2017年上海市宝山区中考数学一模试卷(解析版)
- 格式:docx
- 大小:164.81 KB
- 文档页数:17
2017年上海市松江区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为.三、解答题:(本大题共7题,满分78分)19.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.2017年上海市松江区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【考点】锐角三角函数的定义.【分析】根据锐角三角函数的定义得出cotA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∴cotA=,∵BC=2,∠A=α,∴AC=2cotα,故选D.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=,cotA=.2.下列抛物线中,过原点的抛物线是()A.y=x2﹣1 B.y=(x+1)2C.y=x2+x D.y=x2﹣x﹣1【考点】二次函数图象上点的坐标特征.【分析】分别求出x=0时y的值,即可判断是否过原点.【解答】解:A、y=x2﹣1中,当x=0时,y=﹣1,不过原点;B、y=(x+1)2中,当x=0时,y=1,不过原点;C、y=x2+x中,当x=0时,y=0,过原点;D、y=x2﹣x﹣1中,当x=0时,y=﹣1,不过原点;故选:C.【点评】本题主要考查二次函数图象上点的坐标特点,熟练掌握抛物线上特殊点的坐标及一般点的坐标的求法是解题的关键.3.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米【考点】相似三角形的应用.【专题】应用题.【分析】在相同时刻,物高与影长组成的直角三角形相似,利用对应边成比例可得所求的高度.【解答】解:∵在相同时刻,物高与影长组成的直角三角形相似,∴1.5:2=教学大楼的高度:60,解得教学大楼的高度为45米.故选A.【点评】考查相似三角形的应用;用到的知识点为:在相同时刻,物高与影长的比相同.4.已知非零向量,,,下列条件中,不能判定∥的是()A.∥,∥B.C. =D. =, =【考点】*平面向量.【分析】根据向量的定义对各选项分析判断后利用排除法求解.【解答】解:A、∥,∥,则、都与平行,三个向量都互相平行,故本选项错误;B、表示两个向量的模的数量关系,方向不一定相同,故不一定平行,故本选项正确;C、=,说明两个向量方向相反,互相平行,故本选项错误;D、=, =,则、都与平行,三个向量都互相平行,故本选项错误;故选:B.【点评】本题考查了平面向量,主要利用了向量平行的判定,是基础题.5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴=,故A正确;∵CD∥BE,AB=CD,∴△CDF∽△EBC∴=,故B正确;∵AD∥BC,∴△AEF∽△EBC∴=,故D正确.∴C错误.故选C.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC 的周长比为()A.1:2 B.1:3 C.1:4 D.1:9【考点】相似三角形的判定与性质.【分析】由△AEF∽△ABC,可知△AEF与△ABC的周长比=AE:AB,根据cosA==,即可解决问题.【解答】解:∵BE、CF分别是AC、AB边上的高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的周长比=AE:AB,∵cosA==,∴∴△AEF与△ABC的周长比=AE:AB=1:3,故选B.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用相似三角形的性质解决问题,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为.【考点】比例的性质.【分析】用a表示出b,然后代入比例式进行计算即可得解.【解答】解:∵ =,∴b=a,∴==.故答案为:.【点评】本题考查了比例的性质,用a表示出b是解题的关键.8.计算:(﹣3)﹣(+2)= .【考点】*平面向量.【分析】根据平面向量的加法计算法则和向量数乘的结合律进行计算.【解答】解::(﹣3)﹣(+2)=﹣3﹣﹣×2)=.故答案是:.【点评】本题考查了平面向量,熟记计算法则即可解题,属于基础题型.9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是k<1 .【考点】二次函数的性质.【分析】由开口向下可得到关于k的不等式,可求得k的取值范围.【解答】解:∵y=(k﹣1)x2+3x的开口向下,∴k﹣1<0,解得k<1,故答案为:k<1.【点评】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数有关是解题的关键.10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.【考点】二次函数图象与几何变换.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将y=x2向右平移4个单位,所得函数解析式为:y=(x ﹣4)2.故答案为:y=(x﹣4)2.【点评】本题考查的是函数图象平移的法则,根据“上加下减,左加右减”得出是解题关键.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .【考点】解直角三角形.【专题】计算题;等腰三角形与直角三角形.【分析】利用锐角三角函数定义求出所求即可.【解答】解:∵在△ABC中,∠C=90°,sinA=,BC=6,∴sinA=,即=,解得:AB=8,故答案为:8【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可得到结论.【解答】解:∵AC:CE=3:5,∴AC:AE=3:8,∵AB∥CD∥EF,∴,∴BD=,∴DF=,故答案为:.【点评】本题考查平行线分线段成比例定理,关键是找出对应的比例线段,写出比例式,用到的知识点是平行线分线段成比例定理.13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为2、5时的函数值,然后比较函数值的大小即可.【解答】解:当x=2时,y1=﹣x2+1=﹣3;当x=5时,y2=﹣x2+1=﹣24;∵﹣3>﹣24,∴y1>y2.故答案为:>【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .【考点】二次函数的性质.【分析】根据函数值相等的点到对称轴的距离相等可求得答案.【解答】解:∵抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,∴对称轴为x==2,故答案为:x=2.【点评】本题主要考查二次函数的性质,掌握二次函数值相等的点到对称轴的距离相等是解题的关键.15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,∴AD==3,∵中线BE与高AD相交于点G,∴点G为△ABC的重心,∴AG=3×=2,故答案为:2【点评】本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】CF⊥AB于点F,构成两个直角三角形.运用三角函数定义分别求出AF和BF,即可解答.【解答】解:作CF⊥AB于点F.根据题意可得:在△FBC中,有BF=CE=5米.在△AFC中,有AF=FC×tan30°=5米.则AB=AF+BF=5+5米故答案为:5+5.【点评】本题考查俯角、仰角的定义,要求学生能借助其关系构造直角三角形并解直角三角形.17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.【考点】线段垂直平分线的性质.【专题】探究型.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度.【解答】解:设CE=x,连接AE,∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.故答案为:.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.【考点】旋转的性质;解直角三角形.【分析】先解直角△ABC,得出BC=AB•cosB=9×=6,AC==3.再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN.解直角△ANC求出AN=AC•cos∠CAN=3×=2,根据等腰三角形三线合一的性质得出AE=2AN=4.【解答】解:∵在△ABC中,∠ACB=90°,AB=9,cosB=,∴BC=AB•cosB=9×=6,AC==3.∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,∴△ABC≌△EDC,BC=DC=6,AC=EC=3,∠BCD=∠ACE,∴∠B=∠CAE.作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∴∠BCM=∠ACN.∵在△ANC中,∠ANC=90°,AC=3,cos∠CAN=cosB=,∴AN=AC•cos∠CAN=3×=2,∴AE=2AN=4.故答案为4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了解直角三角形以及等腰三角形的性质.三、解答题:(本大题共7题,满分78分)19.计算:.【考点】实数的运算;特殊角的三角函数值.【分析】直接将特殊角的三角函数值代入求出答案.【解答】解:原式====.【点评】此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=, =.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】(1)在△ABD中,利用平面向量的三角形加法则进行计算;(2)根据向量加法的平行四边形法则,过向量的起点作BC的平行线,即可得出向量向量在、方向上的分向量.【解答】解:(1)∵,∴∵,∴∵,且∴;(2)解:如图,所以,向量、即为所求的分向量.【点评】本题考查平面向量,需要掌握一向量在另一向量方向上的分量的定义,以及向量加法的平行四边形法则.21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.【考点】相似三角形的判定与性质.【分析】(1)先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;(2)先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:(1)∵AC∥BD,∴∵AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.∴EF∥BD,∴,∴,∴(2)∵AC∥BD,EF∥BD,∴EF∥AC,∴△BEF∽△ABC,∴.∵,∴.∵S△BEF=4,∴,∴S△ABC=25.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)连接AB,作BG⊥AB交AC于点G,在Rt△ABG中,利用已知条件求出AB的长即可;(2)设直线EF交AD于点P,作CQ⊥EF于点Q,设AP=x,则PE=2x,PD=8﹣x,在Rt△ACD中利用已知数据可求出CD的长,进而可求出台EF的长度.【解答】解:(1)连接AB,作BG⊥AB交AC于点G,则∠ABG=90°∵AB∥CD,∴∠BAG=∠ACD=20°,在Rt△ABG中,,∵BG=2.26,tan20°≈0.36,∴,∴AB≈6.3,答:A、B之间的距离至少要6.3米.(2)设直线EF交AD于点P,作CQ⊥EF于点Q,∵AE和FC的坡度为1:2,∴,设AP=x,则PE=2x,PD=8﹣x,∵EF∥DC,∴CQ=PD=8﹣x,∴FQ=2(8﹣x)=16﹣2x,在Rt△ACD中,,∵AD=8,∠ACD=20°,∴CD≈22.22∵PE+EF+FQ=CD,∴2x+EF+16﹣2x=22.22,∴EF=6.22≈6.2答:平台EF的长度约为6.2米.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度角,关键是根据题意做出辅助线,构造直角三角形.23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.【考点】相似三角形的判定与性质.【分析】(1)先根据题意得出△ACB∽△ECA,再由直角三角形的性质得出CD=AD,由∠CAD+∠ABC=90°可得出∠ACD+∠EAC=90°,进而可得出∠AFC=90°;(2)根据AE⊥CD可得出∠EFC=90°,∠ACE=∠EFC,故可得出△ECF∽△EAC,再由点E是BC的中点可知CE=BE,故,根据∠BEF=∠AEB得出△BEF∽△AEB,进而可得出结论.【解答】证明:(1)∵AC2=CE•CB,∴.又∵∠ACB=∠ECA=90°∴△ACB∽△ECA,∴∠ABC=∠EAC.∵点D是AB的中点,∴CD=AD,∴∠ACD=∠CAD∵∠CAD+∠ABC=90°,∴∠ACD+∠EAC=90°∴∠AFC=90°,∴AE⊥CD(2)∵AE⊥CD,∴∠EFC=90°,∴∠ACE=∠EFC又∵∠AEC=∠CEF,∴△ECF∽△EAC∴∵点E是BC的中点,∴CE=BE,∴∵∠BEF=∠AEB,∴△BEF∽△AEB∴∠EBF=∠EAB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出二次函数的解析式,根据二次函数的性质解答即可;(2)过点E作EH⊥BC于点H,根据轴对称的性质求出点E的坐标,根据三角形的面积公式求出EH、BH,根据正切的定义计算即可;(3)分和两种情况,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(3,0)和点C(0,3)∴,解得,∴抛物线解析式为y=﹣x2+2x+3,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),(2)由(1)可知抛物线对称轴为直线x=1,∵点E与点C(0,3)关于直线x=1对称,∴点E(2,3),过点E作EH⊥BC于点H,∵OC=OB=3,∴BC=,∵,CE=2,∴,解得EH=,∵∠ECH=∠CBO=45°,∴CH=EH=,∴BH=2,∴在Rt△BEH中,;(3)当点M在点D的下方时设M(1,m),对称轴交x轴于点P,则P(1,0),∴BP=2,DP=4,∴,∵,∠CBE、∠BDP均为锐角,∴∠CBE=∠BDP,∵△DMB与△BEC相似,∴或,①,∵DM=4﹣m,,,∴,解得,,∴点M(1,)②,则,解得m=﹣2,∴点M(1,﹣2),当点M在点D的上方时,根据题意知点M不存在.