2018-2019学年深圳外国语学校八年级(上)期中数学试卷
- 格式:docx
- 大小:229.25 KB
- 文档页数:5
2022-2023学年广东省深圳市福田外国语学校初中部八年级第一学期期中数学试卷一、选择题(每题3分,10小题,共30分)1.在实数﹣2.31,﹣π,0,,2.60060006,中,是无理数的有()A.1个B.2个C.3个D.4个2.的相反数是()A.B.﹣C.﹣D.3.下列运算中,正确的是()A.B.C.D.4.如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是()A.4m B.m C.(+1)m D.(+3)m 5.已知点A(m﹣1,m+4)在y轴上,则m的值为()A.﹣4B.﹣1C.1D.46.已知点P在第四象限内,且点P到x轴的距离是3,到y轴的距离是4,那么点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)7.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.∠A=∠B+∠C B.∠A:∠B:∠C=1:2:3C.a2=(b+c)(b﹣c)D.a2=3,b2=4,c2=58.已知方程组,则x﹣y=()A.5B.2C.3D.49.在同一直角坐标系中,一次函数y=ax+b的图象与正比例函数y=x图象的位置不可能是()A.B.C.D.10.给出下列说法:①直线y=﹣2x+4与直线y=x+1的交点坐标是(1,2);②一次函数y=kx+b,若k>0,b<0,那么它的图象过第一、二、三象限;③函数y=﹣6x是一次函数,且y随x增大而减小;④已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为y=﹣x+6;⑤直线y=kx+k﹣1必经过点(﹣1,﹣1).其中正确的有()A.2个B.3个C.4个D.5个二、填空题(每题3分,5小题,共15分)11.比较下列两个实数的大小(填“>”“<”“=”):.12.a+3的算术平方根是3,b﹣2的立方根是2,则a+b为,13.在平面直角坐标系xOy中,点A的坐标是(2,﹣1),若AB∥y轴,且AB=9,则点B的坐标是.14.如图所示,圆柱的高和底面的周长都为8,当AP=1时,点P由此出发.沿着圆柱的侧面移动到CD的中点S,则点P与点S之间的最短距离是.15.如图,直线y=﹣x+8与x轴和y轴分别交于A、B两点,射线AP⊥AB于点A.若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为.三、解答题(共7道题,共55分)16.计算:(1)(﹣)2++(2022﹣π)0+(﹣)﹣1;(2)﹣|2﹣|+10.17.解方程(组):(1);(2).18.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,B2(﹣4,2)与点B关于轴对称;(3)△A1B1C1的面积为;(4)在y轴上确定一点P,使△APB的周长最小,(不写作法,不求坐标,只保留作图痕迹)19.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是km/h;轿车提速后的速度是km/h;(2)轿车到达乙地后,货车距乙地千米;(3)线段CD对应的函数解析式为;(4)货车从甲地出发后小时与轿车相遇.20.某商场代销甲、乙两种商品,其中甲种商品进价120元/件,售价130元/件;乙种商品进价100元/件,售价150元/件.如商场用36000元购进这两种商品,销售完可获利6000元,则商场购进这两种商品各多少件?21.如图1,Rt△ABC中,∠ACB=90°,AC=5,AB=13.(1)如图2,点E是边BC上一点,△ABC沿着AE折叠,点C恰好与斜边AB上点D 重合,求CE的长;(2)如图3,点F为斜边上AB上动点,连接CF,在点F的运动过程中,若△BCF为等腰三角形,请直接写出AF的长.22.如图,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为2,求点P的坐标:;②点M在线段AC上运动的过程中,连接BM,若∠BMP=∠BAC,求点Q的坐标.参考答案一、选择题(每题3分,10小题,共30分)1.在实数﹣2.31,﹣π,0,,2.60060006,中,是无理数的有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:﹣2.31,2.60060006是有限小数,属于有理数;0是整数,属于有理数;无理数有﹣π,,,共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.的相反数是()A.B.﹣C.﹣D.【分析】直接根据相反数的定义即可得出结论.解:的相反数是﹣.故选B.【点评】本题考查的是实数,熟知相反数的定义是解答此题的关键.3.下列运算中,正确的是()A.B.C.D.【分析】根据平方根、算术平方根、立方根的定义逐项进行判断即可.解:=3,因此选项A不符合题意;±=±3,因此选项B不符合题意;=﹣3,因此选项C符合题意;==4,因此选项D不符合题意;故选:C.【点评】本题考查平方根、算术平方根、立方根,掌握平方根、算术平方根、立方根的意义是正确判断的前提.4.如图,一场大风后,一棵大树在高于地面1米处折断,大树顶部落在距离大树底部3米处的地面上,那么树高是()A.4m B.m C.(+1)m D.(+3)m 【分析】首先根据勾股定理求得折断的树高,继而即可求出折断前的树高.解:根据勾股定理可知:折断的树高==米,则这棵大树折断前的树高=(1+)米.故选:C.【点评】考查了利用勾股定理解应用题,关键在于把折断部分、大树原来部分和地面看作一个直角三角形,利用勾股定理列出方程求解.5.已知点A(m﹣1,m+4)在y轴上,则m的值为()A.﹣4B.﹣1C.1D.4【分析】根据y轴上点的横坐标为0列方程即可求出m的值.解:∵点A(m﹣1,m+4)在y轴上,∴m﹣1=0,解得m=1.故选:C.【点评】本题考查了点的坐标,是基础题,熟记y轴上点的横坐标为0是解题的关键.6.已知点P在第四象限内,且点P到x轴的距离是3,到y轴的距离是4,那么点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)【分析】应先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断点的具体坐标.解:∵点P在第四象限内,∴点P的横坐标大于0,纵坐标小于0,∵点P到x轴的距离是3,到y轴的距离是4,∴点P的横坐标是4,纵坐标是﹣3,即点P的坐标为(4,﹣3).故选:B.【点评】本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.∠A=∠B+∠C B.∠A:∠B:∠C=1:2:3C.a2=(b+c)(b﹣c)D.a2=3,b2=4,c2=5【分析】根据勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A+∠A=180°,∴∠A=90°,∴△ABC为直角三角形,故A不符合题意;B、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=180°×=90°,∴△ABC为直角三角形,故B不符合题意;C、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,∴a2+c2=b2,∴△ABC为直角三角形,故C不符合题意;D、∵a2=3,b2=4,c2=5,∴a2+b2≠c2,∴△ABC不是直角三角形,故D符合题意;故选:D.【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.解:,①﹣②得:(2x+3y)﹣(x+4y)=16﹣13,整理得:2x+3y﹣x﹣4y=3,即x﹣y=3,故选:C.【点评】此题考查了解二元一次方程组,利用了整体的思想,熟练掌握方程组的解法是解本题的关键.9.在同一直角坐标系中,一次函数y=ax+b的图象与正比例函数y=x图象的位置不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=x经过一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,y=x经过二、四象限,若a<0,b>0,则y=ax+b经过一、二、四象限,y=x经过二、四象限,若a<0,b<0,则y=ax+b经过二、三、四象限,y=x经过一、三象限,故选:D.【点评】本题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.10.给出下列说法:①直线y=﹣2x+4与直线y=x+1的交点坐标是(1,2);②一次函数y=kx+b,若k>0,b<0,那么它的图象过第一、二、三象限;③函数y=﹣6x是一次函数,且y随x增大而减小;④已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为y=﹣x+6;⑤直线y=kx+k﹣1必经过点(﹣1,﹣1).其中正确的有()A.2个B.3个C.4个D.5个【分析】根据一次函数的图象与性质以及一次函数解析式即可进行判断.解:联立,解得,∴直线y=﹣2x+4与直线y=x+1的交点坐标是(1,2),故①正确;∵一次函数y=kx+b,若k>0,b<0,∴它的图象过第一、三、四象限,故②错误;∵函数y=﹣6x是一次函数,且y随x增大而减小,故③正确;∵一次函数的图象与直线y=﹣x+1平行,∴可设一次函数的解析式为y=﹣x+b,∵一次函数经过点(8,2),∴2=﹣8+b,∴b=10,∴一次函数解析式为y=﹣x+10,故④错误;∵直线的解析式为y=kx+k﹣1,即y=k(x+1)﹣1,∴直线y=kx+k﹣1必经过点(﹣1,﹣1),故⑤正确;∴正确的有①③⑤,故选:B.【点评】本题考查了一次函数的性质,熟练掌握一次函数的图象和性质是解题的关键.二、填空题(每题3分,5小题,共15分)11.比较下列两个实数的大小(填“>”“<”“=”):<.【分析】先求出各数的平方数,再比较其大小即可.解:()2=2,()2=,∵2<,∴<,∴<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知实数比较大小的法则是解题的关键.12.a+3的算术平方根是3,b﹣2的立方根是2,则a+b为16,【分析】首先根据题意,可得:a+3=32,b﹣2=23,据此分别求出a、b的值,再把它们分别相加即可.解:∵a+3的算术平方根是3,b﹣2的立方根是2,∴a+3=32=9,b﹣2=23=8,解得:a=6,b=10,∴a+b=6+10=16.故答案为:16.【点评】此题主要考查了算术平方根、立方根的含义和求法,解答此题的关键是分别求出a、b的值.13.在平面直角坐标系xOy中,点A的坐标是(2,﹣1),若AB∥y轴,且AB=9,则点B的坐标是(2,8)或(2,﹣10).【分析】线段AB∥y轴,A、B两点横坐标相等,又AB=9,B点可能在A点上边或者下边,根据距离确定B点坐标.解:∵AB与y轴平行,∴A、B两点的横坐标相同,又AB=9,∴B点纵坐标为:﹣1+9=8,或﹣1﹣9=﹣10,∴B点的坐标为:(2,8)或(2,﹣10);故答案为:(2,8)或(2,﹣10).【点评】本题考查了坐标与图形的性质,要掌握平行于y轴的直线上的点横坐标相等,再根据两点相对的位置及两点距离确定点的坐标.14.如图所示,圆柱的高和底面的周长都为8,当AP=1时,点P由此出发.沿着圆柱的侧面移动到CD的中点S,则点P与点S之间的最短距离是5.【分析】过P作PE⊥CD于E,根据勾股定理求出PS的长即可.解:如图所示,过P作PE⊥CD于E,∴DE=AP=1,PE=AD=4,∵圆柱的高和底面的周长都为8,∴AD=4,∵S是CD的中点,∴SD=4,∴PS==5,故答案为:5.【点评】本题考查的是平面展开﹣最短路径问题,根据题意画出圆柱的侧面展开图,根据勾股定理求解即可.15.如图,直线y=﹣x+8与x轴和y轴分别交于A、B两点,射线AP⊥AB于点A.若点C是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为14或16.【分析】根据直线y=﹣x+8得到:令x=0,则y=8,令y=0,则x=6,求得OA=6,OB=28,根据勾股定理得到AB=10,①当∠ACD=90°时,如图1,②当∠ADC=90°时,如图2,根据全等三角形的性质即可得到结论.解:∵AP⊥AB,∴∠BAP=∠AOB=90°,∴∠ABO+∠BAO=∠CAD+∠BAO=90°,∴∠ABO=∠CAD,在y=﹣x+8中,令x=0,则y=8,令y=0,则x=6,∴OA=6,OB=8,由勾股定理得AB==10,①当∠ACD=90°时,如图1,∵△AOB≌△DCA,∴AD=AB=10,∴OD=OA+AD=6+10=16;②当∠ADC=90°时,如图2,∵△AOB≌△CDA,∴AD=OB=8,∴OD=OA+AD=6+8=14,综上所述:OD的长为14或16.