数值,甚至换一种挖掘算法(如当发现任务是分类时,有多种分类方法,不同的方法对不同的数据有不同的效果)。
另外,由于KDD最终是面向人类用户的,因此可能要对发现的模式进行可视化,或者把结果转换为用户易懂的另一种表示,如把分类决策树转换为“if...then...”规则。
3.数据挖掘的对象有哪些?他们各自的特点是什么?P1181.关系数据库特点:(1)数据动态性(2)数据不完全性(3)数据噪声(4)数据冗余性(5)数据稀疏性(6)海量数据2.文本特点:(1)关键词或特征提取(2)相似检索(3)文本聚类(4)文本数据3.图像与视频数据特点:(1)图像与视频特征提取(2)基于内容的相似检索(3)视频镜头的编辑与组织4.web数据(1)异构数据集成和挖掘(2)半结构化数据模型抽取4.1).关联分析若两个或多个数据项的取值之间重复出现且概率很高时,它就存在某种关联,可以建立起这些数据项的关联规则。
巩卩卫})趴e })10= 0.82。
考虑到数据集显示于表格 6.1。
(一)计算支持项集{ e },{ b 、d },{ b 、d 、e }通过治疗每个事务ID 作为一个市场购物篮。
答:Table 6.11. Example of market basket transactions CiisttJincT ID TraiMattion ID[temB Bought 10001 {a, d,e} 10024 [a t 20012 同 20031 {口心曲:即} 30015 30022 仏吐} 40029 {诃 40040 {口:以} 50033 {a, 50038 {码札电} (b) Use the results in part (a) to compute the con fide nee for the associati on rules {b ,d} -{e} and {e} - {b ,d}. Is con fide nee a symmetricmeasure?第六章数据挖掘导论1。
对于每个下列问题,提供一个关联规则的一个例子 从市场购物篮域,满足下列条件。
同样, 这些规则是主观地描述是否有趣。
(一)一个规则,具有较高的支持和高的信心。
也包含金枪鱼。
这种低规则往往是无趣的 (c) 一个规则,低的支持和信心不足。
答:食用油-T 洗衣粉。
如此低的信心规则 往往是无趣的。
(d) 规则,低支持和高的信心。
答:伏特加-T 鱼子酱。
这样的规则往往是有趣的(1如果C 、重复部分(一)通过将每个客户ID 作为一个市场购物篮。
每个项目应被视为一个二进制变量 一个项目出现在 至少有一个交易购买的顾客,和0否则。
) 5 §({&“}) = 7 = 1ff({fr,-d T e} j =— = 0.8 □e 没有明显关系s1,s2,c1和c23. (a) Wliat 諒 the confidcn<T! for The* nilcs 0 ——* and A ——* 0?Answer:—* A )= —* A).氓片 一 0} = 100%,(I'j) Jx't ci , ", and 即 hr the confidf-nrc vrihiE cf th*1 rules? {p} —► {q}: {p}——-{y, r}, and r} -------------- {©}: rctjpcctivvly ・ Lf wc assume thatc^t and eg have different values, wb^it are the possible relationships thnt rviy ( xist ainong 口.血:and cj? \Vhi~h ruk has tho I OWCST coiifi^lciirei 1 Answer;_吓沖"_ 4P )_ 盯puqur) d _ -<F>「叮pugur)'~ MpUh)Considering s(p) > s(j? U q 1) > 就卩U U r)Thus ; ul X c2 屁 cU 上 c2.Th 強refhiT c2 ha^ the lowest coiifidencc.