综上所述,点M的坐标为(1,)或(1,﹣2).【点评】本题考查的是二次函数知识的综合运用、相似三角形的判定和性质,掌握待定系数法求二次函数解析式的一般步骤、熟记相似三角形的判定定理和性质定理、掌握二次函数的性质、灵活运用数形结合思想是解题的关键.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【考点】四边形综合题.【分析】(1)由矩形的性质和三角函数定义求出AD,由勾股定理求出BD即可;(2)证明△EDF∽△BDE,得出,求出CE=|x﹣12|,由勾股定理求出DE,即可得出结果;(3)当△DEF是等腰三角形时,△BDE也是等腰三角形,分情况讨论:①当BE=BD时;②当DE=DB时;③当EB=ED时;分别求出BE即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=90°,在Rt△BAD中,,AB=16,∴AD=12∴;(2)∵AD∥BC,∴∠ADB=∠DBC,∵∠DEF=∠ADB,∴∠DEF=∠DBC,∵∠EDF=∠BDE,∴△EDF∽△BDE,∴,∵BC=AD=12,BE=x,∴CE=|x﹣12|,∵CD=AB=16∴在Rt△CDE中,,∵,∴,∴,定义域为0<x≤24(3)∵△EDF∽△BDE,∴当△DEF是等腰三角形时,△BDE也是等腰三角形,①当BE=BD时∵BD=20,∴BE=20②当DE=DB时,∵DC⊥BE,∴BC=CE=12,∴BE=24;③当EB=ED时,作EH⊥BD于H,则BH=,cos∠HBE=cos∠ADB,即∴,解得:BE=;综上所述,当△DEF时等腰三角形时,线段BE的长为20或24或.【点评】本题是四边形综合题目,考查了矩形的性质、三角函数定义、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形相似是解决问题的关键.2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x23.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥二、填空题(每题2分)7.如果x:y=4:3,那么=.8.计算:3﹣4(+)=.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=4x2﹣3x与y轴的交点坐标是.11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是.15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ :S△CPE的值是.三、解答题19.计算:cos245°+﹣•tan30°.20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,那么试用,表示向量,(请直接写出结论)22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)1.“相似的图形”是()A.形状相同的图形 B.大小不相同的图形C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A.2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y=D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y=不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴,∴,故选D.4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.=【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②=;故选:C.6.下列说法中,错误的是()A.长度为1的向量叫做单位向量B.如果k≠0,且≠,那么k的方向与的方向相同C.如果k=0或=,那么k=D.如果=,=,其中是非零向量,那么∥【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误;B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;C、如果k=0或=,那么k=,故本选项错误;D、如果=,=,其中是非零向量,那么向量a与向量b共线,即∥,故本选项错误;故选:B.二、填空题(每题2分)7.如果x:y=4:3,那么=.【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x=y,∴==,故答案为:.8.计算:3﹣4(+)=﹣﹣4.【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12.【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x﹣3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x﹣3的图象上,∴A(3,n)满足二次函数y=x2+2x﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP 的长等于5﹣5厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,。
2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B=.3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z=.6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a=.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n 的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.=2.【考点】极限及其运算.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B={﹣1,0,1} .【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以∁U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩∁U B={﹣1,0,1}故答案为:{﹣1,0,1}.3.不等式的解集为(﹣2,﹣1).【考点】其他不等式的解法.【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).4.椭圆(θ为参数)的焦距为6.【考点】椭圆的参数方程.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.5.设复数z满足(i为虚数单位),则z=1+i.【考点】复数代数形式的混合运算.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.6.若函数的最小正周期为aπ,则实数a的值为1.【考点】三角函数的周期性及其求法.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f﹣1(x)=2x﹣1..【考点】反函数.【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.8.已知向量,,则在的方向上的投影为.【考点】平面向量数量积的运算.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【考点】旋转体(圆柱、圆锥、圆台).【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生或三人均为女生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.11.设常数a>0,若的二项展开式中x5的系数为144,则a=2.【考点】二项式系数的性质.=(r=0,1,2,…,9).令9﹣2r=5,解得r,即可得出.【分析】利用通项公式T r+1==(r=0,1,2,…,9).【解答】解:T r+1令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【考点】排列、组合及简单计数问题.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.二.选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【考点】分层抽样方法.【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选C.15.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】相互独立事件的概率乘法公式.【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.16.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2【考点】函数的最值及其几何意义.【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═(|t|﹣1)2+≤,故选:C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC•h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.18.已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【考点】椭圆的简单性质.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=•=•=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.19.设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n 的值.【考点】数列与不等式的综合.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.(2)y n+1﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)与等比数列的求和公式即可得出y n.代入不等式,化简即可得出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n+1﹣y n=x n=,且y1=2,∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.20.设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.【考点】对数函数的图象与性质.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即,∴,n∈N.解得:<x<,n∈N.又∵2+x>0,即x>﹣2,∴≥﹣2,n∈N.解得:k,∵k∈Z,∴k≥0.故得任意n∈N均成立,实数x的取值集合为(,),k∈N,n∈N.21.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【考点】双曲线的简单性质.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λS k>0恒成立,⇔>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3•﹣m=n2,∴S m+S n﹣λS k>0恒成立,⇔>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n•F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n•F n=(﹣1)n+2•F n+2+(﹣1)n+1•F n+1,故A是自生集;﹣1],存在集合Ar一个有限子集{a1,a2,…,②对于任意n≥2,对于任一正整数t∈[1,F2n+1a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,则n=k+1时,只须对任何整数m∈[F2k,F2k+3]讨论,+1,则m=F2k+2+,∈(﹣F2k+1,0),若m<F2k+2+m′,m′∈[1,F2k+1),故=﹣F2k+1的元素的和.由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1﹣F2k+1+m′=(﹣1)2k+2•F2k+2+(﹣1)2k+1•F2k+1+m′,因为m=F2k+2所以m可以表示为集合A中有限个绝对值小于F2k的元素的和.+3,则结论显然成立.若m=F2k+2若F2k<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),+2的元素的和.由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.2017年1月25日。