故答案为:14或16.【点评】本题考查了一次函数图象上点的坐标特征,勾股定理的应用和全等三角形的性质等知识,分类讨论是解题关键,以防遗漏.三、解答题(共7道题,共55分)16.计算:(1)(﹣)2++(2022﹣π)0+(﹣)﹣1;(2)﹣|2﹣|+10.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答.解:(1)(﹣)2++(2022﹣π)0+(﹣)﹣1=2+(﹣2)+1+(﹣2)=1+(﹣2)=﹣1;(2)﹣|2﹣|+10=2﹣(﹣2)+2=2﹣+2+2=3+2.【点评】本题考查了二次根式的混合运算,实数的运算,零指数幂,负整数指数幂,准确熟练地进行计算是解题的关键.17.解方程(组):(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1),把②代入①得:2(1﹣5y)+3y=﹣19,解得:y=3,把y=3代入②得:x=1﹣15=﹣14,则方程组的解为;(2)①+②×2得:10x=23,解得:x=2.3,把x=2.3代入①得:4.6﹣4y=﹣13,解得:y=4.4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,B2(﹣4,2)与点B关于y轴对称;(3)△A1B1C1的面积为 2.5;(4)在y轴上确定一点P,使△APB的周长最小,(不写作法,不求坐标,只保留作图痕迹)【分析】(1)根据轴对称的性质即可在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)根据轴对称的性质可得B2(﹣4,2)与点B(4,2)关于y轴对称;(3)根据网格利用割补法即可求出△A1B1C1的面积;(4)连接AB2交y轴于点P,根据两点之间线段最短可使△APB的周长最小.解:(1)如图,△A1B1C1即为所求;(2)B2(﹣4,2)与点B(4,2)关于y轴对称;故答案为:y;(3)△A1B1C1的面积=2×3﹣2××1×2﹣×1×3=2.5;(4)如图,点P即为所求.【点评】本题考查了作图﹣轴对称变换,轴对称﹣最短路线问题,解决本题的关键是掌握轴对称的性质.19.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是60km/h;轿车提速后的速度是110km/h;(2)轿车到达乙地后,货车距乙地270千米;(3)线段CD对应的函数解析式为y=119x﹣195;(4)货车从甲地出发后 3.9小时与轿车相遇.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时;(2)根据图象可知,轿车比货车早0.5小时到达乙地,用0.5×60即可得出结论;(3)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;(4)利用待定系数法求出OA段函数解析式,联立(2)的结论列方程组,再解方程组即可解答.解:(1)货车的速度为300÷5=60(km/h);轿车提速后的速度为=110(km/h).故答案为:60,110;(2)从图象上看轿车比货车早0.5h到达乙地,∴轿车到达乙地后,货车距乙地有0.5×60=30(千米),(3)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5),故答案为:y=110x﹣195;(4)设OA段函数解析式为y=mx,代入A(50,300),得5m=300,解得m=60,∴OA段函数解析式为y=60x;联立方程组,得,解得,故货车从甲地出发后3.9小时与轿车相遇.故答案为:3.9.【点评】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.20.某商场代销甲、乙两种商品,其中甲种商品进价120元/件,售价130元/件;乙种商品进价100元/件,售价150元/件.如商场用36000元购进这两种商品,销售完可获利6000元,则商场购进这两种商品各多少件?【分析】设购进甲种商品有x件,乙种商品有y件,根据商场用36000元购进这两种商品,销售完可获利6000元,列方程组求解.解:设购进甲种商品有x件,乙种商品有y件,由题意得,,解得:.答:购进甲种商品有240件,乙种商品有72件.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.21.如图1,Rt△ABC中,∠ACB=90°,AC=5,AB=13.(1)如图2,点E是边BC上一点,△ABC沿着AE折叠,点C恰好与斜边AB上点D 重合,求CE的长;(2)如图3,点F为斜边上AB上动点,连接CF,在点F的运动过程中,若△BCF为等腰三角形,请直接写出AF的长.【分析】(1)根据勾股定理可得BC=12,设CE=x,则BE=BC﹣CE=12﹣x,由翻折可得DE=CE=x,AD=AC=5,∠EDA=∠C=90°,所以BD=AB﹣AD=8,然后利用勾股定理列出方程即可解决问题;(2)分两种情况:①当BC=BF=12时,②当CF=BF时,利用等腰三角形的性质即可解决问题.解:(1)Rt△ABC中,∠ACB=90°,∵AC=5,AB=13,∴BC==12,设CE=x,则BE=BC﹣CE=12﹣x,由翻折可知:DE=CE=x,AD=AC=5,∠EDA=∠C=90°,∴BD=AB﹣AD=13﹣5=8,在Rt△BDE中,根据勾股定理得:BE2=BD2+DE2,∴(12﹣x)2=82+x2,解得x=,∴CE=;(2)若△BCF为等腰三角形,分两种情况:①当BC=BF=12时,∴AF=AB﹣BF=13﹣12=1;②当CF=BF时,∴∠B=∠FCB,∵∠B+∠A=∠FCB+∠FCA=90°,∴∠FCA=∠A,∴CF=AF,∴CF=AF=BF,∵AF=AB﹣BF=13﹣AF,∴AF=.综上所述:AF的长为1或.【点评】本题考查了翻折变换,等腰三角形的判定与性质,勾股定理,解决本题的关键是掌握翻折的性质.22.如图,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为2,求点P的坐标:;②点M在线段AC上运动的过程中,连接BM,若∠BMP=∠BAC,求点Q的坐标.【分析】(1)分别求出A、B、C三点坐标,用待定系数法求函数的解析式即可;(2)①设M(m,0),则P(m,m+3),Q(m,﹣m+3),求出PQ=|m|,再由S=|m|×|m|=2,求出m的值后即可求M点坐标;△PQB②分两种情况讨论:当点M在线段AO上时,利用角的关系推导出∠MBC=90°,再由勾股定理得m2+9+45=(6﹣m)2,求出m的值即可求点Q的坐标;当点M在线段OC 上时,同理可求Q点的另一个坐标.解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x=﹣6,∴A(﹣6,0),∵点C与点A关于y轴对称,∴C(6,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+3;(2)①设M(m,0),∵PQ⊥x中轴,∴P(m,m+3),Q(m,﹣m+3),∴PQ=|m+3+m﹣3|=|m|,∴S△PQB=|m|×|m|=2,解得m=±2,∴P(2,4)或(﹣2,2);②∵点M在线段AC上运动,∴﹣6≤m≤6,当点M在线段AO上时,∵点C与点A关于y轴对称,∴AB=BC,∴∠BAC=∠BCA,∵∠BMP=∠BAC,∴∠BMP=∠BCA,∵∠BMP+∠BMC=90°,∴∠BMC+∠BCA=90°,∴∠MBC=90°,∴BM2+BC2=MC2,∴MC2=(6﹣m)2,BM2=m2+9,BC2=45,∴m2+9+45=(6﹣m)2,解得m=﹣,∴Q(﹣,);当点M在线段OC上时,同理可得Q(,),综上所述:点Q的坐标为(﹣,)或(,).【点评】本题考查一次函数的图象及性质,熟练掌握一次函数的图象及性质,直角三角形的勾股定理,分类讨论是解题的关键.。
2018-2019学年广东省深圳外国语学校八年级(上)期末数学试卷一、选择题1.(3分)若直线y=3x+6与直线y=2x+4的交点坐标为(a,b),则解为的方程组是()A.B.C.D.2.(3分)解不等式组>的解集在数轴上表示正确的是()A.B.C.D.3.(3分)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.4.(3分)如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3B.5C.7D.95.(3分)等腰三角形的一个外角为110°,则它的顶角的度数是()A.40°B.70°C.40°或70°D.以上答案均不对6.(3分)如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC =5,DE,则△BCE的面积等于()A.3B.C.4D.7.(3分)以下四个命题中:①等腰三角形的两个底角相等②直角三角形的两个锐角互余③对顶角相等④线段垂直平分线上的点到线段两端点的距离相等,原命题与逆命题同时成立的个数有()A.1B.2C.3D.48.(3分)如图,直线y x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(,0)D.(,0)<有解,则m的取值范围字数轴上可表示为()9.(3分)已知不等式组A.B.C.D.10.(3分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.11.(3分)在平直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y x+2的图象,且△ABC为等腰三角形,则满足条件的点C有()A.2个B.3个C.4个D.5个12.(3分)在平面直角坐标系中,已知一次函数y x+6与x,y轴分别交于A,B两点,点C(0,n)是线段BO上一点,将△AOB沿直线AC折叠,点B刚好落在x轴负半轴上,则点C的坐标是()A.(0,3)B.(0,)C.(0,)D.(0,)二、填空题13.(3分)已知a,b满足方程组,则a+b的值为.14.(3分)如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=.>有且只有四个整数解,且一次函数y=(k+3)15.(3分)若关于x的不等式组x+k+5的图象不经过第三象限,则符合题意的整数k为.16.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y x+4上,设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…依据图形所反映的规律,S2019=.。
福田区外国语学校2022-2023学年第二学期八年级期中考试数学试卷一.选择题(每题3分,共30分)1.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.2.下列从左到右的变形,是分解因式的是()A.4a2+2a=2a(2a+1)B.x2﹣xy=x2(1﹣)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+13.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°4.把分式中的a,b都扩大到原来的2倍,则分式的值()A.不变B.缩小到原来的C.扩大到原来的2倍D.扩大到原来的4倍5.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3 B.4 C.5 D.66.甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的1.5倍,这样由甲地到乙地的行驶时间缩短了90分钟,设原来火车的平均速度为x千米/时,则下列方程正确的是()A.﹣90=B.+90=C.﹣1.5=D.+1.5=7.下列语句:①用反证法证明“x<3”时应假设“x>3”;②如果a>b,则ac2>bc2;③三角形三条角平分线的交点到这个三角形三个顶点的距离都相等;④任意一条经过对称中心的直线可将中心对称图形分为面积相等的两部分.其中正确的个数为()A.1个B.2个C.3个D.4个8.已知关于x的不等式组有四个整数解,则m的取值范围是()A.6≤m<9 B.6<m≤9 C.6<m<9 D.6≤m≤99.如图,在△ABC中,AB=AC,DE⊥AC于点E,交AB于点M且AE=CE,以点C为圆心,CA长为半径作弧,交DE于点F,连接CF交AB于点G.若CG=FG,则∠B的度数为()A.75°B.70°C.65°D.60°10.如图,已知△ABC中高AD恰好平分边BC,∠B=30°,点P是BA延长线上一动点,点O是线段AD上一动点,且OP=OC,下面的结论:①AO+AP=AB;②OP+OC的最小值为2AB;③∠APO+∠PCB=90°;④S△ABC=S四边形AOCP.其中正确的有()A.1个B.2个C.3个D.4个二.填空题(每题3分,共15分)11.如图,一次函数y=kx+b的图象经过点(0,2),则不等式kx+b>2的解集为.12.