引线键合工艺
- 格式:doc
- 大小:86.50 KB
- 文档页数:5
学员作业课程名称:集成电路封装与测试作业内容:集成电路封装中的引线键合技术任课教师:张江元学员姓名:蒋涛学员学号: 511412130所在班级:集成电路工程教师评分:集成电路封装中的引线键合技术【摘要】在回顾现有的引线键合技术之后,文章主要探讨了集成电路封装中引线健合技术的发展趋势。
球形焊接工艺比楔形焊接工艺具有更多的优势,因而获得了广泛使用。
传统的前向拱丝越来越难以满足目前封装的高密度要求,反向拱丝能满足非常低的弧高的要求。
前向拱丝和反向拱丝工艺相结合,能适应复杂的多排引线健合和多芯片封装结构的要求。
并具体以球栅阵列封装为例,介绍了检测手段。
不断发展的引线健合技术使得引线健合工艺能继续满足封装日益发展的要求,为封装继续提供低成本解决方案。
【主要内容】1. 引线键合工艺1. 1 楔形焊接工艺流程1. 2 圆形焊接工艺流程1. 3 主要工艺参数介绍1.3.1 键合温度1.3.2 键合时间2. 引线键合材料2. 1 焊线工具2. 2 引线材料3. 引线键合线弧技术3. 1 前向拱丝3. 2 反向拱丝4. 键合质量的判定标准4. 1电测试4. 2 边界扫描检测4. 3 X射线测试5. 小结参考文献1. 引线键合工艺在IC封装中,芯片和引线框架(基板)的连接为电源和信号的分配提供了电路连接。
有三种方式实现内部连接:倒装焊、载带自动焊和引线键合。
虽然倒装焊的应用增长很快,但是目前90%以上的连接方式仍是引线键合。
这个主要是基于成本的考虑。
虽然倒装焊能大幅度提升封装的性能,但是过于昂贵的成本使得倒装焊仅仅用于一些高端的产品上。
事实上对于一般产品的性能要求,用引线键合已经能够达到,没有必要使用倒装焊引起额外的成本增加。
对于封装厂商来说,使用倒装焊意味着目前传统的引线键合、模塑设备的淘汰,需要引入新的倒装焊设备,这个投资是非常巨大的。
传统的封装尺寸比较大,因而引线键合所使用的线的直径比较大,线弧也比较高,一般在150m~250m之间。
电子制造技术基础夏卫生副教授/博士1连接与电子封装中心材料科学与工程学院推荐图书IC Package Structure(IC结构图)TOP VIEW SIDE VIEW Lead Frame 引线框架Gold Wire金线Die Pad芯片焊盘Epoxy银浆Mold Compound 环氧树脂第三章元器件的互连封装技术什么是引线键合工艺及对比工艺应用例主要参数/设备性能检测方法劈刀参数第一节引线键合技术Review电子工程中最早采用的互连技术是钎焊,为适应微电子产业微细化的要求,已经开发并广泛使用的互连技术有以下三种:引线键合技术、载带自动焊技术和倒装焊技术。
在微电子封装中,互连技术对器件性能的影响是很关键,特别是芯片互连对电子器件的长期使用的可靠性影响很大。
半导体器件的失效大约有1/4到1/3是由芯片互连导致。
在半导体加工制造领域,引线键合是芯片封装过程的一种主要电互连方式。
该技术以其成本低、操作简单等优点占据了芯片封装领域70%份额。
电子封装始于IC晶片制成之后,包括IC晶片的粘结固定、电路连线、密封保护、与电路板之接合、模组组装到产品完成之间的所有过程。
Review电子封装常见的连接方法:引线键合(Wire Bonding,WB)载带自动焊(Tape Automated Bonding ,TAB)倒装芯片(Flip Chip,FC),也称为反转式晶片接合或可控制塌陷晶片互连(Controlled Collapse ChipConnection,C4)引线键合(Wire Bonding)什么是引线键合??用金属丝将芯片的I/O端(Inner Lead Bonding Pad: 内侧引线端子)与对应的封装引脚或者基板上布线焊区(Outer Lead Bonding Pad: 外侧引线端子)互连,实现固相焊接过程.原理:◆采用加热、加压或超声能破坏表面氧化层和污染,产生塑性变形,◆界面亲密接触产生电子共享和原子扩散形成焊点,◆键合区的焊盘金属一般为Al或者Au等,金属细丝通常为20~50μm直径的Au、Al或者Si-Al丝。
1引言随着集成电路的发展,先进封装技术不断发展变化以适应各种半导体新工艺和新材料的要求和挑战。
半导体封装内部芯片和外部管脚以及芯片之间的连接起着确立芯片和外部的电气连接、确保芯片和外界之间的输入/输出畅通的重要作用,是整个后道封装过程中的关键。
引线键合以工艺实现简单、成本低廉、适用多种封装形式而在连接方式中占主导地位,目前所有封装管脚的90%以上采用引线键合连接[1]。
目前封装形式一方面朝着高性能的方向发展,另一方面朝着轻薄短小的方向发展,对封装工艺圆片研磨、圆片粘贴、引线键合都提出了新的要求。
其中引线键合是很关键的工艺,键合质量好坏直接关系到整个封装器件的性能和可靠性。
本文将对引线键合工艺展开研究,分析影响键合质量的关键参数,以使引线键合满足封装工艺高质量、高可靠性的要求。