2017年上海市宝山区高考数学一模试卷一。
填空题(本大题共12题,1-6每题4分,7—12每题5分,共54分)1.= .2.设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A ∩∁U B= .3.不等式的解集为.4.椭圆(θ为参数)的焦距为.5.设复数z满足(i为虚数单位),则z= .6.若函数的最小正周期为aπ,则实数a的值为.7.若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.已知向量,,则在的方向上的投影为.9.已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.设常数a>0,若的二项展开式中x5的系数为144,则a= .12.如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二。
选择题(本大题共4题,每题5分,共20分)13.设a∈R,则“a=1"是“复数(a﹣1)(a+2)+(a+3)i为纯虚数"的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件14.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k ⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域",如果点(t,t+1)位于“﹣1⊕3型带状区域",那么,函数y=|f(t)|的最大值为( )A.B.3 C. D.2三。
2017年上海市宝山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=.2.(4分)设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B=.3.(4分)不等式的解集为.4.(4分)椭圆(θ为参数)的焦距为.5.(4分)设复数z满足(i为虚数单位),则z=.6.(4分)若函数的最小正周期为aπ,则实数a的值为.7.(5分)若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为.8.(5分)已知向量,,则在的方向上的投影为.9.(5分)已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为.10.(5分)某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)11.(5分)设常数a>0,若的二项展开式中x5的系数为144,则a=.12.(5分)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(5分)某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.11015.(5分)设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.416.(5分)在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.18.(14分)已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.19.(14分)设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.20.(16分)设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.21.(18分)设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.2017年上海市宝山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)=2.【分析】分子、分母都除以n,从而求出代数式的极限值即可.【解答】解:==2,故答案为:2.【点评】本题考查了极限的求值运算,是一道基础题.2.(4分)设全集U=R,集合A={﹣1,0,1,2,3},B={x|x≥2},则A∩∁U B= {﹣1,0,1} .【分析】根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解析:因为全集U=R,集合B={x|x≥2},所以∁U B={x|x<2}=(﹣∞,2),且集合A={﹣1,0,1,2,3},所以A∩∁U B={﹣1,0,1}故答案为:{﹣1,0,1}.【点评】本题考查了集合的定义与计算问题,是基础题目.3.(4分)不等式的解集为(﹣2,﹣1).【分析】不等式转化(x+1)(x+2)<0求解即可.【解答】解:不等式等价于(x+1)(x+2)<0,解得:﹣2<x<﹣1,∴原不等式组的解集为(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】本题考查分式不等式的解法,基本知识的考查.4.(4分)椭圆(θ为参数)的焦距为6.【分析】求出椭圆的普通方程,即可求出椭圆的焦距.【解答】解:消去参数θ得:,所以,c==3,所以,焦距为2c=6.故答案为6.【点评】本题考查椭圆的参数方程,考查椭圆的性质,正确转化为普通方程是关键.5.(4分)设复数z满足(i为虚数单位),则z=1+i.【分析】设z=x+yi,则代入,再由复数相等的充要条件,即可得到x,y的值,则答案可求.【解答】解:设z=x+yi,∴.则=x+yi+2(x﹣yi)=3﹣i,即3x﹣yi=3﹣i,∴x=1,y=1,因此,z=1+i.故答案为:1+i.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的充要条件,是基础题.6.(4分)若函数的最小正周期为aπ,则实数a的值为1.【分析】利用行列式的计算,二倍角公式化简函数的解析式,再根据余弦函数的周期性,求得a的值.【解答】解:∵y=cos2x﹣sin2x=cos2x,T=π=aπ,所以,a=1,故答案为:1.【点评】本题主要考查行列式的计算,二倍角公式,余弦函数的周期性,属于基础题.7.(5分)若点(8,4)在函数f(x)=1+log a x图象上,则f(x)的反函数为f ﹣1(x)=2x﹣1..【分析】求出函数f(x)的解析式,用x表示y的函数,把x与y互换可得答案.【解答】解:函数f(x)=1+log a x图象过点(8,4),可得:4=1+log a8,解得:a=2.∴f(x)=y=1+log2x则:x=2y﹣1,∴反函数为y=2x﹣1.故答案为f﹣1(x)=2x﹣1.【点评】本题考查了反函数的求法,属于基础题.8.(5分)已知向量,,则在的方向上的投影为.【分析】根据投影公式为,代值计算即可.【解答】解:由于向量,,则在的方向上的投影为=.故答案为:【点评】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.9.(5分)已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面积为18π.【分析】由题意,得:底面直径和母线长均为6,利用侧面积公式求出该圆锥的侧面积.【解答】解:由题意,得:底面直径和母线长均为6,S侧==18π.故答案为18π.【点评】本题考查该圆锥的侧面积,考查学生的计算能力,比较基础.10.(5分)某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生均有的概率为(结果用最简分数表示)【分析】先求出基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生,由此能求出在选出的3人中男、女生均有的概率.【解答】解:某班级要从5名男生和2名女生中选出3人参加公益活动,基本事件总数n=,在选出的3人中男、女生均有的对立事件是三人均为男生,∴在选出的3人中男、女生均有的概率:p==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.11.(5分)设常数a>0,若的二项展开式中x5的系数为144,则a=2.=(r=0,1,2,…,9).令9﹣2r=5,解得【分析】利用通项公式T r+1r,即可得出.==(r=0,1,2,…,9).【解答】解:T r+1令9﹣2r=5,解得r=2,则=144,a>0,解得a=2.故答案为:2.【点评】本题考查了二项式定理的应用、组合数的计算公式,考查了推理能力与计算能力,属于基础题.12.(5分)如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N,那么称该数列为N型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型标准数列的个数为6.【分析】由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,得出满足题意的组数,即可得出结论.【解答】解:由题意,公差d=1,na1+=2668,∴n(2a1+n﹣1)=5336=23×23×29,∵n<2a1+n﹣1,且二者一奇一偶,∴(n,2a1+n﹣1)=(8,667),(23,232),(29,184)共三组;同理d=﹣1时,也有三组.综上所述,共6组.故答案为6.【点评】本题考查组合知识的运用,考查等差数列的求和公式,属于中档题.二.选择题(本大题共4题,每题5分,共20分)13.(5分)设a∈R,则“a=1”是“复数(a﹣1)(a+2)+(a+3)i为纯虚数”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分必要条件的定义以及纯虚数的定义判断即可.【解答】解:当a=1时,(a﹣1)(a+2)+(a+3)i=4i,为纯虚数,当(a﹣1)(a+2)+(a+3)i为纯虚数时,a=1或﹣2,故选:A.【点评】本题考查了充分必要条件,考查纯虚数的定义,是一道基础题.14.(5分)某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为()A.80 B.96 C.108 D.110【分析】求出高一、高二、高三的人数分别为:500,450,400,即可得出该样本中的高二学生人数.【解答】解:设高二x人,则x+x﹣50+500=1350,x=450,所以,高一、高二、高三的人数分别为:500,450,400因为=,所以,高二学生抽取人数为:=108,故选:C.【点评】本题主要考查分层抽样的应用,根据比例关系是解决本题的关键.15.(5分)设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.4【分析】在(1)中,P(M∪N)==;在(2)中,由相互独立事件乘法公式知M、N为相互独立事件;在(3)中,由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件;在(4)中,当M、N为相互独立事件时,P(MN)=;(5)由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件.【解答】解:在(1)中,若M、N为互斥事件,且,,则P(M∪N)==,故(1)正确;在(2)中,若,,,则由相互独立事件乘法公式知M、N为相互独立事件,故(2)正确;在(3)中,若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(3)正确;在(4)中,若,,,当M、N为相互独立事件时,P(MN)=,故(4)错误;(5)若,,,则由对立事件概率计算公式和相互独立事件乘法公式知M、N为相互独立事件,故(5)正确.故选:D.【点评】本题考查命题真假判断,是基础题,解题时要认真审题,注意对立事件概率计算公式、互斥事件概率加法公式、相互独立事件概率乘法公式的合理运用.16.(5分)在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“﹣1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为()A.B.3 C.D.2【分析】设出函数f(x)的解析式,求出|t的范围,求出|f(t)|的解析式,根据不等式的性质求出其最大值即可.【解答】解:设f(x)=ax2+bx+c,则|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2,即,即,∵t+1∈[﹣1,3],∴|t|≤2,故y=|f(t)|=|t2+t+f(0)|=|f(2)+f(﹣2)+f(0)|≤|t(t+2)|+|t(t﹣2)|+|4﹣t2|=|t|(t+2)+|t|(2﹣t)+(4﹣t2)═﹣(|t|﹣1)2+≤,故选:C.【点评】本题考查了求函数的解析式问题,考查二次函数的性质以及不等式的性质,求函数最值问题,是一道中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,已知正三棱柱ABC﹣A1B1C1的底面积为,侧面积为36;(1)求正三棱柱ABC﹣A1B1C1的体积;(2)求异面直线A1C与AB所成的角的大小.【分析】(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,由底面积和侧面积公式列出方程组,求出a=3,h=4,由此能求出正三棱柱ABC﹣A1B1C1的体积.(2)由AB∥A1B1,知∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),由此能求出异面直线A1C与AB所成的角.【解答】解:(1)设正三棱柱ABC﹣A1B1C1的底面边长为a,高为h,则,解得a=3,h=4,∴正三棱柱ABC﹣A1B1C1的体积V=S△ABC•h=.