如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于DE长为半径作弧,在∠BAC内两弧相交于点P;作射线AP交BC 于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于cm.13.若关于x的分式方程有增根,则常数m的值是.14.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=18cm,点P在AD边上以每秒3cm的速度从点A 向点D运动,点Q在BC边上,以每秒2cm的速度从点C向点B运动.若P、Q同时出发,当直线PQ 在四边形ABCD内部截出一个平行四边形时.点P运动了秒.15.如图,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD,F是对角线BD上一点,且满足∠AFC=150°,连接F A和FC,则线段F A、FB和FC之间的数量关系为.三.解答题(共55分)16.(6分)因式分解:(1)4x2﹣16y2;(2)ab2﹣4a2b+4a3.17.(12分)(1)解不等式x-5>3(x-3),并写出它的所有自然数解;(2)解不等式组2153112xxx⎧⎪⎨⎪⎩->+-≥,并把解集在数轴上表示出来;(3)解方程:21xx-=1-21x-;(4)解方程:+=1.18.(4分)先化简,再求值:÷(﹣x﹣2),并在2,3,4中选择一个合适的数作为x代入求值.19.(8分)如图,平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣3,5),B(﹣5,3),C(﹣2,2),将△ABC按照某种方式平移得到△A1B1C1,其中点A的对应点A1的坐标为(3,3).(1)请在图中画出;(2)已知△A1B1C1与△A2B2C2关于原点O成中心对称,请在图中画出△A2B2C2,此时△A2B2C2与△ABC关于某点成中心对称,这一点的坐标为_________;(3)请判断在第三象限中是否存在某点P能与点A2、B2、C2构成平行四边形,若存在,请直接写出点P的坐标:_________(若不存在,请填“否”).20.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,连接BE、ED、DF、FB,若∠ADF=∠CBE=90°.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=30°,∠BEC=45°,请判断AB与CE有什么数量关系,并说明理由.21.(8分)为响应垃圾分类的要求,营造干净整洁的学习生活环境,创建和谐文明的校园环境.学校准备购买A、B两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18000元购买A种垃圾桶的组数量是用135000元购买B种垃圾桶的组数量的2倍.(1)求A、B两种垃圾桶每组的单价分别是多少元;(2)该学校计划用不超过8000元的资金购买A、B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?22.(9分)(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A 顺时针旋转90°到AE,连接DE,求∠ADE的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠ABC=60°,∠BAE=∠ADC,BE=CE =1,CD=3,AD=2AB,求BD的长.参考答案与试题解析一.选择题(共10小题)1.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、不是中心对称图形,不是轴对称图形,选项不符合题意;C、是中心对称图形,也是轴对称图形,选项符合题意.D、是轴对称图形,不是中心对称图形,选项不符合题意;故选:C.2.下列从左到右的变形,是分解因式的是()A.4a2+2a=2a(2a+1)B.x2﹣xy=x2(1﹣)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1【解答】解:A、符合因式分解的意义,是因式分解,故本选项正确;B、等式右边不是整式积的形式,故不是分解因式,故本选项错误;C、等式右边不是整式积的形式,故不是分解因式,故本选项错误;D、等式右边不是整式积的形式,故不是分解因式,故本选项错误.故选:A.3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:B.4.把分式中的a,b都扩大到原来的2倍,则分式的值()A.不变B.缩小到原来的C.扩大到原来的2倍D.扩大到原来的4倍【解答】解:∵=2×,∴分式中的a,b都扩大到原来的2倍,则分式的值扩大到原来的2倍,故选:C.5.如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3 B.4 C.5 D.6【解答】解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC=3,故选:A.6.甲地到乙地之间的铁路长210千米,动车运行后的平均速度是原来火车的1.5倍,这样由甲地到乙地的行驶时间缩短了90分钟,设原来火车的平均速度为x千米/时,则下列方程正确的是()A.﹣90=B.+90=C.﹣1.5=D.+1.5=【解答】解:设原来火车的平均速度为x千米/小时,则动车运行的平均速度为1.5x千米/小时,根据题意,得:﹣1.5=,故选:C.7.下列语句:①用反证法证明“x<3”时应假设“x>3”;②如果a>b,则ac2>bc2;③三角形三条角平分线的交点到这个三角形三个顶点的距离都相等;④任意一条经过对称中心的直线可将中心对称图形分为面积相等的两部分.其中正确的个数为()A.1个B.2个C.3个D.4个【解答】解:①错误;②错误;③三角形三条角平分线的交点到这个三角形三边的距离相等,故说法错误;④正确;故选:A.8.已知关于x的不等式组有四个整数解,则m的取值范围是()A.6≤m<9 B.6<m≤9 C.6<m<9 D.6≤m≤9【解答】解:解不等式3x﹣m>0,得:x>,解不等式x﹣1≤5,得:x≤6,∵不等式组有4个整数解,∴2≤<3,解得:6≤m<9.故选:A.9.如图,在△ABC中,AB=AC,DE⊥AC于点E,交AB于点M且AE=CE,以点C为圆心,CA长为半径作弧,交DE于点F,连接CF交AB于点G.若CG=FG,则∠B的度数为()A.75°B.70°C.65°D.60°【解答】解:连接AF,∵DE⊥AC,AE=CE,∴AF=CF,由题意可知CF=CA,∴AF=CF=CA,∴△AFC是等边三角形,∵CG=FG,∴∠CAB=∠CAF=30°,∵AB=AC,∴,故选:A.10.如图,已知△ABC中高AD恰好平分边BC,∠B=30°,点P是BA延长线上一动点,点O是线段AD上一动点,且OP=OC,下面的结论:①AO+AP=AB;②OP+OC的最小值为2AB;③∠APO+∠PCB=90°;④S△ABC=S四边形AOCP.其中正确的有几个?()A.1 B.2 C.3 D.4【解答】解:连接OB,∵高AD恰好平分边BC,∴AB=AC,AD⊥BC,BD=CD,OB=OC,∴∠BAD=∠BAC,∵∠ABC=30°,∴∠BAD=60°,∵OB=OC,OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,∵∠P AD=180°﹣∠BAD=120°,∠ODC=90°,∴∠AOP+∠COD=180°+180°﹣120°﹣90°﹣30°=120°,∴∠POC=180°﹣120°=60°,∴△POC是等边三角形,∴∠PCO=60°,∴∠APO+∠PCB=∠APO+∠DCO+∠PCO=90°,故③正确;在AC上截取AE=P A,∵∠P AE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=P A,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OP A和△CPE中,,∴△OP A≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP,∵AB=AC,∴AO+AP=AB,故①正确;如上图,∵OP+OB≥BP,OB=OC,∴OP+OC≥BP,∴OP+OC的最小值为BP的长,此时点O与点A重合,∴OP=OC=AC=AB,∴BP=AB+P A=2AB,∴OP+OC的最小值为2AB,故②正确;过点C作CH⊥AB于H,∵∠P AC=∠DAC=60°,AD⊥BC,∴CH=CD,∴S△ABC=AB•CH,S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,∴S△ABC=S四边形AOCP;故④正确,故选:D.二.填空题(共5小题)11.如图,一次函数y=kx+b的图象经过点(0,2),则不等式kx+b>2的解集为x<0.【解答】解:∵一次函数y=kx+b的图象经过点(0,2),∴当x=0时,kx+b=2,由图象可知,不等式kx+b>2的解集为x<0,故答案为:x<0.12.如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于DE长为半径作弧,在∠BAC内两弧相交于点P;作射线AP交BC 于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于8cm.【解答】解:在△ABC中,∵∠C=90°,∴FC⊥AC,∵FG⊥AB,由作图方法可得:AF平分∠BAC,∴∠BAF=∠CAF,FC=FG,在Rt△ACF和Rt△AGF中,,∴Rt△ABD≌Rt△AED(HL),∴AC=AG,∵AC=BC,∴AG=BC,∴△BFG的周长=GF+BF+BG=CF+BF+BG=BC+BG=AG+BG=AB=8cm.故答案为:8.13.若关于x的分式方程有增根,则常数m的值是8.【解答】解:去分母,得:x+5=2(x﹣3)+m,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程,可得:m=8.故答案为:8.14.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=18cm,点P在AD边上以每秒3cm的速度从点A 向点D运动,点Q在BC边上,以每秒2cm的速度从点C向点B运动.若P、Q同时出发,当直线PQ 在四边形ABCD内部截出一个平行四边形时.点P运动了 2.4或3.6秒.【解答】解:设点P运动了t秒,∴CQ=2tcm,AP=3tcm,BQ=(18﹣2t)cm,PD=(12﹣3t)cm,①当BQ=AP时,且AD∥BC,则四边形APQB是平行四边形,即18﹣2t=3t,∴t=3.6;②当CQ=PD时,且AD∥BC,则四边形CQPD是平行四边形,即2t=12﹣3t,∴t=2.4,综上所述:当直线PQ在四边形ABCD内部截出一个平行四边形时,点P运动了2.4秒或3.6秒,故答案为:2.4或3.6.15.如图,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD,F是对角线BD上一点,且满足∠AFC=150°,连接F A和FC,则线段F A、FB和FC之间的数量关系为F A2+FC2=FB2或BF2=AF2+CF2+AF•CF.【解答】解:F A2+FC2=FB2或BF2=AF2+CF2+AF•CF.证明:①如图3,连接AC,∵BA=BC,∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,CA=CB,将线段CF绕点C顺时针旋转60°得到线段CE,连接EF,EA,∴CE=CF,∠FCE=60°,∴△CEF是等边三角形,∴∠CFE=60°,FE=FC,∴∠BCF=∠ACE,在△BCF和△ACE中,,∴△BCF≌△ACE(SAS),∴FB=AE,∵∠AFC=150°,∠CFE=60°,∴∠AFE=90°,在Rt△AEF中,F A2+FE2=AE2,∴F A2+FC2=FB2.②如图当∠AFC=150°,作等边三角形FCE,连接AC、AE.同理可证△BCF≌△ACE,BF=AE.∵∠CFE=60°,∴∠AFE=360°﹣150°﹣60°=150°,作EM⊥AF交AF的延长线于点M,在Rt△EFM中,∵∠EFM=30°,∴EM=EF,FM=EF,在Rt△AME中,AE2=AM2+EM2,∴AE2=(AF+EF)2+(EF)2,∴AE2=AF2+EF2+AF•EF,∵AE=BF,EF=CF,∴BF2=AF2+CF2+AF•CF.故答案为:F A2+FC2=FB2或BF2=AF2+CF2+AF•CF.三.解答题(共7小题)16.【解答】解:(1)原式=(2x+4y)(2x﹣4y);(2)原式=a(b﹣2a)2.17.