(f) Reprat the aruilysis in part (b) fvsNiimiiig that the rules h-avf 1 idrinical tupperl.Which rule has the liighcst cDtifidciice?Answer:C-tmsidrnng 鼠 pU^} — s{p U U r}but s(p) > ff(p U r JThus; c3 > (cl = c2)所以c2有最低的置信度 0.8TW ,(d) £ railsltiA^it y ;呂口卩pose the cxjnhdence ot tire rides £ --------------- ► 2? anil JJ -----► CJUQ larger than some t.hrrshold. mincQv f. Ts it poFsible that A ——► C has A cotiftdcnoe kss than mi neon J ?Answer:YeSt It <lej>'iids on the supjK )rt of items .4T J3* and C fFur example:s(A ?B) = 60% s(A) = 90%s(A t C) = 20% s(B) = 70%sfE.C.J = 50% s(C) = 60VCLet miTicoii f = 50V(- Vheretoreic(A 一 E)三 66% > vmnecm fc(2J — C) = 7196 > minconfBut c(A -* G) = 22$t < jnincon f4、f 15 an anti-moiLotoTir niea^urr brcrkivsc卫乐…1 J 人订)工■八,}) (G.2iFor rxampk, VT ran compare thr vnhwF? of C, for {.4. /?} and (4,/?n C}.= niin (c(4 —/?) t /?——4J)min {c(A 一 &C 1)疋(Z? 一 AC),c(C 一 AB})111 叭 s(/L /?\C)因为年代 (A,B,C)w 年B)和 max(s(— 个),s(B),s(C)) > maXSSB)一个 因此 Z ({ A 、B }) >Z ({ A,B,C })(b) .『也B) S (AB).= miTJ --------------- ----- .——-— ' A 1 况 Z?)丿max (£(j4 ),s(B))(GQ讯{5C}) is tioti-monotone. We can show this by comparing 丹({4 _B}) against 玳{A,臥C"玳的0}】= mhi ( max (睜⑷,s(B) I= min (c(4/? —* C)t c(AC ― 8)^( fJC ― 4))_ .广(/LEO) KA 、BQ 就乩 母(&民G)max 凶.4. £?)h i 扎(7),乱”,CJ)Sine® J (J 4.Z?_(7) < anti UIHX [>(.4. !?).观A, C). $(/?,(?)) < max(s(j4)j J (B)), thtrefbn?叩[{£」攵(7卜)c^ii be gTcatrr than or less th^j 】{A, £?y ).Tkncp. the nicasuTP is non-monotone.min (U ——U) jC (B如/}) A)) 成{ZG}) Let '■ M R }) = MAX ( — Au,-■〕血)*… c(^fc —占*缶…川n)) <({必屮}1 = max 3』—Z?)T ct B — A )) =T 币LFF) _ 枣⑷B) 裁7) /{{£!?. C}[ = max (亡(良BC).c(D 一 AC),c{C AB)) 〃(£』.<?)£(m 、c )i (^i. B , cn. = max ( ------- - ---- L . ------- ---- < ------- : ---- L ) "s(A) 孔用) x(C) J = gg 营和 Since 以 C) < s(X, B) and nun(«(>l)4 4(5), tf(C)) < min(s(A), 5(Z?) )t 「({自』,C}) can be greater than or less than Therefore, the iiirasurp is ibon-Lnonotone. Let 孑…,加}) = max] 0(-411,金’…,4jt ―> Ai),*- ■ c(Ai + 朋、■ - ■ Ajt_i — 4*))nifLx ^c(AZ? —* (7). — c^BC^ —* A))s(A,i^. C} s(4. Z?. C) s(4, C)s (A 4 B, G)uun (0(4^ si Z?, C 1))因为 s(A,B,C)w s(A,B)和最小(s(A,B),s(A,C),s(B,C)F min(s(—个),s(B),s(C))< min(s(—个),s(B))n A,B,C })可以大于或小于 n ({ A 、B })。