(2)∵正三棱柱ABC﹣A1B1C1,∴AB∥A1B1,∴∠B1A1C是异面直线A1C与AB所成的角(或所成角的补角),连结B1C,则A1C=B1C=5,在等腰△A1B1C中,cos==,∵∠A1B1C∈(0,π),∴.∴异面直线A1C与AB所成的角为arccos.【点评】本题考查正三棱柱的体积的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.18.(14分)已知椭圆C的长轴长为,左焦点的坐标为(﹣2,0);(1)求C的标准方程;(2)设与x轴不垂直的直线l过C的右焦点,并与C交于A、B两点,且,试求直线l的倾斜角.【分析】(1)由题意可知:设椭圆方程为:(a>b>0),则c=2,2a=2,a=,即可求得椭圆的标准方程;(2)设直线l的方程为:y=k(x﹣2),将直线方程代入椭圆方程,由韦达定理及弦长公式即可求得k的值,即可求得直线l的倾斜角.【解答】解:(1)由题意可知:椭圆的焦点在x轴上,设椭圆方程为:(a>b>0),则c=2,2a=2,a=,b==2,∴C的标准方程;(2)由题意可知:椭圆的右焦点(2,0),设直线l的方程为:y=k(x﹣2),设点A(x1,y1),B(x2,y2);整理得:(3k2+1)x2﹣12k2x+12k2﹣6=0,韦达定理可知:x1+x2=,x1x2=,丨AB丨=•=•=,由丨AB丨=,=,解得:k2=1,故k=±1,经检验,k=±1,符合题意,因此直线l的倾斜角为或.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,弦长公式的应用,考查计算能力,属于中档题.19.(14分)设数列{x n}的前n项和为S n,且4x n﹣S n﹣3=0(n∈N*);(1)求数列{x n}的通项公式;(2)若数列{y n}满足y n+1﹣y n=x n(n∈N*),且y1=2,求满足不等式的最小正整数n的值.【分析】(1)由4x n﹣S n﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1.n ≥2时,由S n=4x n﹣3,可得x n=S n﹣S n﹣1,利用等比数列的通项公式即可得出.﹣y n=x n=,且y1=2,利用y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n (2)y n+1)与等比数列的求和公式即可得出y n.代入不等式,化简即可得﹣y n﹣1出.【解答】解:(1)∵4x n﹣S n﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.n≥2时,由S n=4x n﹣3,∴x n=S n﹣S n﹣1=4x n﹣3﹣(4x n﹣1﹣3),∴x n=,∴数列{x n},是等比数列,公比为.∴x n=.(2)y n﹣y n=x n=,且y1=2,+1∴y n=y1+(y2﹣y1)+(y3﹣y2)+…+(y n﹣y n﹣1)=2+1+++…+=2+=3×﹣1.当n=1时也满足.∴y n=3×﹣1.不等式,化为:=,∴n﹣1>3,解得n>4.∴满足不等式的最小正整数n的值为5.【点评】本题考查了数列递推关系、等比数列的通项公式与求和公式、“累加求和”方法、不等式的解法,考查了推理能力与计算能力,属于中档题.20.(16分)设函数f(x)=lg(x+m)(m∈R);(1)当m=2时,解不等式;(2)若f(0)=1,且在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数f(x)的图象过点(98,2),且不等式f[cos(2n x)]<lg2对任意n∈N均成立,求实数x的取值集合.【分析】(1)根据对数的运算解不等式即可.(2)根据f(0)=1,求f(x)的解析式,根据在闭区间[2,3]上有实数解,分离λ,可得λ=lg(x+10)﹣,令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域即为λ的范围.(3)函数f(x)的图象过点(98,2),求f(x)的解析式,可得f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2转化为,求解x,又∵2+x>0,即x>﹣2和n∈N.讨论k的范围可得答案.【解答】解:函数f(x)=lg(x+m)(m∈R);(1)当m=2时,f(x)=lg(x+2)那么:不等式;即lg(+2)>lg10,可得:,且解得:.∴不等式的解集为{x|}(2)∵f(0)=1,可得m=10.∴f(x)=lg(x+10),即lg(x+10)=在闭区间[2,3]上有实数解,可得λ=lg(x+10)﹣令F(x)=lg(x+10)﹣,求在闭区间[2,3]上的值域.根据指数和对数的性质可知:F(x)是增函数,∴F(x)在闭区间[2,3]上的值域为[lg12﹣,lg13﹣]故得实数λ的范围是[lg12﹣,lg13﹣].(3)∵函数f(x)的图象过点(98,2),则有:2=lg(98+m)∴m=2.故f(x)=lg(2+x)那么:不等式f[cos(2n x)]<lg2转化为lg(2+cos(2n x))<lg2即cos(2n x)<0对n∈N均成立,若x是满足条件的实数,则有cosx≤﹣,因为,若﹣<cosx<0,则cos2x=2cos2x﹣1<﹣,则cos4x=2cos22x﹣1>0,所以必有cos(2n x)≤﹣;得|cos(2n x)﹣|≥,又|cos2x+|=2|cosx+||cosx﹣|≥|cosx+|,得|cosx+|≤|cos2x+|,重复运用得到|cosx+|≤…≤|cos(2n x)+|<n为自然数,∴cosx+=0,级x=2kπ±,k∈Z.验证,当x=2kπ±,k∈Z时,有cos(2n x)=﹣,满足题意.所以,x的取值范围为{x|x=2kπ±,k∈Z}【点评】本题考查了对数的性质及其运算以及不等式恒成立的问题在对数与三角函数中的运用.有点难度.21.(18分)设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*,且n≥2时,曲线的焦距为a n,如果A={a1,a2,…,a n},B=,设A+B中的所有元素之和为S n,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值;(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.【分析】(1)根据新定义A+B={a+b|a∈A,b∈B},结合已知中的集合A,B,可得答案;(2)曲线表示双曲线,进而可得a n=,S n=n2,则S m+S n﹣λS k >0恒成立,⇔>λ恒成立,结合m+n=3k,且m≠n,及基本不等式,可得>,进而得到答案;(3)存在一个整数集合既是自生集又是N*的基底集,结合已知中“自生集”和“N*的基底集”的定义,可证得结论;【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线,即,在n≥2时表示双曲线,故a n=2=,∴a1+a2+a3+…+a n=,∵B=,∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n()=3•﹣m=n2,∴S m+S n﹣λS k>0恒成立,⇔>λ恒成立,∵m+n=3k,且m≠n,∴==>,∴,即实数λ的最大值为;(3)存在一个整数集合既是自生集又是N*的基底集,理由如下:设整数集合A={x|x=(﹣1)n•F n,n∈N*,n≥2},其中{F n}为斐波那契数列,即F1=F2=1,F n+2=F n+F n+1,n∈N*,下证:整数集合A既是自生集又是N*的基底集,①由F n=F n+2﹣F n+1得:(﹣1)n•F n=(﹣1)n+2•F n+2+(﹣1)n+1•F n+1,故A是自生集;②对于任意n≥2,对于任一正整数t∈[1,F2n﹣1],存在集合Ar一个有限子集+1{a1,a2,…,a m},使得t=a1+a2+…+a m,(|a i<F2n+1,i=1,2,…,m),当n=2时,由1=1,2=3+1﹣2,3=3,4=3+1,知结论成立;假设结论对n=k时成立,,F2k+3]讨论,则n=k+1时,只须对任何整数m∈[F2k+1,则m=F2k+2+,∈(﹣F2k+1,0),若m<F2k+2+m′,m′∈[1,F2k+1),故=﹣F2k+1的元素的和.由归纳假设,m′可以表示为集合A中有限个绝对值小于F2k+1﹣F2k+1+m′=(﹣1)2k+2•F2k+2+(﹣1)2k+1•F2k+1+m′,因为m=F2k+2的元素的和.所以m可以表示为集合A中有限个绝对值小于F2k+3,则结论显然成立.若m=F2k+2<m<F2k+3,则m=F2k+2+m′,m′∈[1,F2k+1),若F2k+2的元素的和.由归纳假设知,m可以表示为集合A中有限个绝对值小于F2k+3所以,当n=k+1时结论也成立;由于斐波那契数列是无界的,所以,任一个正整数都可以表示成集合A的一个有限子集中所有元素的和.因此集合A又是N*的基底集.【点评】本题考查的知识点是新定义“自生集”和“N*的基底集”,双曲线的性质,数列求和,集合的元素,本题综合性强,转化困难,属于难题.。
2017年上海宝山中考数学真题及答案一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)下列实数中,无理数是()A.0 B.C.﹣2 D.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=03.(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<04.(4分)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和85.(4分)下列图形中,既是轴对称又是中心对称图形的是()A.菱形 B.等边三角形C.平行四边形D.等腰梯形6.(4分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:2a•a2= .8.(4分)不等式组的解集是.9.(4分)方程=1的解是.10.(4分)如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而.(填“增大”或“减小”)11.(4分)某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.12.(4分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.13.(4分)已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)14.(4分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.15.(4分)如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为.16.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是.17.(4分)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.18.(4分)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .三、解答题(本大题共7小题,共78分)19.(10分)计算:+(﹣1)2﹣9+()﹣1.20.(10分)解方程:﹣=1.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(12分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.24.(12分)已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.25.(14分)如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.参考答案:一、选择题(本大题共6小题,每小题4分,共24分)1.【解答】解:0,﹣2,是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.【解答】解:2a•a2=2×1a•a2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【解答】解:,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴在这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.【解答】解:∵抛物线的顶点坐标为(0,﹣1),∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),则该企业第一季度月产值的平均值是×240=80(万元).故答案是:80.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.【解答】解:∵AB∥CD,∴==,∴ED=2AE,∵=,∴=2,∴=+=+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360﹣135=225,∵0<n<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=3,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC是正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴=cos30°=,∴λ6=,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,①当∠ODC=90°时,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.②∠COD=90°,∠BOC=90°,BC==,③∠OCD显然≠90°,不需要讨论.综上所述,BC=或.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1•S3,∵S2=AD•OH,S1=S△OAC=•AC•OH,S3=•CD•OH,∴(AD•OH)2=•AC•OH••CD•OH,∴AD2=AC•CD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=•(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.(也可以利用角平分线的性质定理:==,黄金分割点的性质解决这个问题)【点评】本题考查圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。