【解答】解:(1)解得x<2,自然数解为0,1;(2)解得x>3,画数轴略;(3)解得x=1,经检验x=1是分式方程的增根,故此方程无解;(4)去分母得:(x+1)(x﹣2)+x=x(x﹣2),去括号,得:x2﹣x﹣2+x=x2﹣2x,移项,得:x2﹣x+x﹣x2+2x=2,合并同类项,得:2x=2,系数化为1,得:x=1,经检验x=1是分式方程的解.18.【解答】解:原式=÷(﹣)=÷=•=﹣,∵x≠2且x≠±3,∴当x=4时,原式=﹣243+=﹣27.19.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;△A2B2C2与△ABC关于点(﹣3,1)成中心对称.故答案为(﹣3,1).(3)P(﹣6,-2).20.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,连接BE、ED、DF、FB,若∠ADF=∠CBE=90°.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=30°,∠BEC=45°,请判断AB与CE有什么数量关系,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BCE=∠DAF,在△BCE和△DAF中,,∴△BCE≌△DAF,∴BE=DF,∠BEC=∠DF A,∴BE∥DF,∴四边形BEDF是平行四边形.(2)结论:AB=EC.理由:作BH⊥AC于H.在Rt△ABH中,∵∠AHB=90°,∠BAH=30°,∴AB=2BH,在Rt△BEC中,∵∠EBC=90°,∠BEC=45°,BH⊥CE,∴EH=HC,∴EC=2BH,∴AB=EC.21.为响应垃圾分类的要求,营造干净整洁的学习生活环境,创建和谐文明的校园环境.学校准备购买A、B 两种分类垃圾桶,通过市场调研得知:A种垃圾桶每组的单价比B种垃圾桶每组的单价少150元,且用18000元购买A种垃圾桶的组数量是用135000元购买B种垃圾桶的组数量的2倍.(1)求A、B两种垃圾桶每组的单价分别是多少元;(2)该学校计划用不超过8000元的资金购买A、B两种垃圾桶共20组,则最多可以购买B种垃圾桶多少组?【解答】解:(1)设A种垃圾桶每组的单价为x元,则B种垃圾桶每组的单价为(x+150)元,依题意得:=,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴x+150=300+150=450.答:A种垃圾桶每组的单价是300元,B种垃圾桶每组的单价是450元.(2)设购买B种垃圾桶y组,则购买A种垃圾桶(20﹣y)组,依题意得:300(20﹣y)+450y≤8000,解得:x≤,又∵y为正整数,∴y的最大值为13.答:最多可以购买B种垃圾桶13组.22.(1)【操作发现】如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;②在①中所画图形中,∠AB′B=45°.(2)【问题解决】如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.(3)【拓展延伸】如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠ABC=60°,∠BAE=∠ADC,BE=CE=1,CD=3,AD =2AB,求BD的长.【解答】解:(1)①如图1中,△AB′C′即为所求.②由作图可知,△ABB′是等腰直角三角形,∴∠AB′B=45°,故答案为45.(2)如图2中,过点E作EH⊥CD交CD的延长线于H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,∴∠B=∠EAH,∵AB=AE,∴△ABC≌△EAH(AAS),∴BC=AH,EH=AC,∵BC=CD,∴CD=AH,∴DH=AC=EH,∴∠EDH=45°,∴∠ADE=135°.(3)如图3中,连接AC,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=2,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==5.∴BD=CG=5.。
2019学年第一学期期中考试八年级数学参考答案 2019.11一、选择题:(本大题共6题,每题2分,满分12分)D .1 B .2 C .3 A .4 D .5 D .6二、填空题(本大题共12题,每题2分,满分24分).71≤x 33.8 3.9-π 2,0.1021==x x 231.11+>x )143)(143.(12-+++y y 43.13 x y 55.14=.1521>m 1.16± 4.17 )303,0.18-,)或((三、简答题:(每题5分,满分30分).19计算:)0(2531931>+-a aa a a a解:原式=53331aa a aa a +•-•----------(3分)=53aa a a +-----------(1分)=53aa ------------(1分).20计算:02)1()123()832)(328(-+---+解:原式=1)2619(52+--- ----------- (3分) =2670+------------ (2分).21解方程:12)32312=-x ( 解: 36)322=-x ( --------------------(1分) 632=-x 或632-=-x --------------------(2分)29=x 或23-=x --------------------(2分) ∴原方程的根为 23,2921-==x x.22解方程:0)52)(1()52(2=+--+x x x x解:0)]1(2)[52(=--+x x x --------------------(1分)0)1)(52(=++x x --------------------(1分)01,052=+=+x x --------------------(1分)25-=x 或1-=x -----------------(2分) ∴原方程的根为1,2521-=-=x x.23 解方程:x x 2222=+ 解:02222=+-x x --------------------(1分)0)2(2=-x --------------------(2分) 221==x x --------------------(2分) ∴原方程的根为221==x x.24 用配方法解方程:0181622=++x x解: 982-=+x x --------------------(1分) 1691682+-=++x x --------------------(1分)7)42=+x (--------------------(1分)或74=+x 74-=+x --------------------(2分)74 ,或74--=+-=x x ∴原方程的根为74,7421--=+-=x x.25先化简,再求值:2))(2y x y xy x ++-(,其中5,5-==y x 解:2)(y x -2)(y x + --------------------(1分) =[)(y x -)(y x +]2 --------------------(2分) =2)y x -( --------------------(1分) =222y xy x +-当5,5-==y x 时原式=5+10+5 --------------------( 3分)=20 --------------------(1分).26解:(1)01172=-++m x x --------------------(1分)m 45+=∆>0--------------------(2分)45->m --------------------(1分) (2) 当1-=m 时,--------------------(1分)11172-=++x x --------------------(1分)解得3,421-=-=x x --------------------(2分)∴原方程的根为3,421-=-=x x.72解:(1)200(1+2%)a =288 --------------------(2分)解得20=a --------------------(1分)答:a 的值20.(2)22%)1(200%)1200a a --+(=12 --------------------(3分) 解得%5.1%=a --------------------(2分)答:甲区的工作量的平均每月增长率%5.1..28 (1))16,18(D(2) 设)31,(),31,(),2,(b a B b b C a a A 则 由AB BC =,得b a a b 312-=- 得a b 49=∴)43,(a a B ∴直线OB 的解析式为x y 43=(3) )43,49(),2,(a a C a a A 170434921221249四边边=••-••-•=a a a a a a S oADC 解得舍去)(8,821-==a a ∴)6,18(C。
2022—2023学年第一学期期中检测八年级数学试卷一、选择题:(本题共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个是正确的.)1. 的值为()B. C. ±2 D. 2【答案】D【解析】表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选:D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.2. 下列各组数据中,不是勾股数的是()A. 3,4,5B. 5,7,9C. 5,12,13D. 7,24,25【答案】B【解析】【分析】判断是否为勾股数,首先这三个数都要是正整数,同时还需验证两较小数的平方和是否等于最大数的平方.【详解】解:A 、32+42=52,能构成直角三角形,都是正整数,故选项不符合题意;B 、52+72≠92 ,不能构成直角三角形,故选项符合题意;C 、52+122=132,能构成直角三角形,都是正整数,故选项不符合题意;D 、72+242=252,能构成直角三角形,都是是整数,故选项不符合题意;故选: B .【点睛】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.3. 下列各点在第二象限的是()A. ()B. ()2,1−C. ()0,1−D. ()2,1-【答案】B【解析】【分析】根据第二象限点的特征:(),−+ 进行判断即可;【详解】解:A 、()在x 轴上,不符合题意;B 、()2,1−在第二象限,符合题意;C 、()0,1−在y 轴上,不符合题意;D 、()2,1-在第四象限,不符合题意; 故选B .【点睛】本题考查平面坐标系下点的特征.熟练掌握不同象限点的特征是解题的关键.4. 若一次函数1y mx =−的图象经过点(10),,则m 的值为( ) A. 1B. 2C. 3D. 4 【答案】A【解析】【分析】将点(1,0)代入即可求解.【详解】解:将(1,0)代入,得:m -1=0,解得m =1,故选:A .【点睛】本题考查待定系数法求解析式,将点(1,0)代入一次函数解析式是解题的关键.5. 在 3.5−,227,0,2π,,,0.151151115中,无理数有( ) A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在-3.5,227,0,2π,-,0.151151115中,无理数有2π共2个. 故选:B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(相邻两个1之间0的个数逐次加1),等有这样规律的数.6. 下列计算正确的是( )A.B. 2=±C.D. 18= 【答案】C【解析】【分析】根据二次根式的加法对选项A 进行判断,根据二次根式的性质对选项B 进行判断,根据二次根式的乘法对选项C 进行判断,根据二次根式的除法对选项D 进行判断,即可得.【详解】解:A,选项说法错误,不符合题意;B2=,选项说法错误,不符合题意;C==,选项说法正确,符合题意; D,选项说法错误,不符合题意;故选:C .【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式运算的相关法则.7. 关于函数2y x =−+有下列结论,其中错误的是( ) A. 图象经过点()1,1B. 若点()10,A y ,()22,B y 图象上,则12y y >C. 图象向下平移2个单位长度后,图象经过点()0,1D. 当2x >时,0y <【答案】C【解析】【分析】根据一次函数的性质及一次函数图象上点的坐标特点对各选项进行逐一分析即可.【详解】解:A 、当1x =时,21y x =−+=,故图象经过点(1,1),故本选项正确,不合题意; B 、 函数2y x =−+中,10k =−<, y ∴随x 的增大而减小,02<Q ,12y y ∴>,故本选项正确,不合题意;在C 、根据平移的规律,函数2y x =−+的图象向下平移2个单位长度得解析式为y x =−,所以当0x =时,0y =,则图象经过点()0,0,故本选项错误,符合题意; D 、把2x =代入函数20y x =−+=,所以当2x >时,0y <,故本选项正确,不符合题意. 