2引线键合工艺2.1简介引线键合工艺分为3种:热压键合(Thermo-compressionBonding),超声波键合(UltrasonicBonding)引线键合工艺介绍及质量检验吕磊(中国电子科技集团公司第四十五研究所,北京东燕郊101601)摘要:介绍了引线键合工艺流程、键合材料及键合工具,讨论分析了影响引线键合可靠性的主要工艺参数,说明了引线键合质量的评价方法,并提出了增强引线键合可靠性的措施。
关键词:引线键合;球形键合;楔形键合;毛细管劈刀;楔形劈刀;键合拉力测试;键合剪切力测试中图分类号:TN307文献标识码:A文章编号:1004-4507(2008)03-0053-08TheProcessIntroductionandQualityInspectionofWireBondingLVLei(The45thInstituteofCETC,BeijingEastYanjiao101601,China)Abstract:Thisarticleintroducestheprocesses、materialsandtoolsofwirebonding,themainprocessparametersinfluencingonreliability,themethodsforqualityinspectionandthemethodstoimprovethebondingreliability.Keywords:Wirebonding;Ballbonding;Wedgebonding;Capillary;Wedge;BondPullTest收稿日期:2008-00-00与热压超声波键合(Thermo-sonicBonding)[2~3]。
铜丝在引线键合技术的发展及其合金的应用一、简介目前超过90%的集成电路的封装是采用引线键合技术,引线键合,又称线焊。
即用金属细丝将裸芯片电极焊区与电子封装外壳的输入,输出引线或基板上的金属布线焊区连接起来。
连接过程一般通过加热、加压、超声等能量,借助键合工具“劈刀”实现。
按外加能量形式的不同,引线键合可分为热压键合、超声键合和热超声键合。
按劈刀的不同,可分为楔形键合和球形键合。
引线键合工艺中所用导电丝主要有金丝、铜丝和铝丝,由于金丝价格昂贵、成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。
因此人们一直尝试使用其它金属替代金,由于铜丝价格便宜、成本低、具有较高的导电导热性,并且Cu/Al金属间化合物生长速于Au/Al,不易形成有害的金属间化合物。
近年来,铜丝引线键合日益引起人们的兴趣。
二、铜丝键合的工艺当今,全球的IC制造商普遍采用3种金属互连工艺,即:铜丝与晶片铝金属化层的键合工艺,金丝与晶片铜金属化层的键合工艺以及铜丝与晶片铜金属化层的键合工艺。
近年来第一种工艺用得最为广泛,后两者则是今后的发展方向。
1. 铜丝与晶片铝金属化层的键合工艺近年来,人们对铜丝焊、劈刀材料及新型的合金焊丝进行了一些新的工艺研究,克服了铜易氧化及难以焊接的缺陷。
采用铜丝键合不但使封装成本下降,更主要的是作为互连材料,铜的物理特性优于金。
特别是采用以下’3种新工艺,更能确保铜丝键合的稳定性。
(1)充惰性气体的EFO工艺:常规用于金丝球焊工艺中的EFO是在形成焊球过程中的一种电火花放电。
但对于铜丝球焊来说,在成球的瞬间,放电温度极高,由于剧烈膨胀,气氛瞬时呈真空状态,但这种气氛很快和周围的大气相混合,常造成焊球变形或氧化。
氧化的焊球比那些无氧化层的焊球明显坚硬,而且不易焊接。
新型EFO工艺是在成球过程中增加惰性气体保护功能,即在一个专利悬空管内充入氮气,确保在成球的一瞬间与周围的空气完全隔离,以防止焊球氧化,焊球质量极好,焊接工艺比较完善。
引线键合(WireBonding)引线键合(Wire Bonding)——将芯片装配到PCB上的方法 | SK hynix Newsroom结束前工序的每一个晶圆上,都连接着500~1200个芯片(也可称作Die)。
为了将这些芯片用于所需之处,需要将晶圆切割(Dicing)成单独的芯片后,再与外部进行连接、通电。
此时,连接电线(电信号的传输路径)的方法被称为引线键合(Wire Bonding)。
其实,使用金属引线连接电路的方法已是非常传统的方法了,现在已经越来越少用了。
近来,加装芯片键合(Flip Chip Bonding)和硅穿孔(Through Silicon Via,简称TSV)正在成为新的主流。
加装芯片键合也被称作凸点键合(Bump Bonding),是利用锡球(Solder Ball)小凸点进行键合的方法。
硅穿孔则是一种更先进的方法。
为了了解键合的最基本概念,在本文中,我们将着重探讨引线键合,这一传统的方法。
一、键合法的发展历程图1. 键合法的发展史:引线键合(Wire Bonding)→加装芯片键合(Flip Chip Bonding)→硅穿孔(TSV)下载图片为使半导体芯片在各个领域正常运作,必须从外部提供偏压(Bias voltage)和输入。
因此,需要将金属引线和芯片焊盘连接起来。