九年级中考数学(模拟一) 2017宝山一模(满分150分,考试时间100分钟)考生注意:1.本试卷含四个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知∠A=30°,下列判断正确的是……………………………………………………()A.; B.; C. A=; D..2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为…()A.; B.; C.; D..3.二次函数的定义域为………………………………………………()A.; B.为一切实数; C.; D.为一切实数.4.已知非零向量、之间满足,下列判断正确的是………………………()A.的模为3; B.与的模之比为;C.与平行且方向相同; D.与平行且方向相反.二.填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,那么= ▲.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为▲.10.如图△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则= ▲.11.计算: = ▲.13.二次函数向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是▲.14.如果点A(1,2)和点B(3,2)都在抛物线的图像上,那么抛物线的对称轴是直线▲.15.已知A(2,y1)、B(3,y2)是抛物线的图像上两点,则y1__▲__y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度升高了5米,则该斜坡的坡度▲.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如的抛物线的形状、大小、开口方向、位置等特征的系数、、称为该抛物线的特征数,记作:特征数.(请你求)在研究活动中被记作特征数为的抛物线的顶点坐标是▲.18.如图,D为直角△ABC的斜边AB上一点, DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B重合,联结CD交BE于F,如果AC=8,,那么CF:DF = ▲.三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:21.如图, AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的处窗口观察AB 大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.如图,点E是正方形ABCD对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G..(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求∠BEF的值.(1)求时,的面积关于t的函数解析式;(2) 求出线段BC、BE、ED的长度;(3) 当为多少秒时,以B、P、Q为顶点的三角形和相似;(4) 如图(3) 过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2016学年第一学期期末考试九年级数学参考答案(评分细则)一、选择题:(本大题共6题,每题4分,满分24分)1. A; 2. C; 3. B; 4.D; 5. A; 6. C.7.; 8.1:16; 9.AC; 10.; 11.; 12.8; 13.; 14.; 15.; 16.;17.; 18..19.解:原式= ……………………6分= ……………………8分=. …………………10分20.解:(1)在△ABC 中,∵DE∥BC,∴…………3分(2)∵,, =,∴……………………………………8分∴……………………………………10分设过A、B、C抛物线的表达式为:………………………6分将(0,6)代入,∴抛物线的表达式为…………………8分当或时,的函数值大于的函数值。
九年级一模18题1、(2017年杨浦区一模第18题)△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是________.【答案】12tan cot cot EFD DFB CEB ∠=∠=∠,问题的本质是在△EBC 中,已知两边EB=BC=6,∠ABC 的余弦为3,求边EC 长.可由余弦定理,或过E 点向BC 添高,得EC=1255,cos CEB ∠=1tan 2EFD ∠=.2、(2017年徐汇区一模第18题)如图,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是________.【答案】13392AP DF AQ BE ===请注意本题中面积法的作用.3、(2017年长宁区一模第18题)如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.【答案】722或以A 为原点,射线AC 为横轴正半轴,建立直角坐标系.①设AE=a ,则'DA DA =,得22(4)(3)25a a -++=,解得a =1,从而'(1,1)(8,6)A B -,,'2A B =;②22(4)(3)25a a -+-=,解得a =7,从而'(7,7)(8,6)A B ,,'2A B =.4、(2017年崇明区一模第18题)如图,已知ABC ∆中,45ABC ∠= ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为.【答案】3105△AEH 相似于△CFH ,且相似比为3:1,过H 向AC 做垂线段HM ,则11022cos 2110FC CM CH C ==⋅⋅∠=⋅⋅31035AE CH ==.5、(2017年宝山区一模第18题)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═12,那么CF:DF═________.【答案】65∵DE⊥AB,tanA═12,∴DE=12AD,∵Rt△ABC中,AC═8,tanA═12,∴BC=4,AB=4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE=5,∴CE=8﹣5=3,∴Rt△BCE中,BE=5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.6、(2017年奉贤区一模第18题)如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP 所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是________.【答案】1∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG=5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=23(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为________.【答案】13PQ垂直平分CD,故CM=6,∠PMC=∠QMC=90°,注意到∠PCM=∠A,∠QCM=∠B,于是32tan tan661323PQ PM QM CM PCM CM QCM=+=⋅∠+⋅∠=⨯+⨯=.8、(2017年闵行区一模第18题)如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD=________.【答案】32-作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得BD=2﹣2.如图,在Rt △ABC 中,∠C=90°,∠B=60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B'、C'处,联结BC'与AC 边交于点D ,那么'BD DC=________.【答案】2过C ’作C’H ⊥AC 于点H,则33'''22BC a CA C A C H C A a =====,,,于是23''32BD BC a DC C H a ===.10、(2017年普陀区一模第18题)如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE =,那么S △DPQ :S △CPE 的值是________.【答案】115由重心定理及条件,易知DP :PE :BC=1:3:6,于是△DPQ 与△EPC 的高之比为1:5,从而S △DPQ :S △CPE 1115315=⨯=.如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连接BD ,如果∠DAC=∠DBA ,那么BD AB的值是________.【答案】512-如图,由旋转的性质得到AB=AD ,∠CAB=∠DAB ,∴∠ABD=∠ADB ,∵∠CAD=∠ABD ,∴∠ABD=∠ADB=2∠BAD ,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D 作∠ADB 的平分线DF ,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD ,∴△ABD ∽△DBF ,∴,即,解得=.12、(2017年松江区一模第18题)如图,在△ABC 中,∠ACB=90°,AB=9,cosB=23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为________.【答案】过C 作CH ⊥AB 于H ,△ACE 相似于△BCE ,相似比为2,所以2222cos cos 93AE BD BH BC B AB B ⎛⎫===⋅∠=⋅∠=⨯= ⎪⎝⎭.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,BC=3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为________.【答案】23CP 垂直平分线段BD ,CD=CB=3,从而得到,设AP=x ,则-x ,在△APD中,由勾股定理得2221)x x +=,解得255x =,BP=355,于是sin ∠ADP=23..14、(2017年黄浦区一模第18题)如图,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =.D NMC BA 【答案】23。
2017年上海市宝山区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED 沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值进行判断即可【解答】解:∵∠A=30°,∴sinA=,cosA=,tanA=,cotA=,故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵C是线段AB的黄金分割点C,AC>CB,∴AC=AB=,故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数【考点】二次函数的定义.【分析】找出二次函数的定义域即可.【解答】解:二次函数y=x2+2x+3的定义域为x为一切实数,故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反【考点】*平面向量.【分析】根据向量的长度和方向,可得答案.【解答】解:A、由=﹣3,得||=3||,故A错误;B、由=﹣3,得||=3||,||:||=3:1,故B错误;C、由=﹣3,得=﹣3方向相反,故C错误;D、由=﹣3,得=﹣3平行且方向相反,故D正确;故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【考点】方向角.【分析】根据题意正确画出图形进而分析得出从乙船看甲船的方向.【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.【考点】比例的性质.【分析】根据比例的基本性质:两外项之积等于两内项之积.可直接得到的结果.【解答】解:∵2a=3b,∴=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.【考点】相似三角形的性质.【分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.【解答】解:∵两个相似三角形的相似比为1:4,∴它们的面积比为1:16.故答案为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB的比例中项.【考点】比例线段.【分析】根据两角分别相等的两个三角形相似,可得△ACD∽△ABC的关系,根据相似三角形的性质,可得答案.【解答】解:在△ACD与△ABC中,∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC,∴=,∴AC是AD和AB的比例中项.故答案为AC.