故选:C .点睛】本题考查了一次函数(0)y kx b k =+≠的性质:当0k >,图象经过第一、三象限,y 随x 增大而增大;当0k <,图象经过第二、四象限,y 随x 增大而减小;当0b >,图象与y 轴的交点在x 的上方;当0b =,图象经过原点;当0b <,图象与y 轴的交点在x 的下方,也考查了一次函数的图象与几何变换.8. 大家都知道,九点五十五分可以说成十点差五分.这启发人们设计了一种新的加减记数法.比如:9写成11,11101=−,198写成202,2022002=−;7683写成12323,123231000023203=−+,…总之,数字上画一杠表示减去它,按这个方法请计算:1231789−=( )A. 540B. 509C. 500D. 491【答案】A【解析】 分析】先根据新定义计算出()()1231789120031700809−=−−−+,再计算可得答案. 【详解】解:由题意知1231789− ()()120031700809=−−−+120031700809=−−+−540=,故选:A .【点睛】本题考查有理数的混合运算,解题的关键是掌握新定义并熟练加以运用.9. 如图,小蓓要赶上去实践活动基地的校车,她从点A 知道校车自点B 处沿x 轴向原点O 方向匀速驶来,她立即从A 处搭一辆出租车,去截汽车.若点A 的坐标为()2,3,点B 的坐标为()8,0,汽车行驶速度与出租车相同,则小蓓最快截住汽车的坐标为( )【【A. ()2,0B. 7,02C. 17,04D. ()5,0【答案】C【解析】 【分析】如图,假设小蓓与汽车在D 点相遇,过点A 作AC OB ⊥,则小蓓的行进路线为AD ,设OD x =,则2CD x =−,8BD x =−,在Rt ACD △中,利用勾股定理求出()22232AD x =+−,再根据22BD AD =得出关于x 的方程,解方程求出x 即可得到相遇点的坐标.【详解】解:如图,假设小蓓与汽车在D 点相遇,过点A 作AC OB ⊥,∵点A 的坐标为()2,3,点B 的坐标为()8,0,∴3AC =,2OC =,8OB =,设OD x =,则2CD x =−,8BD x =−,在Rt ACD △中,222AD AC CD =+,∴()22232AD x =+−,∵汽车行驶速度与出租车相同,∴BD AD =,∴22BD AD =,即()()222832x x −=+−, 解得:174x =, ∴D 点坐标为17,04,故选:C .【点睛】本题考查了勾股定理在实际生活中的运用,能够根据题意画出图形,利用勾股定理得出方程是解题的关键.10. 如图,已知点()0A 1,,924B −−,,点P 在直线y x =上运动,则PA PB −的最大值为( )A. 174 B. 92 C. 4 D. 154【答案】D【解析】【分析】根据轴对称的性质可求得答案.【详解】解:作A 关于直线y x =对称点C ,∴OC OA =,∵()10A ,,∴C 的坐标为()01,;连接CB 并延长,交直线y x =于P 点, 此时PA PB PC PB BC −=−=,取得最大值,∴154PA PB BC −==.故选D .【点睛】本题考查了一次函数图像上点的坐标特征,轴对称−最短路线问题,正确的作出辅助线是解决本题的关键.二、填空题:(本题共5小题,每小题3分,共15分.)11. 已知平面直角坐标系中,点()2a ,和点()23−,关于原点对称,则=a ______. 【答案】3−【解析】【分析】若两点关于原点对称,则两点的横坐标之和为0,纵坐标之和为0,据此可分别求出a 、b 的值.【详解】解:∵点()2a ,和点()23−,关于原点对称, ∴30a +=,解得3a =−,故答案为:3−.【点睛】本题考查平面直角坐标系中两点关于原点对称的相关知识点,了解关于原点对称的两点横、纵坐标之和均为0是本题的关键.12. 如图,小正方形的边长为1,则数轴上点A 所表示的实数是______.【答案】1−【解析】【分析】根据正方形的性质求得圆的半径的长,进而即可求得答案.【详解】解:∵小正方形的边长为1且对角线为圆的半径,∴圆的半径,由图可得点A 在圆上,∴点A 所表示的实数是1−+,故答案为:1−+【点睛】本题考查了正方形的性质、勾股定理和数轴,灵活运用所学知识求解是解决本题的关键. 13. 已知||1(2)23k y k x k −=−+−是关于x 的一次函数,则k =_______.【答案】2−【解析】【分析】根据一次函数定义,求出k 的值即可. 【详解】解:∵1(2)23k y k x k −=−+−是关于x 的一次函数, ∴1120k k −= −≠, 解得:2k =−或2k =(舍去); 所以2k =−.故答案为:2−.【点睛】本题考查了一次函数的定义,掌握一次函数的定义,解题的关键是列出方程正确求出k 的值. 14. 如图1,是一个封闭的勾股水箱,其中I ,II , III 部分是可盛水的正方形,且相互联通,已知∠ACB =90°,AC =6,BC =8,开始时III 刚好盛满水,而I ,II 无水.如图2摆放时,水面刚好经过III 的中心O (正方形两条对角线的交点),则II 中有水部分的面积为________.【答案】14【解析】【分析】由勾股定理求出AB =10,根据已知条件得到Ⅲ部分的水为整个正方形面积的一半,即Ⅲ部分的有水部分的面积为50,于是得到结论.【详解】解:∵∠ACB =90°,AC =6,BC =8,∴AB10=,∴Ⅲ部分的面积是100,∵水面刚好经过Ⅲ的中心O ,∴Ⅲ部分的水为整个正方形面积的一半,即Ⅲ部分的有水部分的面积为50,的∴Ⅱ中有水部分的面积为100-36-50=14,故答案为:14.【点睛】本题考查了勾股定理,正方形的面积的计算,熟练掌握勾股定理是解题的关键.15. 如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=12x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=12x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为_____.(用含正整数n的代数式表示)【答案】22 21 3 2nn−−【解析】【分析】【详解】解:∵点A1(2,2),A1B1∥y轴交直线y=12x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积=12×12=12;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y=12x于点B2,∴B2(3,3 2),∴A2B2=3﹣32=32,即△A2B2C2面积=12×(32)2=98;以此类推,A3B3=94,即△A3B3C3面积=12×(94)2=8132;A 4B 4=278,即△A 4B 4C 4面积=12×(278)2=729128; … ∴A n B n =(32)n ﹣1,即△A n B n C n 的面积=12×[(32)n ﹣1]2=222132n n −−. 三、解答题:(本题共7小题,共55分.其中第16题10分,17、18、19、20每小题7分,21题8分,22题9分)16. 计算:(1)()101123π− −+−+(2)(21++【答案】(1(2)163【解析】【分析】(1)根据零指数幂、负整数指数幂、绝对值的意义及二次根式的加减计算;(2)先根据二次根式的乘除法则运算,然后化简后合并即可.【小问1详解】解:原式123=++=.【小问2详解】解:原式13=−++4133=−++ 163=. 【点睛】本题主要考查零指数幂、负整数指数幂、绝对值的意义和二次根式混合运算,解题的关键是要熟练掌握完全平方公式.17. A 、B 、C 三点在单位长度为1的直角坐标系内位置如图.(1)分别写出A 、B 、C 的坐标;(2)求线段BC 的长度;(3)画出ABC ∆关于x 轴对称111A B C ∆,并求111A B C ∆的面积.【答案】(1)(0,3)A ,(4,4)B −,(2,1)C −(2)BC =(3)5【解析】【分析】(1)根据题意,通过观察图像即可求出答案;(2)如图所示(见详解),构造直角三角形,利用勾股定理即可求出答案;(3)如图所示(见详解),利用“割补法”即可求出答案.【小问1详解】解:A 、B 、C 都在格点上,单位长度为1,∴(0,3)A ,(4,4)B −,(2,1)C −故答案是:(0,3)A ,(4,4)B −,(2,1)C −.【小问2详解】解:如图所示,过点B 作x 轴的垂线,过点C 作y 轴的垂线并反方向延迟,两条垂线交于点D ,得直角三角形BCD △,且3BD =,2CD =,∴BC ,故BC .【小问3详解】解:x 轴对称的111A B C △如图所示,计算111A B C △的面积的方法如下图所示,∴3412EFBG S =×=长方形,1111422A B F S =××=△,1112222A C E S =××=△,1112332C B G S =××=△,∴111122235A B C S =−−−=△,故111A B C △的面积是5.【点睛】本题主要考查图形变换,掌握图形结合,对称,构造直角三角形,勾股定理是解题的关键. 18. 现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,已知消防车高3m ,云梯最多只能伸长到10m ,救人时云梯伸至最长如图,云梯先在A 处完成从9m 高处救人后,然后前进到B 处从12m 高处救人.(1)DM = _____米,BB ′=______米,A M ′=______米;(2)求消防车两次救援移动的距离(即AB 的长度).(精确到0.1m 1.73≈,3.16≈4.36≈)【答案】(1)3;10;9(2)消防车两次救援移动的距离约为3.6m【解析】【分析】(1)根据题意,可得消防车的高为DM 的长,再根据题中图形,可得云梯的长为BB ′的长. (2)根据题意,可得A D ′的长,再根据勾股定理,即可得到消防车在A 处离楼房的距离,根据题意,可得B D ′的长,再根据勾股定理,可得到BD 的长,然后根据AB AD BD =−,即可算出消防车两次救援移动的距离.【小问1详解】解:根据题意得∶ 3m DM =, 10m BB ′=,9m A M ′=;故答案为∶ 3;10;9【小问2详解】解:由题意得3m DM =,10m AA ′=,9m A M ′=,10m BB ′=,12m B M ′=,∴936m A D A M DM ′′=−=−=,1239m B D B M DM ′′=−=−=,∴在Rt AA D ′ 中,8m AD =,在Rt BB D ′ 中, 4.36m BD =≈,∴8 4.36 3.6m AB AD BD =−=−≈.∴消防车两次救援移动的距离约为3.6m .【点睛】本题考查了数形结合思想,勾股定理等知识点,熟练运用数形结合思想是解本题的关键. 19. 《九章算术》中记载,浮箭漏(如图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校科技研究小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究.研究小组每2h 记录一次箭尺读数(箭尺最大读数为120cm ),得到下表: 供水时间x (h ) 0 2 4 6 8箭尺读数y (cm ) 6 18 30 42 54(1)如图②,建立平面直角坐标系,横轴表示供水时间()h x .纵轴表示箭尺读数()cm y ,描出以表格中数据为坐标的各点,并连线;(2)观察描出各点的分布规律,可以知道它是我们学过的______函数(填“正比例”或“一次”),通过计算我们发现该函数解析式为6y x b =+,请结合表格数据,求出b 的值; (3)应用上述得到的规律计算:①供水时间达到11h 时,箭尺的读数为多少cm ?②如果本次实验记录的开始时间是上午700:,那么当箭尺读数为90cm 时是几点钟?【答案】(1)见解析 (2)一次,6(3)①供水时间达到11h 时,箭尺的读数为72cm ;②当箭尺读数为90cm 时是2100:【解析】【分析】(1)由表格描点,连线即可;(2)根据函数图象可得是一次函数,用待定系数法可求出函数关系式;(3)①将11x =代入函数解析式求出y 即可;②求出90y =时x 的值,然后计算即可.【小问1详解】描出以表格中数据为坐标的各点,并连线,如图:【小问2详解】观察图象可知,它是我们学过的一次函数,∵所对应的函数解析式是6y x b =+, ∴将()06,,代入得:6b =, ∴函数解析式是66y x =+. 【小问3详解】由(2)知66y x =+. ①当11x =时,611672y =×+=,∴供水时间达到11h 时,箭尺的读数为72cm ;②当90y =时,即6690x +=,解得:14x =,即经过14h ,箭尺读数为90cm ,∵本次实验记录的开始时间是上午700:,∴当箭尺读数为90cm 时是2100:.【点睛】本题主要考查一次函数的应用,解题的关键是读懂题意,掌握待定系数法求函数解析式.20. 如图,P 是等边三角形ABC 内的一点,连接PA PB PC ,,,以BP 为边作60PBQ ∠=°,且BQ BP =,连接CQ .