早期,人们通过焊接的方法把金属引线连接到芯片焊盘上。
从1965年至今,这种连接方法从引线键合(Wire Bonding),到加装芯片键合(Flip Chip Bonding),再到TSV,经历了多种不同的发展方式。
引线键合顾名思义,是利用金属引线进行连接的方法;加装芯片键合则是利用凸点(bump)代替了金属引线,从而增加了引线连接的柔韧性;TSV作为一种全新的方法,通过数百个孔使上下芯片与印刷电路板(Printed Circuit Board,简称PCB)相连。
二、键合法的比较:引线键合(Wire Bonding)和加装芯片键合(Flip Chip Bonding)图2. 引线键合(Wire Bonding) VS加装芯片键合(Flip Chip Bonding)的工艺下载图片三、引线键合(Wire Bonding)是什么?图3. 引线键合的结构(载体为印刷电路板(PCB)时)下载图片引线键合是把金属引线连接到焊盘上的一种方法,即是把内外部的芯片连接起来的一种技术。
引线键合工艺介绍及质量检验引线键合工艺是一种广泛应用于电子元器件制造的连接技术,它通过金属引线的熔融连接实现芯片与外部电路的连接。
这种工艺具有高可靠性、低成本、高生产效率等优点,因此在电子产业中得到广泛应用。
本文将详细介绍引线键合工艺的过程、质量检验方法及其应用实例。
准备:包括芯片贴装、引线框架设计、选择合适的引线材料和键合设备等。
键合:通过加热或超声波能量使金属引线与芯片和外部电路键合。
检测:对键合后的产品进行外观和功能性检测。
封装:将检测合格的产品进行封装,以保护其内部电路并提高可靠性。
质量检验是保证引线键合工艺成品质量的重要环节。
以下是一些建议的质量检验步骤和方法:外观检测:通过目视或显微镜检查产品外观,判断是否有键合不良、毛刺、断线等问题。
功能性检测:利用检测仪器进行电气性能测试,确保产品在规定范围内正常运行。
X光检测:利用X光无损检测技术对产品内部结构进行观察,以发现潜在的内部缺陷。
可靠性测试:进行环境试验、寿命测试等,以评估产品的长期性能和可靠性。
微处理器封装:在微处理器封装中,引线键合工艺用于将芯片与外部电路进行连接,以确保微处理器能够正常工作。
传感器制造:在传感器制造中,引线键合工艺用于将敏感元件与信号处理电路进行连接,以提高传感器的精度和可靠性。
医疗设备制造:在医疗设备制造中,引线键合工艺用于将电子元件与医疗器械进行连接,以确保医疗器械的安全性和有效性。
引线键合工艺作为电子元器件制造中重要的连接技术,具有不可替代的地位。
通过对其工艺过程的了解和对其质量检验方法的掌握,有助于提高电子元器件制造的整体水平和产品的可靠性。
随着科技的不断发展,我们有理由相信,引线键合工艺将继续在未来的电子产业中发挥重要作用。
超声引线键合点是指通过超声波振动将金属导线与芯片或基板连接起来的连接点。
超声引线键合点的形态包括圆形、椭圆形、扁平形等,其中圆形是最常见的形态。
超声引线键合点的形态受多种因素影响,如键合工艺参数、金属导线材料、芯片或基板材料等。
引线键合(wire bonding,WB)引线键合的定义:用金属丝将芯片的I/O端(内侧引线端子)与相对应的封装引脚或者基板上布线焊区(外侧引线端子)互连,实现固相焊接过程,采用加热、加压和超声能,破坏表面氧化层和污染,产生塑性变形,界面亲密接触产生电子共享和原子扩散形成焊点,键合区的焊盘金属一般为Al或者Au等,金属细丝是直径通常为20~50微米的Au、Al或者Si—Al丝。
历史和特点1957 年Bell实验室采用的器件封装技术,目前特点如下:• 已有适合批量生产的自动化机器;• 键合参数可精密控制,导线机械性能重复性高;• 速度可达100ms互连(两个焊接和一个导线循环过程);• 焊点直径:100 μm↘ 50μm,↘ 30 μm;• 节距:100 μm ↘55 μm,↘35 μm ;• 劈刀(Wedge,楔头)的改进解决了大多数的可靠性问题;• 根据特定的要求,出现了各种工具和材料可供选择;•已经形成非常成熟的体系。
应用范围低成本、高可靠、高产量等特点使得它成为芯片互连的主要工艺方法,用于下列封装(适用于几乎所有的半导体集成电路元件,操作方便,封装密度高,但引线长,测试性差)1.陶瓷和塑料BGA、单芯片或者多芯片2.陶瓷和塑料 (CerQuads and PQFPs)3.芯片尺寸封装 (CSPs)4.板上芯片 (COB)两种键合焊盘1.球形键合球形键合第一键合点第二键合点2.楔形键合楔形键合第一键合点第二键合点三种键合(焊接、接合)方法引线键合为IC晶片与封装结构之间的电路连线中最常使用的方法。
主要的引线键合技术有超音波接合(Ultrasonic Bonding, U/S Bonding)、热压接合(Thermocompression Bonding,T/C Bonding)、与热超音波接合(Thermosonic Bonding, T/S Bonding)等三种。