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.【考点】解直角三角形.【分析】先证明△BDC∽△CDA,利用相似三角形的性质求出CD的长度,然后根据锐角三角函数的定义即可求出tanA的值.【解答】解:∵∠BCD+∠DCA=∠DCA+∠A=90°,∴∠BCD=∠A,∵CD⊥AB,∴∠BDC=∠CDA=90°,∴△BDC∽△CDA,∴CD2=BD•AD,∴CD=6,∴tanA==故答案为:11.计算:2(+3)﹣5=2+.【考点】*平面向量.【分析】可根据向量的加法法则进行计算,可得答案.【解答】解:2(+3)﹣5=2+6﹣5=2+,故答案为:2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】延长AG交BC于D,根据重心的概念得到∠BAD=∠CAD,根据等腰三角形的性质求出BD,根据勾股定理和重心的性质计算即可.【解答】解:延长AG交BC于D,∵G为△ABC的重心,∴∠BAD=∠CAD,∵AB=AC,∴BD=BC=5,AD⊥BC,由勾股定理得,AD==12,∵G为△ABC的重心,∴AG=AD=8,故答案为:8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律求解即可.【解答】解:y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度得y=5(x﹣4+2)2+3﹣1,即y=5(x﹣2)2+2.故答案为y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2.【考点】二次函数的性质.【分析】根据函数值相等的点到抛物线对称轴的距离相等可求得其对称轴.【解答】解:∵点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,∴其对称轴为x==2故答案为:x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)【考点】二次函数图象上点的坐标特征.【分析】先确定其对称轴,利用增减性进行判断;也可以将A、B两点的坐标分别代入求出纵坐标,再进行判断.【解答】解:由题意得:抛物线的对称轴是:直线x=1,∵﹣<0,∴当x>1时,y随x的增大而减小,∵2<3,∴y1>y2,故答案为:>.16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据在一个斜坡上前进5米,水平高度升高了1米,可以计算出此时的水平距离,水平高度与水平距离的比值即为坡度,从而可以解答本题.【解答】解:设在一个斜坡上前进13米,水平高度升高了5米,此时水平距离为x米,根据勾股定理,得x2+52=132,解得:x=12,故该斜坡坡度i=5:12=1:2.4.故答案为:1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).【考点】二次函数的性质;二次函数的图象.【分析】由条件可求得抛物线解析式,化为顶点式可求得答案.【解答】解:∵特征数为{1、﹣4、3},∴抛物线解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线顶点坐标为(2,﹣1),故答案为:(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED 沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.【考点】翻折变换(折叠问题);解直角三角形.【分析】先根据DE⊥AB,tanA═,AC═8,求得BC=4,CE=3,BD=2,DE=,再过点C作CG⊥BE于G,作DH⊥BE于H,根据面积法求得CG和DH的长,最后根据△CFG∽△DFH,得到===即可.【解答】解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).【考点】*平面向量.【分析】(1)根据相似三角形的判定与性质,可得AE的长,根据线段的和差,可得答案;(2)根据相似三角形的判定与性质,可得AE,AD的长,根据向量的减法运算,可得答案.【解答】解:(1)由DE∥BC,得△ADE∽△ABC,=.又DE=BC且AC=6,得AE=AC=4,CE=AC﹣AE=6﹣4=2;(2)如图,由DE∥BC,得△ADE∽△ABC,=.又AC=6且DE=BC,得AE=AC,AD=AB.==,==.=﹣=﹣.21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.【考点】解直角三角形的应用-仰角俯角问题.【分析】过点P作AB 的垂线,垂足为E,根据题意可得出四边形PDBE是矩形,再由∠EPB=45°可知BE=PE=36m,由AE=PE•tan30°得出AE的长,进而可得出结论.【解答】解:如图,过点P作AB 的垂线,垂足为E,∵PD⊥AB,DB⊥AB,∴四边形PDBE是矩形,∵BD=36m,∠EPB=45°,∴BE=PE=36m,∴AE=PE•tan30°=36×=12(m),∴AB=12+36(m).答:建筑物AB的高为米.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.【考点】二次函数与不等式(组);待定系数法求二次函数解析式;抛物线与x 轴的交点.【分析】先根据函数的解析式求出A、B两点的坐标,再求出点C的坐标,利用待定系数法求出抛物线m的解析式,画出其图象,利用数形结合即可求解.【解答】解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a=,∴抛物线m的解析式为y=(x﹣3)(x﹣8),即y=x2﹣x+6;函数图象如右:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.【考点】相似三角形的判定与性质;正方形的性质;解直角三角形.【分析】(1)利用AA证明△CEF∽△CAB,再列出比例式利用SAS证明△CAF∽△CBE(2)证出∴∠BAF=∠BEF,设EC=1,则EF=1,FC=,AC=3,由勾股定理得出AB=BC=AC=,得出BF=BC﹣FC=,由三角函数即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,∵EF⊥AC,∴∠FEC=90°=∠ABC,又∵∠FCE=∠ACB,∴△CEF∽△CAB,∴,又∵∠ACF=∠BCE,∴△CAF∽△CBE;(2)∵△CAF∽△CBE,∴∠CAF=∠CBE,∵∠BAC=∠BCA=45°,∴∠BAF=∠BEF,设EC=1,则EF=1,FC=,∵AE:EC=2:1,∴AC=3,∴AB=BC=AC=,∴BF=BC﹣FC=,∴.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.【考点】二次函数综合题;解一元二次方程-公式法;平行四边形的性质.【分析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(2)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,∴抛物线的函数解析式为y=﹣x2﹣x+2;∴点C的坐标为(0,2),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m2﹣m+2),过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),化简,得S=﹣m2﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2﹣x+2=2得,x1=0,x2=﹣3,∴点E的坐标为(﹣3,2);当y E=﹣2时,解方程﹣x2﹣x+2=﹣2得,x1=,x2=,∴点E的坐标为(,﹣2)或(,﹣2);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=2,∴点E的坐标为(﹣3,2).综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.【考点】二次函数综合题.【分析】(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.由△ABE∽△MPB,得=,求出PM,根据△BPQ的面积y=•BQ•PM计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P在BE上,②P在DE上,③P在CD上,分别求解即可.(4)由∠BIH=∠BCG=90°,推出B、I、C、G四点共圆,推出∠BGH=∠BCI,由△GBH∽△CBI,可得=,由此只要求出GH即可解决问题.【解答】解:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.∵△ABE∽△MPB,∴=,∴=,∴PM=t,当0<t≤5时,△BPQ的面积y=•BQ•PM=•2t•t=t2.(2)由(1)可知BC=BE=10,ED=4.(3)①当P在BE上时,∵BQ=2PB,∴只有∠BPQ=90°,才有可能B、P、Q为顶点的三角形和△ABE相似,∴∠BQP=30°,这个显然不可能,∴当点P在BE上时,不存在△PQB与△ABE相似.②当点P在ED上时,观察图象可知,不存在△.③当点P在DC上时,设PC=a,当=时,∴=,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s时,△PQB与△ABE相似.(4)如图3中,设EG=m,GH=n,∵DE∥BC,∴=,∴=,∴m=,在Rt△BIG中,∵BG2=BI2+GI2,∴()2=62+(8+n)2,∴n=﹣8+8或﹣8﹣8(舍弃),∵∠BIH=∠BCG=90°,∴B、I、C、G四点共圆,∴∠BGH=∠BCI,∵∠GBF=∠HBI,∴∠GBH=∠CBI,∴△GBH∽△CBI,∴=,∴=,∴IC=﹣.2017年1月20日。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π- 【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 2.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1- 【答案】D【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=225AB BD-=,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.4.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°【答案】B【解析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.5.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【答案】B【解析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.6.-4的绝对值是()A .4B .14C .-4D .14- 【答案】A 【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.7.估算9153+÷的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D 【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间.故选D .【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.9.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C 5D 25 【答案】A【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可.详解:连接AC ,由网格特点和勾股定理可知, AC=2,22,10AB BC ==, AC 2+AB 2=10,BC 2=10,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴tan ∠ABC=21222AC AB ==. 点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解题的关键.10.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .【答案】D【解析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y 随x 的增大而减小,且当x=0时,y=4,当y=0时,x=1.故选D .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.二、填空题(本题包括8个小题)11.若a+b=5,ab=3,则a 2+b 2=_____.【答案】1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.12.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.【答案】3或1【解析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.13.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.【答案】231.【解析】据题意求得A0A1=4,A0A1=23,A0A3=1,A0A4=23,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=3A0A3=1,A0A4=23A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为3 1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.14.