3、基于数据挖掘的电子商务决策支持系统可以帮助商家进行正确的商机预测,从而改变经营策略,适应市场需求变化,掌握正确的市场脉搏,为商家可持续发展提供可靠保证。
一、应用数据挖掘技术进行数据分析在当前的有三种主要的经营模式:企业对消费者个人的电子商务、企业对企业的电子商务、个人对个人的电子商务。
对不同的经营模式,电子商务交易的卖家即商家比较关心的问题是不同的。
B2C和B2B模式中商家企业需要根据买家的购买特征,如季节性、时间性、喜好等,动态调整生产模式,随市场需求安排生产和调度。
而对于C 2 C经营模式中的商家就需要根据买家购买特征动态调整进货数量、种类,以达到与买家需求接轨,从而获得更大利润。
电子商务运营模式日渐成熟,各种现行电子商务平台上都积累了海量数据,这为数据挖掘技术的应用创建了有利条件和坚实基础。
具体数据挖掘过程可分为如下步骤:首先,采集电子商务网站数据。
每个电子商务交易平台都有自身的经营特点和客户群体,所以不适宜把多个网站数据结合起来分析。
单一网站的数据基本上模式统一,因此不需要进行数据清理。
第二步,采用数据挖掘方法对有效数据进行分析。
现在常用的数据挖掘方法有分类、关联规则分析、聚类分析和孤立点分析等。
分类方法可以为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,适用于发掘出购买特征相同的买家分类;关联规则分析通过对多个数据项建立关联规则可以发现潜在买家和潜在购买需求;聚类分析可以通过对记录的划分得到不同的分类。
孤立点分析在电子商务数据挖掘中不适用,电子商务要发现的是有代表性和规模性的特征,一些异常数据无法代表整个买家群体的意愿,所以可以忽略掉。
经过以上过程,得到了有效数据,接下来可以基于这些有效数据进行分析得到知识信息,为商家提供决策支持。
二、建立决策支持系统电子商务中针对企业商家的决策包括非结构化决策和半结构化决策。
非结构化决策,是指决策过程复杂,不可能用确定的模型和语言来描述其决策过程,更无所谓最优解的决策;半结构化决策,是介于以上二者之间的决策,这类决策可以建立适当的算法产生决策方案,使决策方案中得到较优的解。
3.1数据质量可以从多方面评估,包括准确性、完整性和一致性问题。
对于以上每个问题,讨论数据质量的评估如何依赖数据的应用目的,给出例子。
提出数据质量的其他两个尺度。
答:精确性:描述数据是否与其对应的客观实体的特征相一致。
完整性:描述数据是否存在缺失记录或缺失字段。
一致性:描述同一实体的同一属性的值在不同的系统或数据集中是否一致。
数据质量依赖于数据的应用。
对于给定的数据库,两个不同的用户可能有完全不同的评估。
例如,市场分析人员可能访问公司的销售事务数据库(该数据库里面并非是所有的顾客信息都是可以得到的。
其他数据没有包含在内,可能只是因为输入时认为是不重要的,相关的数据没有记录可能是由于理解错误,或者因为设备故障),得到顾客地址的列表。
有些地址已经过时或不正确,但毕竟还有80%的地址是正确的。
市场分析人员考虑到对于目标市场营销而言,这是一个大型顾客数据库,因此对该数据库的准确性还算满意,尽管作为销售的经理,你发现数据是不正确的。
另外两种度量尺度:有效性:描述数据是否满足用户定义的条件或在一定的域值范围内。
唯一性:描述数据是否存在重复记录。
3.3在习题2.2中,属性age包括如下值(以递增序):13、15、16、16、19、20、20、21、22、22、22、25、25、25、25、30、33、33、35、35、35、35、36、40、45、46、52、70(a)使用深度为3的箱,用箱均值光滑以上数据。
说明你的步骤,讨论这种技术对给定数据的效果。
答:划分为(等频的)箱:箱1:13、15、16、16、19、20、20、21、22箱2:22、25、25、25、25、30、33、33、35箱3:35、35、35、36、40、45、46、52、70用箱均值光滑:箱1:18、18、18、18、18、18、18、18、18箱2:28.1、28.1、28.1、28.1、28.1、28.1、28.1、28.1、28.1箱3:43.78、43.78、43.78、43.78、43.78、43.78、43.7843.78、43.78、43.78分箱方法通过考察数据的“近邻”来光滑有序数据值,进而去掉“噪声”,即去掉被测量的变量的随机误差或方差。
⼤数据基础--⼤数据挖掘⼯具(刘鹏《⼤数据》课后习题答案)1.简述常⽤机器学习系统和⼤数据挖掘⼯具有哪些。
(1)Mahout,Apache Mahout是⼀个由Java语⾔实现的开源的可拓展的机器学习算法库。