机理及特点1.超声焊接:超音波接合以接合楔头(Wedge)引导金属线使其压紧于金属焊盘上,再由楔头输入频率20至60KHZ,振幅20至200μm,平行于接垫平面之超音波脉冲,使楔头发生水平弹性振动,同时施加向下的压力。
引线键合工艺参数对封装质量的影响因素分析目前IC器件在各个领域的应用越来越广泛,对封装工艺的质量与检测技术提出了更高的要求,如何实现复杂封装的工艺稳定、质量保证和协同控制变得越来越重要。
目前国外对引线键合工艺涉与的大量参数和精密机构的控制问题已有较为深入的研究,并且已经在参数敏感度和重要性的排列方面有了共识。
我国IC封装研究起步较晚,其中的关键技术掌握不足,缺乏工艺的数据积累,加之国外的技术封锁,有必要深入研究各种封装工艺,掌握其间的关键技术,自主研发高水平封装装备。
本文将对引线键合工艺展开研究,分析影响封装质量的关键参数,力图为后续的质量影响规律和控制奠定基础。
2. 引线键合工艺WB随着前端工艺的发展正朝着超精细键合趋势发展。
WB过程中,引线在热量、压力或超声能量的共同作用下,与焊盘金属发生原子间扩散达到键合的目的。
根据所使用的键合工具如劈刀或楔的不同,WB分为球键合和楔键合。
根据键合条件不同,球键合可分为热压焊、冷超声键合和热超声键合。
根据引线不同,又可分为金线、铜线、铝线键合等。
冷超声键合常为铝线楔键合。
热超声键合常为金丝球键合,因同时使用热压和超声能量,能够在较低的温度下实现较好的键合质量,从而得到广泛使用。
2.1 键合质量的判定标准键合质量的好坏往往通过破坏性实验判定。
通常使用键合拉力测试(BPT)、键合剪切力测试(B ST)。
影响BPT结果的因素除了工艺参数以外,还有引线参数(材质、直径、强度和刚度)、吊钩位置、弧线高度等。
因此除了确认BPT的拉力值外,还需确认引线断裂的位置。
主要有四个位置:⑴第一键合点的界面;⑵第一键合点的颈部;⑶第二键合点处;⑷引线轮廓中间。
BST是通过水平推键合点的引线,测得引线和焊盘分离的最小推力。
剪切力测试可能会因为测试环境不同或人为原因出现偏差,Liang等人 [1]介绍了一种简化判断球剪切力的方法,提出简化键合参数(RBP)的概念,即RBP=powerA ×forceB×timeC,其中A,B,C为调整参数,一般取0.80, 0.40,0.20。
SIP封装的制程工艺系统级封装(system in package,SIP)是指将不同种类的元件,通过不同种技术,混载于同一封装体内,由此构成系统集成封装形式。
SIP封装制程按照芯片与基板的连接方式可分为引线键合封装和倒装焊两种。
一、引线键合封装工艺圆片→圆片减薄→圆片切割→芯片粘结→引线键合→等离子清洗→液态密封剂灌封→装配焊料球→回流焊→表面打标→分离→最终检查→测试→包装。
1、圆片减薄:圆片减薄是指从圆片背面采用机械或化学机械(CMP)方式进行研磨,将圆片减薄到适合封装的程度。
由于圆片的尺寸越来越大,为了增加圆片的机械强度,防止在加工过程中发生变形、开裂,其厚度也一直在增加。
但是随着系统朝轻薄短小的方向发展,芯片封装后模块的厚度变得越来越薄,因此在封装之前一定要将圆片的厚度减薄到可以接受的程度,以满足芯片装配的要求。
2、圆片切割:圆片减薄后,可以进行划片。
较老式的划片机是手动操作的,现在一般的划片机都已实现全自动化。
无论是部分划线还是完全分割硅片,目前均采用锯刀,因为它划出的边缘整齐,很少有碎屑和裂口产生。
3、芯片粘结:已切割下来的芯片要贴装到框架的中间焊盘上。
焊盘的尺寸要和芯片大小相匹配,若焊盘尺寸太大,则会导致引线跨度太大,在转移成型过程中会由于流动产生的应力而造成引线弯曲及芯片位移现象。
贴装的方式可以是用软焊料(指Pb-Sn合金,尤其是含Sn的合金)、Au-Si低共熔合金等焊接到基板上,在塑料封装中最常用的方法是使用聚合物粘结剂粘贴到金属框架上。
4、引线键合:在塑料封装中使用的引线主要是金线,其直径一般为0.025mm~0.032mm。
引线的长度常在1.5mm~3mm之间,而弧圈的高度可比芯片所在平面高0.75mm。
键合技术有热压焊、热超声焊等。
这些技术优点是容易形成球形(即焊球技术),并防止金线氧化。
为了降低成本,也在研究用其他金属丝,如铝、铜、银、钯等来替代金丝键合。
热压焊的条件是两种金属表面紧紧接触,控制时间、温度、压力,使得两种金属发生连接。
MEMS器件引线键合工艺(wire bonding)2007-2-1 11:58:29以下介绍的引线键合工艺是指内引线键合工艺。
MEMS芯片的引线键合的主要技术仍然采用IC芯片的引线键合技术,其主要技术有两种,即热压键合和热超声键合。
引线键合基本要求有:(1)首先要对焊盘进行等离子清洗;(2)注意焊盘的大小,选择合适的引线直径;(3)键合时要选好键合点的位置;(4)键合时要注意键合时成球的形状和键合强度;(5)键合时要调整好键合引线的高度和跳线的成线弧度。
常用的引线键合设备有热压键合、超声键合和热超声键合。
(1)热压键合法:热压键合法的机制是低温扩散和塑性流动(Plastic Flow)的结合,使原子发生接触,导致固体扩散键合。