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.【答案】41 400【解析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】 本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.15.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg【答案】20【解析】设函数表达式为y=kx+b 把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg16.若正六边形的边长为2,则此正六边形的边心距为______.【答案】3.【解析】连接OA 、OB ,根据正六边形的性质求出∠AOB ,得出等边三角形OAB ,求出OA 、AM 的长,根据勾股定理求出即可.【详解】连接OA 、OB 、OC 、OD 、OE 、OF ,∵正六边形ABCDEF ,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF ,∴∠AOB=60°,OA=OB ,∴△AOB 是等边三角形,∴OA=OB=AB=2,∵AB ⊥OM ,∴AM=BM=1,在△OAM 中,由勾股定理得:317.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 18.若|a|=20160,则a=___________.【答案】±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1.三、解答题(本题包括8个小题)19.如图,一次函数y=﹣x+4的图象与反比例函数y=(k 为常数,且k≠0)的图象交于A (1,a ),B (3,b )两点.求反比例函数的表达式在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标求△PAB 的面积.【答案】(1)反比例函数的表达式y=,(2)点P 坐标(,0), (3)S △PAB = 1.1.【解析】(1)把点A (1,a )代入一次函数中可得到A 点坐标,再把A 点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D 关于x 轴的对称点D ,连接AD 交x 轴于点P ,此时PA+PB 的值最小.由B 可知D 点坐标,再由待定系数法求出直线AD 的解析式,即可得到点P 的坐标;(3)由S △PAB =S △ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=kx,得k=3,∴反比例函数的表达式y=3x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=1,∴直线AD的解析式为y=﹣2x+1,令y=0,得x=52,∴点P坐标(52,0),(3)S△PAB=S△ABD﹣S△PBD=12×2×2﹣12×2×12=2﹣12=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.20.今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.【答案】(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200 xy=⎧⎨=⎩,答:A种树苗的单价为200元,B种树苗的单价为300元.(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.求AB的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.【答案】(1)24.2米(2) 超速,理由见解析【解析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CD ADtan30︒=21213?33==,在Rt△BDC中,CD21BD73tan603===︒,∴AB=AD-BD=213?73=14314 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.22.小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.【答案】(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:13(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.23.一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【答案】(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12.(2)用表格列出所有可能的结果:第二次第一次红球1 红球2 白球黑球红球1 (红球1,红球2)(红球1,白球)(红球1,黑球)红球2 (红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.考点:概率统计24.如图,在Rt⊿ABC中,90ACB∠=,CD AB⊥于D,,AC20BC15==.⑴.求AB的长;⑵.求CD的长.【答案】(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在Rt⊿ABC中,90ACB∠=,20,15AC BC==.∴2222201525AB AC BC =+=+=,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=,∴20×15=25CD.∴12CD =.25.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a = ___ ;b =____ 请计算扇形统计图中B 组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3,45;(2)108︒;(3)16【解析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率26.甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲a7 7 1.2乙7 b8 c(1)求a,b,c的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【答案】(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断 【答案】B【解析】比较OP 与半径的大小即可判断.【详解】r 5=,d OP 6==,d r ∴>,∴点P 在O 外,故选B .【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<. 2.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.3.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm2【答案】C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C4.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.4【答案】B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C3D3【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN ,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB ,再根据直角三角形解答.【详解】如图,过点P 作PE ⊥OA 于点E ,∵OP 是∠AOB 的平分线,∴PE =PM ,∵PN ∥OB ,∴∠POM =∠OPN ,∴∠PNE =∠PON+∠OPN =∠PON+∠POM =∠AOB =45°, ∴PM PN =2. 故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.函数y=ax 2+1与a y x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .【答案】B【解析】试题分析:分a >0和a <0两种情况讨论:当a >0时,y=ax 2+1开口向上,顶点坐标为(0,1);a y x=位于第一、三象限,没有选项图象符合; 当a <0时,y=ax 2+1开口向下,顶点坐标为(0,1);a y x =位于第二、四象限,B 选项图象符合. 故选B .考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.7.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .5 【答案】C【解析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案.【详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.8.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】B【解析】分析:直接利用2<7<3,进而得出答案.详解:∵2<7<3,∴3<7+1<4,故选B .点睛:此题主要考查了估算无理数的大小,正确得出7的取值范围是解题关键.9.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°【答案】C 【解析】分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.10.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..二、填空题(本题包括8个小题)11.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.【答案】1【解析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.12.若x2+kx+81是完全平方式,则k的值应是________.【答案】±1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案为±1.考点:完全平方式.13.如图1,AB 是半圆O 的直径,正方形OPNM 的对角线ON 与AB 垂直且相等,Q 是OP 的中点.一只机器甲虫从点A 出发匀速爬行,它先沿直径爬到点B ,再沿半圆爬回到点A ,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t ,甲虫与微型记录仪之间的距离为y ,表示y 与t 的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A .点MB .点NC .点PD .点Q【答案】D【解析】D .试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M ,AM 最小,与图2不符,可排除A.若微型记录仪位于图1中的点N ,由于AN=BM ,即甲虫从A 到B 时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P ,由于甲虫从A 到OP 与圆弧的交点时甲虫与微型记录仪之间的距离y 逐渐减小;甲虫从OP 与圆弧的交点到A 时甲虫与微型记录仪之间的距离y 逐渐增大,即y 与t 的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D .考点:1.动点问题的函数图象分析;2.排他法的应用.142x +有意义,则x 的取值范围是_____. 【答案】x≥﹣2且x≠1. 2x +20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.15.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m 的值为___________.【答案】3【解析】设过点A (2,0)和点B (0,2)的直线的解析式为:y kx b =+,则202k b b +=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩ ,∴直线AB 的解析式为:2y x =-+,∵点C (-1,m )在直线AB 上,∴(1)2m --+=,即3m =.故答案为3.点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.16.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.17.写出一个大于3且小于4的无理数:___________.【答案】如10π,等,答案不唯一.【解析】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16都是完全平方数,10,11,12,,15都是无理数.18.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.【答案】x≥1【解析】把y=2代入y=x+1,得x=1,∴点P 的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n 相应的函数值,因而不等式x+1≥mx+n 的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.三、解答题(本题包括8个小题)19.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .求证:△ADE ≌△CBF ;若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.【答案】(1)证明见解析(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS ,ASA ,SSS )来证明全等;(2)先由菱形的性质得出AE=BE=DE ,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD 是矩形.【详解】解:()1证明:∵四边形ABCD 是平行四边形,∴4C ∠=∠,AD CB =,AB CD =.∵点E 、F 分别是AB 、CD 的中点, ∴12AE AB =,12CF CD =. ∴AE CF =.在AED 和CBF 中,AD CB DAE C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF SAS ≅.()2解:当四边形BEDF 是菱形时,四边形AGBD 是矩形.证明:∵四边形ABCD 是平行四边形,∴//AD BC .。