若345PA PB PC =::::,连接PQ .(1)证明:ABP CBQ ≌△△;(2)求APB ∠的度数.【答案】(1)见解析 (2)150°【解析】【分析】(1)根据等边三角形可得AB CB =,进而根据SAS 即可证明ABP CBQ ≌△△;(2)根据ABP CBQ ≌△△可得AP CQ BPA BQC =∠=∠,,则根据题意可设345PA a PB a PC a ===,,,最后结合勾股定理的逆定理即可得到结论 .【小问1详解】证明:∵ABC 是等边三角形,60PBQ ∠=°, ∴60ABC PBQ ∠=∠=°,AB CB =, ∴ABC PBC PBQ PBC ∠−∠=∠−∠.∴ABP CBQ ∠=∠. 在ABP 和CBQ △中,AB CB ABP CBQ BP BQ = ∠=∠ =, ∴()SAS ABP CBQ △≌△.【小问2详解】∵ABP CBQ ≌△△,∴AP CQ BPA BQC =∠=∠,. ∵345PA PB PC =::::,∴设345PA a PB a PC a ===,,.在PBQ 中,由于4PBBQ a ==,且60PBQ ∠=°, ∴PBQ 为等边三角形.∴604BQP PQ a ∠=°=,. 在PQC △中,∵22222216925PQ QC a a a PC +=+==,∴PQC △为直角三角形,90CQP ∠=°. ∴6090150BQC BQP CQP ∠=∠∠=°°=°++,∴150APB BQC ∠=∠=°. 【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质和勾股定理的逆定理,灵活运用所学知识求解是解决本题的关键.21. 著名数学教育家G ·波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例1====+ 解决问题:(1③ ①:______,②:______,③______.(2【答案】(1)53(2)7【解析】【分析】(1)根据题意即可作答;(2)根据题意分别将两个式子算出,进而即可求解.【小问1详解】=3=+,故答案为:53+;【小问2详解】解:原式==52=−++7=.【点睛】本题考查了二次根式的混合运算,解决本题的关键是掌握完全平方公式.22. 如图,在平面直角坐标系中,已知点A ,B ,C 为ABC 的三个顶点,直线AB 的解析式为3y x b =+.(1)如图①,若点A 在y 轴上,点B 在x 轴上,()2,0C ,OB OC =,求A ,B 两点的坐标; (2)在(1)的条件下,过x 轴上一点()6,0D −作DEAC ⊥于E ,DE 交y 轴于点F ,求DOF 的面积;(3)如图②,将ABC 沿x 轴向左平移,AC 边与y 轴交于一点P (P 不同于A 和C 两点),过P 作一直线与AB 的延长线交于Q 点,与x 轴交于点M ,且CP BQ =,在ABC 平移过程中,M 点的坐标是否发生变化?如果不变,请写出M 点的坐标及理由.【答案】(1)()2,0B −,()0,6A(2)6 (3)M 点坐标不变化,()2,0M −,理由见解析的【解析】【分析】(1)根据()2,0C ,OB OC =得()2,0B−,根据直线AB 的解析式为3y x b =+,点A 在y 轴上,令0x =得6b =,即可得;(2)根据AO BC ⊥,DE AC ⊥得90FOD COA ∠=∠=°,即可得90ODF ACO OAC ACO ∠+∠=∠+∠=°,则ODF OAC ∠=∠,即可得()0,6A ,()6,0D −,则DO AO =,利用ASA 证明DOF AOC ≌△△,即可得;(3)过点P 作PN AB ∥交BC 于点N ,则1Q ∠=∠,ABC PNC ∠=∠,根据A ABC CB =∠∠得PNC PCB ∠=∠,则PN PC =,根据CP BQ =得PN BQ =,利用AAS 证明QBM PNM ≌△△,得MN BM =,根据PC PN =,PO CN ⊥,得ON OC =,根据+++BM MN ON OC BC =,可得122OM MN ON BC =+==,即可得. 【小问1详解】解.∵()2,0C ,OB OC =,∴()2,0B −,∵直线AB 的解析式为3y x b =+,点A 在y 轴上, ∴令0x =得6b =,∴()0,6A ;【小问2详解】解:∵AO BC ⊥,DE AC ⊥,∴90FOD COA ∠=∠=°,∴90ODF ACO OAC ACO ∠+∠=∠+∠=°,∴ODF OAC ∠=∠,∴()0,6A ,()6,0D −,∴DO AO =,在DOF 与AOC 中,ODF OAC OD OA FOD COA ∠=∠ = ∠=∠∴DOF AOC ≌△△(ASA ),∴1126622DOF AOC S S OA OB ===××= △△; 【小问3详解】 M 点的坐标不发生变化,()2,0M −,理由如下, 解:如图所示,过点P 作PN AB ∥交BC 于点N ,则1Q ∠=∠,ABC PNC ∠=∠,∵A ABC CB =∠∠,∴PNC PCB ∠=∠,∴PN PC =,∵CP BQ =,∴PN BQ =,在QBM 和PNH △中,123Q BQ PN ∠=∠ ∠=∠ =, ∴()QBM PNM AAS ≌△△,∴MN BM =,∵PC PN =,PO CN ⊥,∴ON OC =,∵+++BM MN ON OC BC =, ∴122OM MN ON BC =+==, ∴()2,0M −,即M点的坐标不发生变化.【点睛】本题考查了一次函数,全等三角形的判定与性质,等边对等角,解题的关键是掌握并灵活运用这些知识点.。
2021-2022学年广东省深圳市龙岗区宝龙外国语学校八年级(上)期中数学试卷一、选择题(以下各题只有一项正确答案,请将答题卡对应选项涂黑。
每小题3分,共30分)1.(3分)下列实数中,无理数是()A.−27B.0C.3.14159D.√2132.(3分)下列计算正确的是()A.√5−√3=√2B.√2×√3=√6C.3+2√3=5√3D.√14÷√7=2 3.(3分)在平面直角坐标系的第四象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(﹣4,3)C.(4,﹣3)D.(﹣3,4)4.(3分)已知点P(x,y),且√(x−2)2+|y+4|=0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)函数y=√x−2x−3的自变量x的取值范围是()A.x≥2B.x≥3C.x≠3D.x≥2且x≠3 6.(3分)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=137.(3分)若点A(2m,2﹣m)和点B(3+n,n)关于y轴对称,则m、n的值为()A.m=1,n=﹣1B.m=53,n=13C.m=﹣5,n=7D.m=−13,n=−738.(3分)如图,若圆柱的底面周长是14cm,高是48cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处,则这条丝线的最小长度是()A.49cm B.50cm C.54cm D.64cm9.(3分)一次函数y =kx +b 与y =kbx ,它们在同一坐标系内的图象可能为( )A .B .C .D .10.(3分)如图,平行于x 轴的直线l 与y 轴、直线y =3x 、直线y =x 分别交于点A 、B 、C .则下列结论正确的个数有( )①∠AOB +∠BOC =45°;②BC =2AB ;③OB 2=10AB 2;④OC 2=85OB 2.A .1个B .2个C .3个D .4个二、填空题(每小题3分,共15分)11.(3分)若√11的值在两个整数a 与a +1之间,则a = .12.(3分)若y =(k ﹣2)x k 2−3+2是一次函数,则k =13.(3分)如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是﹣1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是 .14.(3分)对于任意的正数m 、n 定义运算※为:m ※n ={√m −√n(m >n)√m +√n(m <n),计算(3※2)×(8※12)的结果为.15.(3分)如图,一次函数y=−34x+3的图象与x轴交于点A,与y轴交于点B,C是x轴上一动点,连接BC,将△ABC沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为.三、解答题(第16题6分、第17题6分、第18题8分、第19题8分、第20题8分、第21题10分、第22题10分,共55分)16.(6分)计算:(1)(√24−√13)−(√127−√6);(2)(√7+√5)(√7−√5)+(√3−2√2)2.17.(6分)(1)已知:2a+1的算术平方根是3,3a﹣b﹣1的立方根是2,求3√20b+a的值.(2)已知10+√3=x+y,其中x是整数,且0<y<1,求x﹣y+√3的算术平方根.18.(8分)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在图中画出△ABC,△ABC的面积是;(2)若点D与点C关于y轴对称,则点D的坐标为;(3)已知Q为y轴上一点,若△ACQ的面积为8,求点Q的坐标.19.(8分)为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?20.(8分)如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,将△ABE沿AE折叠,使点B落在B'处.(1)若∠CEB'=70°,求∠DAB'.(2)若点B'恰好在矩形ABCD的对角线AC上,求BE的长.21.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发后至到达图书馆前,何时与小军相距100米,请求出此时小军骑行的时间.(直接写出答案)22.(10分)如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.2021-2022学年广东省深圳市龙岗区宝龙外国语学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(以下各题只有一项正确答案,请将答题卡对应选项涂黑。
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
数学试卷说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.全卷共8页.考试时间90分钟,满分100分.3.作答选择题1—10,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题11—22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的) 1. 若,则下列结论成立的是()A. B.C.D.答案:D 解析:详解:解:A 、,则,选项说法错误,不符合题意;B 、,则,选项说法错误,不符合题意;C 、,则,选项说法错误,不符合题意;D 、,则,选项说法正确,符合题意;故选:D .2. 下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.答案:D 解析:详解:解:A 、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B 、是轴对称图形,但不是中心对称图形,故本选项不符合题意;C、既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.3. 不等式组的解集在数轴上表示正确的是()A. B.C. D.答案:A解析:详解:解:,解不等式①,得:,解不等式②,得:,∴该不等式组的解集为,∴该不等式组的解集在数轴上表示如图,故选A.4. 下列从左到右的变形为因式分解的是()A. B.C. D.答案:C解析:详解:解:是整式乘法运算,是整式乘法运算,右边不是整式的积的形式,不是因式分解,从左到右的变形为因式分解,故符合要求;故选:C.5. 下列命题正确的是()A. 两个等腰三角形全等B. 平移前后的两个三角形全等C. 等边三角形是中心对称图形D. 直角三角形既是轴对称图形又是中心对称图形答案:B解析:详解:解:A. 两个等腰三角形不一定全等,原命题不正确,不符合题意;B. 平移前后的两个三角形全等,该命题正确,符合题意;C. 等边三角形不是中心对称图形,原命题不正确,不符合题意;D. 直角三角形既不是轴对称图形,也不是中心对称图形,原命题不正确,不符合题意.故选:B.6. 八年级某数学兴趣小组在一次综合实践活动中,为研究中心对称图形性质,对于已知以及外的一点,分别作,,关于的对称点,,,得到.如图,则下列结论不成立的是()A. 点与点是对称点B.C.D.答案:D解析:详解:解:∵和关于点成中心对称,∴点与点是对称点,,故成立;∵与是对顶角,∴,故成立;∵的对应角是,∴,故不成立;故选:.7. 