键合时承受压力的部位,在一定的时间、温度和压力的周期中,接触的表面就会发生塑性变形(Plastic Deformation)和扩散。
塑性变形是破坏任何接触表面所必需的,这样才能使金属的表面之间融合。
在键合中,焊丝的变形就是塑性流动。
该方法主要用于金丝键合。
(2)超声键合法:焊丝超声键合是塑性流动与摩擦的结合。
通过石英晶体或磁力控制,把摩擦的动作传送到一个金属传感器(Metal“HORN”)上。
当石英晶体上通电时,金属传感器就会伸延;当断开电压时,传感器就会相应收缩。
这些动作通过超声发生器发生,振幅一般在4-5个微米。
在传感器的末端装上焊具,当焊具随着传感器伸缩前后振动时,焊丝就在键合点上摩擦,通过由上而下的压力发生塑性变形。
大部分塑性变形在键合点承受超声能后发生,压力所致的塑变只是极小的一部分,这是因为超声波在键合点上产生作用时,键合点的硬度就会变弱,使同样的压力产生较大的塑变。
该键合方法可用金丝或铝丝键合。
(3)热超声键合法这是同时利用高温和超声能进行键合的方法,用于金丝键合。
三种各种引线键合工艺优缺点比较:1、引线键合工艺过程引线键合的工艺过程包括:焊盘和外壳清洁、引线键合机的调整、引线键合、检查。
成都电子机械高等专科学校毕业论文题目引线键合工艺及其影响因素的研究研究引线键合工艺及其影响因素__着重金丝球键合分析内容提要引线键合就是用非常细小的线把芯片上焊盘和引线框架(或者基板)连接起来的过程。
金线焊接工艺,是引线键合工艺的一种。
它是利用金线将芯片上的信号引出到封装外壳的管脚上的工艺过程。
本文主要探讨集成电路封装中金丝球键合工技术以及影响因素。
关键字引线键合工艺热超声焊球形焊接步骤引线键合线弧技术影响因素 WB与塑封的关系目录绪论一………………………………………………………集成电路封装测试工艺流程简介▲前道工艺▲后道工艺贴膜注模研磨激光打印抛光烘烤晶片装裱电镀切割电镀后烘烤第二道外观检查料片装裱焊片切割银浆烘烤去粘等离子清洗拣装焊线(wire bond)第四道检查第三道外观检查测试,包装,出货二…………………………金丝球焊线机简述2.1 …………………………………引线键合工艺介绍2.2…………………………………引线键合机的介绍2.2.1…………………………键合机校正系统设计与实现金球引线键合(Gold Ball Wire Bonding)循序渐进的键合工艺2.2.2 …………………………………………………………校正系统设计2.2.2.1……………………………………………………伺服系统校正2.2.2.2……………………………………图像系统校正(PRS)2.2.2.3…………………………………………物料系统校正(MHS)2.2.2.4……………………………………热台压板电动机校正2.2.2.5………………………………………前后导轨电动机校正2.2.2.6…………………………………………进出料电动机校正2.2.2.7………………………………………键合头十字坐标校正2.2.2.8 ………………………………………EFO打火高度校正2.2.2.9 ……………………………………………USG校正2.2.2.10…………………………………………键合压力校正三.…………………………………………………引线键合的质量检测3.1……………………………………对键合焊球形貌外观检测3.1.1…………………………………………………两键合点的形状3.1.2…………………………………………键合点在焊盘上的位置3.1.3……………………………………键合点根部引线的变形情况3.2…………………………对键合点引线与焊盘的粘附情况的测试3.2.1……………………………………………Intermetallic实验3.2.2…………………………………………………Cratering 实验3.2.3……………………Wire pull Test ( 破坏性键合拉力测试 )四.分析金线焊接的影响因素五.浅谈金丝球键合对注模的影响致谢参考文献绪论集成电路的封装就是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保持芯片和增强电热性能的作用,而且芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接,从而实现内部芯片与外部电路的连接。
引线键合工艺原理
嘿,朋友们!今天咱来唠唠这引线键合工艺原理呀!这玩意儿就像是搭积木,不过搭的不是普通积木,而是超级迷你又超级重要的“电子积木”。
你看啊,引线键合就像是给电子元器件们牵红线,让它们能好好地“手牵手”,一起完成各种神奇的电子任务。
想象一下,那些小小的芯片和引脚,就像等待牵手的小朋友,而引线键合就是那根神奇的红线。
这红线可不简单哦!它得足够牢固,能经得住各种折腾,不然稍微一碰就断了,那不就全乱套啦!而且啊,这牵线的过程也得特别精细,不能牵错了对象呀,不然整个电路不就乱套啦!这多像我们找对象,得找对人,不然日子咋过呀,对吧?