2017年上海市宝山区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值进行判断即可【解答】解:∵∠A=30°,∴sinA=,cosA=,tanA=,cotA=,故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵C是线段AB的黄金分割点C,AC>CB,∴AC=AB=,故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数【考点】二次函数的定义.【分析】找出二次函数的定义域即可.【解答】解:二次函数y=x2+2x+3的定义域为x为一切实数,故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反【考点】*平面向量.【分析】根据向量的长度和方向,可得答案.【解答】解:A、由=﹣3,得||=3||,故A错误;B、由=﹣3,得||=3||,||:||=3:1,故B错误;C、由=﹣3,得=﹣3方向相反,故C错误;D、由=﹣3,得=﹣3平行且方向相反,故D正确;故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【考点】方向角.【分析】根据题意正确画出图形进而分析得出从乙船看甲船的方向.【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.【考点】比例的性质.【分析】根据比例的基本性质:两外项之积等于两内项之积.可直接得到的结果.【解答】解:∵2a=3b,∴=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.【考点】相似三角形的性质.【分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.【解答】解:∵两个相似三角形的相似比为1:4,∴它们的面积比为1:16.故答案为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB的比例中项.【考点】比例线段.【分析】根据两角分别相等的两个三角形相似,可得△ACD∽△ABC的关系,根据相似三角形的性质,可得答案.【解答】解:在△ACD与△ABC中,∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC,∴=,∴AC是AD和AB的比例中项.故答案为AC.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.【考点】解直角三角形.【分析】先证明△BDC∽△CDA,利用相似三角形的性质求出CD的长度,然后根据锐角三角函数的定义即可求出tanA的值.【解答】解:∵∠BCD+∠DCA=∠DCA+∠A=90°,∴∠BCD=∠A,∵CD⊥AB,∴∠BDC=∠CDA=90°,∴△BDC∽△CDA,∴CD2=BD?AD,∴CD=6,∴tanA==故答案为:11.计算:2(+3)﹣5=2+.【考点】*平面向量.【分析】可根据向量的加法法则进行计算,可得答案.【解答】解:2(+3)﹣5=2+6﹣5=2+,故答案为:2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.【考点】三角形的重心;等腰三角形的性质;勾股定理.【分析】延长AG交BC于D,根据重心的概念得到∠BAD=∠CAD,根据等腰三角形的性质求出BD,根据勾股定理和重心的性质计算即可.【解答】解:延长AG交BC于D,∵G为△ABC的重心,∴∠BAD=∠CAD,∵AB=AC,∴BD=BC=5,AD⊥BC,由勾股定理得,AD==12,∵G为△ABC的重心,∴AG=AD=8,故答案为:8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律求解即可.【解答】解:y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度得y=5(x﹣4+2)2+3﹣1,即y=5(x﹣2)2+2.故答案为y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2.【考点】二次函数的性质.【分析】根据函数值相等的点到抛物线对称轴的距离相等可求得其对称轴.【解答】解:∵点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,∴其对称轴为x==2故答案为:x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)【考点】二次函数图象上点的坐标特征.【分析】先确定其对称轴,利用增减性进行判断;也可以将A、B两点的坐标分别代入求出纵坐标,再进行判断.【解答】解:由题意得:抛物线的对称轴是:直线x=1,∵﹣<0,∴当x>1时,y随x的增大而减小,∵2<3,∴y1>y2,故答案为:>.16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:2.4.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据在一个斜坡上前进5米,水平高度升高了1米,可以计算出此时的水平距离,水平高度与水平距离的比值即为坡度,从而可以解答本题.【解答】解:设在一个斜坡上前进13米,水平高度升高了5米,此时水平距离为x米,根据勾股定理,得x2+52=132,解得:x=12,故该斜坡坡度i=5:12=1:2.4.故答案为:1:2.4.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).【考点】二次函数的性质;二次函数的图象.【分析】由条件可求得抛物线解析式,化为顶点式可求得答案.【解答】解:∵特征数为{1、﹣4、3},∴抛物线解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线顶点坐标为(2,﹣1),故答案为:(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.【考点】翻折变换(折叠问题);解直角三角形.【分析】先根据DE⊥AB,tanA═,AC═8,求得BC=4,CE=3,BD=2,DE=,再过点C作CG⊥BE于G,作DH⊥BE于H,根据面积法求得CG和DH的长,最后根据△CFG∽△DFH,得到===即可.【解答】解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).【考点】*平面向量.【分析】(1)根据相似三角形的判定与性质,可得AE的长,根据线段的和差,可得答案;(2)根据相似三角形的判定与性质,可得AE,AD的长,根据向量的减法运算,可得答案.【解答】解:(1)由DE∥BC,得△ADE∽△ABC,=.又DE=BC且AC=6,得AE=AC=4,CE=AC﹣AE=6﹣4=2;(2)如图,由DE∥BC,得△ADE∽△ABC,=.又AC=6且DE=BC,得AE=AC,AD=AB.==,==.=﹣=﹣.21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P 处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.【考点】解直角三角形的应用-仰角俯角问题.【分析】过点P作AB 的垂线,垂足为E,根据题意可得出四边形PDBE是矩形,再由∠EPB=45°可知BE=PE=36m,由AE=PE?tan30°得出AE的长,进而可得出结论.【解答】解:如图,过点P作AB 的垂线,垂足为E,∵PD⊥AB,DB⊥AB,∴四边形PDBE是矩形,∵BD=36m,∠EPB=45°,∴BE=PE=36m,∴AE=PE?tan30°=36×=12(m),∴AB=12+36(m).答:建筑物AB的高为米.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m 与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.【考点】二次函数与不等式(组);待定系数法求二次函数解析式;抛物线与x 轴的交点.【分析】先根据函数的解析式求出A、B两点的坐标,再求出点C的坐标,利用待定系数法求出抛物线m的解析式,画出其图象,利用数形结合即可求解.【解答】解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a=,∴抛物线m的解析式为y=(x﹣3)(x﹣8),即y=x2﹣x+6;函数图象如右:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.【考点】相似三角形的判定与性质;正方形的性质;解直角三角形.【分析】(1)利用AA证明△CEF∽△CAB,再列出比例式利用SAS证明△CAF∽△CBE(2)证出∴∠BAF=∠BEF,设EC=1,则EF=1,FC=,AC=3,由勾股定理得出AB=BC=AC=,得出BF=BC﹣FC=,由三角函数即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,∵EF⊥AC,∴∠FEC=90°=∠ABC,又∵∠FCE=∠ACB,∴△CEF∽△CAB,∴,又∵∠ACF=∠BCE,∴△CAF∽△CBE;(2)∵△CAF∽△CBE,∴∠CAF=∠CBE,∵∠BAC=∠BCA=45°,∴∠BAF=∠BEF,设EC=1,则EF=1,FC=,∵AE:EC=2:1,∴AC=3,∴AB=BC=AC=,∴BF=BC﹣FC=,∴.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.【考点】二次函数综合题;解一元二次方程-公式法;平行四边形的性质.【分析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(2)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,∴抛物线的函数解析式为y=﹣x2﹣x+2;∴点C的坐标为(0,2),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m2﹣m+2),过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),化简,得S=﹣m2﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2﹣x+2=2得,x1=0,x2=﹣3,∴点E的坐标为(﹣3,2);当y E=﹣2时,解方程﹣x2﹣x+2=﹣2得,x1=,x2=,∴点E的坐标为(,﹣2)或(,﹣2);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=2,∴点E的坐标为(﹣3,2).综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.【考点】二次函数综合题.【分析】(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.由△ABE∽△MPB,得=,求出PM,根据△BPQ的面积y=?BQ?PM计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P在BE上,②P在DE上,③P在CD上,分别求解即可.(4)由∠BIH=∠BCG=90°,推出B、I、C、G四点共圆,推出∠BGH=∠BCI,由△GBH∽△CBI,可得=,由此只要求出GH即可解决问题.【解答】解:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.∵△ABE∽△MPB,∴=,∴=,∴PM=t,当0<t≤5时,△BPQ的面积y=?BQ?PM=?2t?t=t2.(2)由(1)可知BC=BE=10,ED=4.(3)①当P在BE上时,∵BQ=2PB,∴只有∠BPQ=90°,才有可能B、P、Q为顶点的三角形和△ABE相似,∴∠BQP=30°,这个显然不可能,∴当点P在BE上时,不存在△PQB与△ABE相似.②当点P在ED上时,观察图象可知,不存在△.③当点P在DC上时,设PC=a,当=时,∴=,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s时,△PQB与△ABE相似.(4)如图3中,设EG=m,GH=n,∵DE∥BC,∴=,∴=,∴m=,在Rt△BIG中,∵BG2=BI2+GI2,∴()2=62+(8+n)2,∴n=﹣8+8或﹣8﹣8(舍弃),∵∠BIH=∠BCG=90°,∴B、I、C、G四点共圆,∴∠BGH=∠BCI,∵∠GBF=∠HBI,∴∠GBH=∠CBI,∴△GBH∽△CBI,∴=,∴=,∴IC=﹣.2017年1月20日。