(2)Spark MLlib,运⾏在Spark平台上专门为集群上并⾏运⾏⽽设计,内存中更快地实现多次迭代,适⽤于⼤规模数据集。
(3)其他数据挖掘⼯具,有SystemML、GraphLab、Parameter Server、Scikit-Learn、Weka、基于R语⾔的机器学习库、H2O、腾讯⼤规模主题模型训练系统Peacock与深度学习平台Mariana、百度⼤规模机器学习框架ELT与机器学习云平台BML、阿⾥数据挖掘平台DT PAI等。
2.Mahout的适⽤场合与特点有哪些? Apache Mahout主要运作于MapReduce计算模型上,Mahout具有⾼吞吐、⾼并发、⾼可靠的特点,这就保证了其适合于⼤规模数据的机器学习。
3.Spark MLlib的适⽤场合和特点有哪些? Spark MLlib运⾏在Spark平台上专门为集群上并⾏运⾏⽽设计,适⽤于⼤规模数据集。
运⾏时间和计算成本较低,适⽤于数据挖掘算法。
4.简述SystemML的体系结构。
5.简述Parameter Server的⼯作原理。
基于模型参数数据的抽样⽅法,把所有机器学习算法抽象为对学习过程中⼀组模型参数的管理和控制,并提供对⼤规模场景下⼤量模型参数的有效管理与访问。
6.简述Scikit-Learn的主要模块。
Scikit-Learn是基于Python的机器学习库,建⽴在Numpy、Scipy和matplotlib基础之上,使⽤BSD开源许可证,主要模块有分类、回归、聚类、数据降维、模型选择与数据预处理。
7.简述Weka的⼯作原理。
Weka作为⼀个基于Java的开源数据挖掘平台,实现了⼤量的机器学习算法,使⽤GUI界⾯与数据⽂件交互并⽣成可视化的结果,提供了通⽤API,可以将Weka嵌⼊应⽤程序完成特定任务,通过接⼝,开发者还可加⼊⾃⾏实现的数据挖掘算法。
(1)请阐述什么是大数据分析。
大数据分析的主要任务主要有:第一类是预测任务,目标是根据某些属性的值,预测另外一些特定属性的值。
被预测的属性一般称为目标变量或因变量,被用来做预测的属性称为解释变量和自变量;第二类是描述任务,目标是导出概括数据中潜在联系的模式,包括相关、趋势、聚类、轨迹和异常等。
描述性任务通常是探查性的,常常需要后处理技术来验证和解释结果。
具体可分为分类、回归、关联分析、聚类分析、推荐系统、异常检测、链接分析等几种。
(2)大数据分析的类型有哪些?
大数据分析主要有描述性统计分析、探索性数据分析以及验证性数据分析等。
(3)举例两种数据挖掘的应用场景?
(1)电子邮件系统中垃圾邮件的判断
电子邮件系统判断一封Email是否属于垃圾邮件。
这应该属于文本挖掘的范畴,通常会采用朴素贝叶斯的方法进行判别。
它的主要原理就是,根据电子邮件中的词汇,是否经常出现在垃圾邮件中进行判断。
例如,如果一份电子邮件的正文中包含“推广”、“广告”、“促销”等词汇时,该邮件被判定为垃圾邮件的概率将会比较大。
(2)金融领域中金融产品的推广营销
针对商业银行中的零售客户进行细分,基于零售客户的特征变量(人口特征、资产特征、负债特征、结算特征),计算客户之间的距离。
然后,按照距离的远近,把相似的客户聚集为一类,从而有效地细分客户。
将全体客户划分为诸如:理财偏好者、基金偏好者、活期偏好者、国债偏好者等。
其目的在于识别不同的客户群体,然后针对不同的客户群体,精准地进行产品设计和推送,从而节约营销成本,提高营销效率。
(4)简述数据挖掘的分类算法及应用。
K-Means算法也叫作k均值聚类算法,它是最著名的划分聚类算法,由于简洁和效率使得它成为所有聚类算法中最广泛使用的。
决策树算法是一种能解决分类或回归问题的机器学习算法,它是一种典型的分类方法,最早产生于上世纪60年代。
决策树算法首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析,因此在本质上决策树是通过一系列规则对数据进行分类的过程。
KNN算法也叫作K最近邻算法,是数据挖掘分类技术中最简单的方法之一。
所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
遗传算法模拟了自然选择和遗传中发生的繁殖、交配和基因突变现象,是一种采用遗传结合、遗传交叉变异及自然选择等操作来生成实现规则的、基于进化理论的机器学习方法。
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
在这里专指人工神经网络。
它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。