在《生活中的平移现象》的数学讨论课上,小明和小红先将一块三角板描边得到,后沿着直尺方向平移,再描边得到,连接.如图,经测量发现的周长为,则四边形的周长为()A. B. C. D.答案:B解析:详解:解:∵沿方向平移得到,∴,,∴四边形的周长的周长,故选:.8. 函数的图象如图所示,点,在该图象上,下列判断正确的是()甲:,之间的大小关系为;乙:将函数图像向上平移个单位,再向右平移个单位;得到的函数为A. 只有甲对B. 只有乙对C. 甲、乙都对D. 甲、乙都不对答案:A解析:详解:解:∵,∴随的增大而增大,∵,∴,故甲对;由得,当时,,∴直线与轴的交点为,将函数图像向上平移个单位,再向右平移个单位,点平移后的对应点为,设平移后的函数解析式为,把代入得,,解得,∴平移后的函数解析式为,故乙不对;故选:.9. 我们知道,若ab>0.则有或.如图,直线y=kx+b与y=mx+n分别交x轴于点A(-0.5,0)、B(2,0),则不等式(kx+b)(mx+n)>0的解集是( )A. x>2B. -0.5<x<2C. 0<x<2D. x<-0.5或x>2答案:B解析:详解:解:若,则有或,若不等式,则有或.当时,由图象可知的解集是x<-0.5,的解集是x<2,∴不等式组无解,当时,由图象知的解集是x>-0.5,的解集是x<2,∴不等式组的解集是-0.5<x<2,综上所述:.故选:.10. 如图,在锐角中,,将沿着射线方向平移得到(平移后点,,的对应点分别是点,,),连接,若在整个平移过程中,和的度数之间存在2倍关系,则不可能的值为()A B. C. D.答案:C解析:详解:解:第一种情况:如图,当点在上时,过点作,∵由平移得到,,∵,,,,当时,设,则,∴,,,解得:,;当时,设,则,∴,,,解得:,;第二种情况:当点在延长线上时,过点作,同理可得,当时,设,则,∴,,,解得:,;由于,则这种情况不存在;综上所述,度数可以为20度或40度或120度,故选:C.第二部分非选择题二.填空题(本大题共5小题,每小题3分,共15分)11. “与的和小于”用不等式表示为________.答案:x+4<10##4+x<10解析:详解:解:根据题意得:x+4<10.故答案为:x+4<10.12. 新定义:对任意一个两位数,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“福数”,将一个“福数”两个数位上的数字对调后可以得到一个不同的新两位数,用较大的两位数减去较小的两位数的差与的商记为.例如,对调个位与十位上的数字得到,这两个两位数的和为,,所以.求的值为______.答案:解析:详解:解:由题意得,,,∴,故答案为:.13. 如图,在中,,.的周长为5,则的周长是__________.答案:7解析:详解:解:∵,,∴垂直平分,∴,∵的周长为5,∴,∴的周长.故答案为:7.14. 根据深圳市出租车最新收费标准:起步价不超过2千米计费10元;若超过2千米,则超过2千米的部分按元/千米讨费(不满1千米按1千米计算).小明在一次放学乘出租车回家的行程中付费元,设出租车行驶的里程为千米,则的取值范围是__________.答案:##解析:详解:解:∵不超过2千米计费10元,而明在一次放学乘出租车回家的行程中付费元,∴这次的里程超过2千米,若x恰好为正整数时,由题意得,,解得,∵不满1千米按1千米计算,∴,故答案为:.15. 如图,已知在中,,,,平分,平分,与交于点,若过点的直线平分面积,那么的值为__________.答案:6解析:详解:解:如图所示,过点O作,垂足分别为H、G、P,连接,∵平分,平分,∴,在中,,,,∴,∵,∴,∴,∴,∵过点的直线平分面积,∴,∴,∴,∴,故答案为:6.三、解答题(共7小题,共55分)16. 解下列不等式(组):(1);(2).答案:(1);(2).解析:小问1详解:解:移项得,,合并同类项得,;小问2详解:解:,解不等式得,,解不等式得,,∴不等式组的解集为.17. 分解因式:(1);(2).答案:(1);(2).解析:小问1详解:解:原式,;小问2详解:解:原式,,.18. 已知:如图,是等边三角形,点在的延长线上.①已知条件:点为线段中点结论:;②已知条件:结论:;③已知条件:平分,结论:.在①②③中,选择一个你认为正确的并加以证明.答案:①③正确,②不正确,证明见解析解析:详解:证明:选择①:∵是等边三角形,点为线段中点,∴;选择②:∵是等边三角形,,∴,即;选择③:∵是等边三角形,平分,∴,,∵,∴,∵,∴,∴.19. 据2024年1月1日深圳市气象台气候趋势预测,我市将有1-2次明显冷空气过程,分别出现在1月中旬中期和月底前后,最低气温降至以下.面对即将到来的寒冷天气,某个体户预先购买了某品牌、两款羽绒服来销售.若购买3万件,4万件需支付2400万元,若购买2万件,2万件,则需支付1400万元.(1)求、两款羽绒服的价格分别是多少元?(2)若个体户购买、两款羽绒服各1000件后,均按每件600元进行零售,销售一段时间后,因深圳市气温出现短暂回升,羽绒服滞销.个体户打算把剩下的羽绒服全部6折销售完,若总获利不低于38万元,求个体户让利销售的羽绒服最多是多少件?(要求列一元一次不等式求解)答案:(1)款羽绒服价格是400元,两款羽绒服的价格是300元(2)500解析:小问1详解:解:设款羽绒服的价格是元,两款羽绒服的价格是元,根据题意,可得,解得,答:款羽绒服的价格是400元,两款羽绒服的价格是300元;小问2详解:解:设让利销售的羽绒服有件,则已经销售的有件,根据题意,可得,解得,答:个体户让利销售的羽绒服最多是500件.20. 函数的图象,如图所示.已知和的交点的横坐标为,另一交点的横坐标为1.回答下列问题:…01234……042042054112……124567…(1)完善表格:、与的对应值,根据表格中的与的对应值,在图中描点并画出的图象.从中选取合适的数据,求出,的值.(2)根据图象,描述当时,函数随自变量变化的变化趋势.(3)根据图象,直接写出不等式的解集.(4)若,分别满足关于的方程和,则__________(填“<”或“>”).答案:(1)图见解析,;(2)当时,函数随自变量的增加反而减少;(3)不等式的解集为或;(4)解析:小问1详解:解:观察图象,当时,;当时,;描点,连线,函数的图象如图所示,由图象得函数的图象是经过点A和点B的直线,选取,,∴,解得;小问2详解:解:观察图象,当时,函数随自变量的增加反而减少;小问3详解:解:观察图象,不等式的解集为或;小问4详解:解:过点画一条平行于x轴的直线,如图,观察图象,;故答案为:.21. 年月日,深外(集团)年度表彰大会暨文艺演出隆重举行.其中我校教职工参演的《璀璨》,展现了深外初中部的风采,也体现了艺术之美,如图.学生小红想从图形旋转的角度来学习舞蹈的动作,如图,为了方便研究,定义两手位置分别为,两点,两脚位置分别为,两点,为定点,将手脚运动看作绕点进行旋转:(1)在一张照片中,小红发现某一时刻,如图,,,三点共线,但不在水平方向上,且.试求;(2)在一段表演的视频中,小红发现,舞者两腿左右张开,使得、关于对称且.开始运动前、、三点在同一水平线上,如图,、绕点同时开始逆时针旋转,旋转速度为,旋转速度为,当旋转到与重合时,、停止运动.设运动的时间为.当,,三点共线时,__________;由.答案:(1);(2);存在时,使得.解析:小问1详解:解:∵,,三点共线,∴,∵,∴,∵,∴,∴;小问2详解:解:∵,∴,∵,∴,∴,当,,三点共线时,,∴,解得,故答案为:;存在.当时,,∴,解得,∴存在时,使得.22. (1)图形初探:如图1,在等边中,点是中点,连接,将射线以点为旋转中心逆时针旋转,得到射线,点在射线上且满足,连接,则__________;(2)模型探究:在等边中,点是中点,点是上一点,连接,将射线以点为旋转中心逆时针旋转,得到射线,点在射线上且满足,,连接,.补全图形,求度数;(3)拓展延伸:在(2)中,将条件“点是上一点,”改为“点是射线上一点,”,补全图形,探究和的数量关系.答案:(1);(2)作图见解析,;(3)解析:详解:解:(1)∵为等边三角形,点是中点,∴,∴,∵,∴,故答案为:.(2)如图2,即为补全图形后的图形,∵为等边三角形,∴,∵,,∴,又∵,∴;(3)解:,理由如下,如图所示,连接,当在上时,如图所示,以为边在左侧作等边,连接,∵点是中点,为等边三角形,∴,∵,∴是等边三角形,∴∴∵∴∴,,∵∴∴,在中,∴∴又∵都是等边三角形,∴;当在的延长线上时,如图所示,同理可得则∴.。
2018-2019学年第二学期八年级数学期中模拟试卷(1)一.选择题(共10小题,满分30分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.02.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.63.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.15.计算结果是()A.0B.1C.﹣1D.x6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值27.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.108.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣369.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个二.填空题(共8小题,满分24分)11.若代数式有意义,则x的取值范围是.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为,△EOF的面积为.反比例函数值大于一次函数值时x的范围是.16.(3分)若关于x的分式方程无解,则m=.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为.三.解答题(共10小题,满分76分)19.解下列分式方程:(1)=(2)﹣=20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.参考答案与试题解析一.选择题(共10小题,满分3分)1.若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0故选:A.2.如果反比例函数的图象经过点(﹣2,3),那么k的值是()A.B.﹣6C.D.6故选:B.3.(3分)已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.故选:B.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4B.3C.2D.1故选:A.5.计算结果是()A.0B.1C.﹣1D.x故选:C.6.函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A.该函数的图象是中心对称图形B.y的值不可能为1C.在每个象限内,y的值随x值的增大而减小D.当x>0时,该函数在x=1时取得最小值2【解答】解:由图可得,该函数的图象关于原点对称,是中心对称图形,故A选项结论正确;当x>0时,有三种情况:0<x<1时,y的值随x值的增大而减小,且y>2;x=1时,y =2;x>1时,y>2;故B选项结论正确;当y的值为1时,可得方程x+=1,△<0,无解,故y的值不可能为1,故D选项结论正确.所以,结论不正确的是C.故选:C.7.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.8.如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.9.如图,正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分面积是()cm2.A.B.C.D.【解答】解:如图,连接CG.∵正方形ABCD的边长为1cm,E、F分别是BC、CD的中点,∴△CDE≌△CBF,易得,△BGE≌△DGF,所以S△BGE=S△EGC,S△DGF=S△CGF,于是S△BGE=S△EGC=S△DGF=S△CGF,又因为S△BFC=1××=cm2,所以S△BGE=×=cm2,则空白部分的面积为4×=cm2,于是阴影部分的面积为1×1﹣=cm2.故选:B.10.如图,正方形ABCD中AE=AB,EF⊥AC于E交BC于F,则图中等腰三角形的个数为()A.2个B.3个C.4个D.5个【解答】解:在正方形ABCD中有,AB=BC,AD=CD,∠ACB=45°,∴△ABC,△ADC是等腰三角形,∠EFC=90°﹣∠ACB=45°=∠ACB,∴EF=CE,△EFC是等腰三角形,∵AE=AB,∴△AEB是等腰三角形,∠ABE=∠AEB,∴∠FBE=90°﹣∠ABE=90°﹣∠AEB=∠BEF,∴FB=FE,∴△BEF是等腰三角形.故共有5个等腰三角形.故选:D.二.填空题(共8小题,满分9分)11.若代数式有意义,则x的取值范围是x≠4.12.已知a2﹣2ab﹣b2=0,(a≠0,b≠0),则代数式的值﹣2.