在引线键合工艺里,有各种各样的方法和技术呢。
就好像我们做饭有很多种做法一样,蒸、炒、煮、炸,各有各的妙处。
比如热压键合,那就是用温度和压力来让引线和引脚紧紧拥抱;超声键合呢,则像是用一种神奇的“声音魔法”来让它们结合在一起。
这些方法都有自己的特点和适用场景哦。
就像我们出门穿衣服,不同的场合要穿不同的衣服嘛。
在一些要求特别高的地方,就得用最厉害的键合方法,确保一切都稳稳当当的。
而且哦,做引线键合的人就像是超级细心的裁缝,要一点点地把这些“线”缝好,不能有一丝马虎。
一个不小心,可能就会影响整个电子产品的性能呢!这可不是闹着玩的呀!
你说,这引线键合工艺是不是特别神奇?它虽然小小的,不太起眼,但却是电子世界里不可或缺的一部分呢!没有它,那些厉害的电子产品怎么能诞生呢?所以啊,可别小瞧了这看似简单的工艺,它背后的学问可大着呢!就像我们生活中的很多小事情,看似普通,实则暗藏玄机呀!总之,引线键合工艺真的是太重要啦,我们得好好了解它,尊重它,让它为我们的电子生活添彩呀!。
八,声表器件引线键合工艺原理:在SAW器件的后封装工艺中,尽管目前已发展了倒装焊(FC)等其它互连技术,但引线键合仍是主要的互连技术。
其目的是完成器件内引线与外引线的连接,即利用金属丝将芯片上的压点与底座上相对应的电极连接起来。
引线键合应具有低的接触电阻,合适的机械强度,长期的金相稳定性和小的寄生参量;常用方法有热压键合、超声键合、热超声键合。
下面对键合用引线及几种常用键合方法作简单介绍:(一) 键合引线:键合用引线对器件的可靠性和稳定性关系很大,理想的引线材料应具备化学性能稳定(不会形成有害的金属间化合物),可塑性好,弹性小,结合力强,低的欧姆电阻(并能与待压点金属层形成低欧姆接触)。
键合方法不同,引线材料也不同,如热压焊常用金丝,超声焊常用铝丝。
1,金丝:金具有优良的抗氧化性,化学性能稳定,延展性好,抗拉强度高,4个9的金丝为热压焊和热超声焊的标准用材。
为增加机械强度,金丝中常添加5-10 PPm的铍或30-100 PPm的铜。
金在高温时(>200℃),易与铝产生脆性的金属间化合物AuAl2(紫斑)和Au5Al2(白斑),同时在接触处因相互扩散形成空洞;而使金-铝键合点导电能力变差,并极易碎裂产生脱键,因此使用金丝时,应尽量避免采用金-铝系统,而采用金-金结合。
2,铝丝:铝具有良好的导电性,成本低,可避免金-铝系统的“紫斑”,而成为铝-铝系统常用导线。
纯铝柔软,键合性差,为增加其强度,故标准铝丝为AlSi合金(Si:1%)。
由于铝化学性质活泼,易氧化,因此它不适宜于热压焊,而适用于超声键合和气密性封装的器件。
另外铝丝和金层键合同样会产生“紫斑”,但当二者实际接触宽度L与金层厚度d之比大于4时(L/d >4),不会引起电阻变化。
3,关于键合引线的“退火”:为减小金属丝硬度,改善延伸性及净化表面,键合使用的金属丝要经过退火处理。
铝丝(金丝)退火一般在氢气、氮气或真空中进行,硅铝丝退火温度为450℃左右,金丝退火温度650℃左右;恒温15-20分,自然冷却。
热超声引线键合工艺流程
内容:
一、工艺流程
1. 引线预处理:使用酒精对引线进行清洗,去除表面油脂等污染物。
2. 定位对齐:使用精密定位装置,将芯片引线和板引线精确对齐。
控制对齐误差在50μ以内。
3. 热压键合:将对齐好的芯片放入热压机,施加一定压力(约为30-80克/引线),同时加热到180-300°,保持1-10秒钟,完成键合。
4. 冷却固化:将键合好的产品取出,自然冷却至室温,完成固化。
二、工艺参数
1. 温度:180-300°(一般为200±10°)
2. 压力:30-80克/引线(一般为50±10克/引线)
3. 时间:1-10秒(一般为5±1秒)
4. 对齐精度:<50μ
5. 环境:无尘无油,相对湿度<60%
三、注意事项
1. 加热时间不能太长,否则可能造成芯片损坏。
2. 压力不能太大,否则可能造成引线变形。
3. 保持环境清洁,防止污染产品。
4. 热压后要完全冷却至室温,然后再进行其他测试。
5. 各参数应严格控制,确保产品质量。
6. 定期检查定位装置和热压机,保证设备精度。
MEMS器件引线键合工艺(wire bonding)
2007-2-1 11:58:29
以下介绍的引线键合工艺是指内引线键合工艺。
MEMS芯片的引线键合的主要技术仍然采用IC芯片的引线键合技术,其主要技术有两种,即热压键合和热超声键合。
引线键合基本要求有:
(1)首先要对焊盘进行等离子清洗;
(2)注意焊盘的大小,选择合适的引线直径;
(3)键合时要选好键合点的位置;
(4)键合时要注意键合时成球的形状和键合强度;
(5)键合时要调整好键合引线的高度和跳线的成线弧度。
常用的引线键合设备有热压键合、超声键合和热超声键合。
(1)热压键合法:热压键合法的机制是低温扩散和塑性流动(Plastic Flow)的结合,使原子发生接触,导致固体扩散键合。
键合时承受压力的部位,在一定的时间、温度和压力的周期中,接触的表面就会发生塑性变形(Plastic Deformation)和扩散。
塑性变形是破坏任何接触表面所必需的,这样才能使金属的表面之间融合。
在键合中,焊丝的变形就是塑性流动。
该方法主要用于金丝键合。
(2)超声键合法:焊丝超声键合是塑性流动与摩擦的结合。
通过石英晶体或磁力控制,把摩擦的动作传送到一个金属传感器(Metal“HORN”)上。
当石英晶体上通电时,金属传感器就会伸延;当断开电压时,传感器就会相应收缩。
这些动作通过超声发生器发生,振幅一般在4-5个微米。
在传感器的末端装上焊具,当焊具随着传感器伸缩前后振动时,焊丝就在键合点上摩擦,通过由上而下的压力发生塑性变形。
大部分塑性变形在键合点承受超声能后发生,压力所致的塑变只是极小的一部分,这是因为超声波在键合点上产生作用时,键合点的硬度就会变弱,使同样的压力产生较大的塑变。
该键合方法可用金丝或铝丝键合。
(3)热超声键合法这是同时利用高温和超声能进行键合的方法,用于金丝键合。
三种各种引线键合工艺优缺点比较:
1、引线键合工艺过程
引线键合的工艺过程包括:焊盘和外壳清洁、引线键合机的调整、引线键合、检查。
外壳清洁方法现在普遍采用分子清洁方法即等离子清洁或紫外线臭氧清洁。
(1)等离子清洁——该方法采用大功率RF源将气体转变为等离子体,高速气体离子轰击键合区表面,通过与污染物分子结合或使其物理分裂而将污染物溅射除去。
所采用的气体一般为O2、Ar、N2、80%Ar+20%O2,或80%O2+20%Ar。
另外O2/N2等离子也有应用,它是有效去除环氧树脂的除气材料。
(2)外线臭氧清洁通过发射184.9mm和253.7mm波长的辐射线进行清洁。
过程如下:
184.9 nm波长的紫外线能打破O2分子链使之成原子态(O+O),原子态氧又与其它氧分子结合形成臭氧O3。
在253.7nm波长紫外线作用下臭氧可以再次分解为原子氧和分子氧。
水分子可以被打破形成自由的OH-根。
所有这些均可以与碳氢化合物反应以生成CO2+H2O,并最终以气体形式离开键合表面。
253.7nm波长紫外线还能够打破碳氢化合物的分子键以加速氧化过程。
尽管上述两种方法可以去除焊盘表面的有机物污染,但其有效性强烈取决于特定的污染物。
例如,氧等离子清洁不能提高Au厚膜的可焊性,其最好的清洁方法是O2+Ar 等离子或溶液清洗方法。
另外某些污染物,如Cl离子和F离子不能用上述方法去除,因为可形成化学束缚。
因此在某些情况还需要采用溶液清洗,如汽相碳氟化合物、去离子水等。
(3)引线键合工艺有球键合工艺和楔键合工艺两种。
球键合一般采用D75μm以下的细Au丝。
主要是因为其在高温受压状态下容易变形、抗氧化性能好、成球性好。
球键合一般用于焊盘间距大于100μm的情况下。
目前也有用于50μm焊盘间距的例子。
(4)在球键合工艺的设计方面,一般应遵循以下原则:
(a)球的初始尺寸为金属丝直径的2-3倍。
应用于精细间距时为1.5倍,焊盘较大时为3-4倍;
(b)终成球尺寸不应超过焊盘尺寸的3/4,是金属丝直径的2.5-5倍;
(c)环引线高度一般为150μm,取决于金属丝直径及具体应用;
(d)闭环引线长度不应超过金属丝直径的100倍。
但在某些多I/O情况下,引线长度可能要超过5mm。
键合设备在芯片与引线框架之间牵引金属丝时不允许有垂直方向的下垂和水平方向的摇摆。
楔键合工艺既适用于Au丝,也适用于Al丝。
二者的区别在于Al丝采用室温下的超声波键合,而Au丝采用150℃下的热超声键合。
楔键合的一个主要优点是适用于精细尺寸,如50um以下的焊盘间距。
但由于键合工具的旋转运动,其总体速度低于热超声球键合。
最常见的楔键合工艺是Al丝超声波键合,其成本和键合温度较低。
而Au丝楔键合的主要优点是键合后不需要密闭封装,由于楔键合形成的焊点小于球键合,特别适用于微波器件。
(5)楔键合工艺的设计方面,一般应遵循以下原则:
(a)使键合点只比金属丝直径大2-3μm也可能获得高强度连接;
(b)焊盘长度要大于键合点和尾丝的长度;
(c)焊盘的长轴与引线键合路径一致;
(d)焊盘间距的设计应保持金属丝之间距离的一致性。
(6)键合的方式有两种。
正焊键合:第一点键合在芯片上,第二点键合在封装外壳上;反焊键合:第一点键合在外壳上,第二点键合在芯片上。
采用正焊键合时,芯片上键合点一般有尾丝;采用反焊键合时,芯片上一般是无尾丝的。
究竟采用何种
键合方式键合电路,要根据具体情况确定。
2、引线键合的质量检查
严格的镜检可以有效的剔除内引线键合的不合格。
分别通过40倍左右和1000倍左右的显微镜观察,可以找到键合位置不当、键合丝损伤、键合丝长尾、键合丝颈部损伤、键合面明显玷污及异常、键合变形过大或过小、金属化表面有擦伤、键合引线与管芯夹角太小、残留的键丝头在管芯上或管壳内等问题。
3、影响引线键合可靠性的因素
在自动引线键合技术中,半导体器件键合点脱落是最常见的失效模式。
这种失效模式用常规筛选和测试很难剔除,只有在强烈振动下才可能暴露出来,因此对半导体器件的可靠性危害极大。
可能影响内引线键合可靠性的因素主要有:
(1)界面上绝缘层的形成在芯片上键合区光刻胶或窗口钝化膜未去除干净,可形成绝缘层。
管壳镀金层质量低劣,会造成表面疏松、发红、鼓泡、起皮等。
金属间键合接触时,在有氧、氯、硫、水汽的环境下,金属往往与这些气体反应生成氧化物、硫化物等绝缘夹层,或受氯的腐蚀,导致接触电阻增加,从而使键合可靠性降低。
(2)金属化层缺陷,金属化层缺陷主要有:芯片金属化层过薄,使得键合时无缓冲作用,芯片金属化层出现合金点,在键合处形成缺陷;芯片金属化层粘附不牢,最易掉压点。
(3)表面沾污,原子不能互扩散包括芯片、管壳、劈刀、金丝、镊子、钨针,各个环节均可能造成沾污。
外界环境净化度不够,可造成灰尘沾污;人体净化不良,可造成有机物沾污及钠沾污等;芯片、管壳等未及时处理干净,残留镀金液,可造成钾沾污及碳沾污等,这种沾污属于批次性问题,可造成一批管壳报废,或引起键合点腐蚀,造成失效;金丝、管壳存放过久,
不但易沾污,而且易老化,金丝硬度和延展率也会发生变化。
(4)材料间的接触应力不当,键合应力包括热应力、机械应力和超声应力。
键合应力过小会造成键合不牢,但键合应力过大同样会影响键合点的机械性能。
应力大不仅会造成键合点根部损伤,引起键合点根部断裂失效,而且还会损伤键合点下的芯片材料,甚至出现裂缝。
(5)环境不良超声键合时外界振动、机件振动或管座固定松动,或位于通风口,均可造成键合缺陷。
(6)键合引线与电源金属条之间放电引起失效(静电损伤) 当键合引线与芯片水平面夹角太小时,在ESD(静电放电)应力作用下,键合引线与环绕芯片的电源线(或地线)之间因距离太近易发生电弧放电而造成失效。