【解答】解:∵a2﹣2ab﹣b2=0,∴b2﹣a2=﹣2ab,则===﹣2,故答案为:﹣2.13.在函数y=﹣的图象上有三点(﹣1,y1),(﹣0.25,y2),(3,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.【解答】解:∵反比例函数y=﹣的k=﹣2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣1<0,﹣0.25<0,∴点(﹣1,y1),(﹣0.25,y2)位于第二象限,∴y1>0,y2>0,∵﹣0.25>﹣1<0,∴0<y1<y2.∵3>0,∴点(3,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.14.如图,在Rt△ABC中,∠ACB=90°,点D、点E分别是边AB、AC的中点,点F在AB上,且EF∥CD.若EF=2,则AB=8.【解答】解:∵E是AC中点,且EF∥CD,∴EF是△ACD的中位线,则CD=2EF=4,在Rt△ABC中,∵D是AB中点,∴AB=2CD=8,故答案为:8.15.(3分)如图,反比例函数y=与一次函数y=﹣x+6的图象交点为E、F,则点E的坐标为(1,5),△EOF的面积为12.反比例函数值大于一次函数值时x的范围是0<x<1或x>5.【解答】解:联立两函数解析式可得,解得或,∴E点坐标为(1,5),在y=﹣x+6中,令y=0可求得x=6,∴A(6,0),∴OA=6,∴S△EOF=S△AOE﹣S△AOF=×6×5﹣×6×1=15﹣3=12,∵E(1,5),F(5,1),∴当反比例函数值大于一次函数值时x的取值范围为0<x<1或x>5,故答案为:(1,5);12;0<x<1或x>5.16.(3分)若关于x的分式方程无解,则m=6,10.【解答】解:∵关于x的分式方程无解,∴x=﹣,原方程去分母得:m(x+1)﹣5=(2x+1)(m﹣3)解得:x=,m=6时,方程无解.或=﹣是方程无解,此时m=10.故答案为6,10.17.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180°,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.18.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解答】解:如图,作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE=2,故答案为:2.三.解答题(共10小题,满分30分)19.解下列分式方程:(1)=(2)﹣=【解答】解:(1)方程两边都乘以x(x+7),得100(x+7)=30x.解这个一元一次方程,得x=﹣10.检验:当x=﹣10,x(x+7)≠0.所以,x=﹣10是原分式方程的根.(2)方程两边都乘以(x+3)(x﹣3),得x﹣3+2(x+3)=12.解这个一元一次方程,得x=3.检验:当x=3时,(x+3)(x﹣3)=0.因此,x=3是原分式方程的增根,所以,原分式方程无解.20.先化简,再求值:÷(﹣x+1),其中x满足x2+7x=0.【解答】解:原式=÷(﹣)==×=﹣∵x2+7x=0x(x+7)=0∴x1=0,x2=﹣7当x=0时,除式(﹣x+1)=0,所以x不能为0,所以x=﹣7.当x=﹣7时,原式=﹣=﹣=21.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.22.甲、乙两地相距50km,A骑自行车从甲地到乙地,出发3小时20分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A、B 两人的速度.【解答】解:设A的速度为xkm/时,则B的速度为3xkm/时.根据题意得方程:.解得:x=10.经检验:x=10是原方程的根.∴3x=30.答:A,B两人的速度分别为10km/时、30km/时.23.如图,点B的坐标是(4,4),作BA⊥x轴于点A,作BC⊥y轴于点C,反比例函数(k>0)的图象经过BC的中点E,与AB交于点F,分别连接OE、CF,OE与CF交于点M,连接AM.(1)求反比例函数的函数解析式及点F的坐标;(2)你认为线段OE与CF有何位置关系?请说明你的理由.(3)求证:AM=AO.【解答】(1)解:∵正方形ABCO,B(4,4),E为BC中点,∴OA=AB=BC=OC=4,CE=BE=2,F的横坐标是4,∴E的坐标是(2,4),把E的坐标代入y=得:k=8,∴y=,∵F在双曲线上,∴把F的横坐标是4代入得:y=2,∴F(4,2),答:反比例函数的函数解析式是y=,点F的坐标是(4,2).(2)线段OE与CF的位置关系是OE⊥CF,理由是:∵E的坐标是(2,4),点F的坐标是(4,2),∴AF=4﹣2=2=CE,∵正方形OABC,∴OC=BC,∠B=∠BCO=90°,∵在△OCE和△CBF中,∴△OCE≌△CBF,∴∠COE=∠BCF,∵∠BCO=90°,∴∠COE+∠CEO=90°,∴∠BCF+∠CEO=90°,∴∠CME=180°﹣90°=90°,即OE⊥CF.(3)证明:∵OC=4,CE=2,由勾股定理得:OE=2,过M作MN⊥OC于N,∵OE⊥CF,∴∠CMO=∠OCE=90°,∵∠COE=∠COE,∴△CMO∽△ECO,∴==,即==,解得:CM=,OM=,在△CMO中,由三角形的面积公式得:×OC×MN=×CM×OM,即4MN=×,解得:MN=,在△OMN中,由勾股定理得:ON==,即M(,),∵A(4,0),∴由勾股定理得:AM=4=AO,即AM=AO.24.如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.【解答】解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.25.如图,直线x=t(>0)与双曲线y=(x>0)交于点A,与双曲线y=(x<0)交于点B,连结OA,OB.(1)当k1,k2分别为某一确定值时,随t值的增大,△AOB的面积不变(填增大、不变、或减小).(2)当k1+k2=0,S△AOB=8时,求k1、k2的值.【解答】解:(1)不变,∵S△AOC=|k1|,S△BOC=|k2|,∴S△AOB=S△AOC+S△BOC=(|k1|+|k2|),∵k1,k2分别为某一确定值,∴△AOB的面积不变,故答案为:不变;(2)由题意可知:k1>0,k2<0,∴S△AOB=k1﹣k2=8,∵k1+k2=0,解得k1=8,k2=﹣8.26.(8分)如图:矩形ABCD中,AC是对角线,∠BAC的平分线AE交于点E,∠DCA的平分线CF交AD于F.(1)求证四边形AECF是平行四边形.(2)若四边形AECF是菱形,求AB与AC的数量关系.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=2∠EAC,∠DCA=2∠FCA,∴∠EAC=∠FCA,∴AE∥CF,∵AE∥EF,∴四边形AECF是平行四边形;(2)当2AB=AC时,四边形AECF是菱形,理由如下:∵2AB=AC,∠ABC=90°,∴∠ACB=30°,∠BAC=60°,∴∠EAC=30°,∴∠EAC=∠ACB,∴AE=EC,∵四边形AECF是平行四边形,∴平行四边形AECF是菱形.27.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.28.(12分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B 作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.【解答】解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(,1),A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.(3)如图2中,①当∠AOE1=90°时,∵直线AC的解析式为y=x,∴直线OE1的小时为y=﹣x,当y=2时,x=﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).。
2018-2019学年度八年级上学期期中考试 数学试题第1卷(选择题 共42分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试卷上。
3.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共14小题.每小题3分,共42分)1.若一个正多边形一个外角是60°,则该正多边形的内角和是 A .360° B . 540° C . 720° D .900° 2. 若点A (1,1)m n +-与点B (-3,2)关于y 轴对称,则m n +的值是A .-5B .-3C .3D . 13. 已知三角形三个内角∠A 、∠B 、∠C ,满足关系式∠B+∠C=2∠A ,则此三角形 A. 一定有一个内角为45° B. 一定有一个内角为60° C. 一定是直角三角形 D. 一定是钝角三角形4. 如图,已知∠ABC=∠DCB,添加以下条件不能判定∆ABC ≌∆DCB 的是A .∠A=∠DB .∠ACB=∠DBC C .AC=DBD .AB=DC第4题 第5题第6题5.观察图中尺规作图痕迹,下列说法错误的是A.OE是∠AOB的平分线 B.OC=ODC.点C、D到OE的距离不相等 D、∠AOE=∠BOE6.如图,在Rt∆ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S∆ABD=15,则CD的长为A.3 B.4 C.5 D.67. 将一副直角三角板按如图所示位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45° B.60° C.75° D.85°第7题第8题第9题8.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC②△ACE≌△BDE③点E在∠O的平分线上其中正确的结论是A. 只有①B. 只有②C. 只有①②D. 有①②③9.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则等于∠ACE=A.15° B.30° C.45 D.60°10.将一个n边形变成n+1边形,内角和将A.减少180∘B.增加90∘C.增加180∘D.增加360∘11.如图,△ABC中,∠A=36∘,AB=AC,BD平分∠ABC,下列结论错误的是A. ∠C=2∠AB. BD=BCC. △ABD是等腰三角形D. 点D为线段AC的中点第11题第12题第13题12.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A. AB=ADB. AC平分∠BCDC. AB=BDD. △BEC≌△DEC13.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确结论有()A.1个B.2个C.3个D.4个14.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°第14题第17题第18题二、填空题(本题共4小题,每小题5分,共20分)15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是______.18. 在△ABC 中,AB=AC,CD=CB,若∠ACD=42∘,则∠BAC=______∘.19. 含角30°的直角三角板与直线1l ,2l 的位置关系如图所示,已知12l l ,∠1=60°,以下三个结论中正确的是____(只填序号)。
题图第3题图第4题图第52018-2019学年八年级数学上学期期中教学质量检测试题注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分)请将唯一正确答案的代号填涂在答题..卡.上 1.在下列四个交通标志图中,是轴对称图形的是A .B .C .D .2.三条线段a =5,b =3,c 的值为奇数,由a ,b ,c 为边可组成三角形A .1个B .3个C .5个D .无数个 3.如图,已知在△ABC 中,∠ABC =70°,∠C =50°,BD 是角平分线,则∠BDC 的度数为A .95°B .100°C .110°D .120°4.如图,EA ∥DF ,AE =DF ,要使△AEC ≌△DFB ,只要A .AB =BC B .EC =BF C .∠A =∠D D .AB =CD 5.一副三角板如图叠放在一起,则图中∠α的度数为A .35°B .30°C .25°D .15°6.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是A .6B .7C .8D .10 7.下列条件中,不能判定两个直角三角形全等的是A .两直角边分别相等B .斜边和一条直角边分别相等C .两锐角分别相等D .一个锐角和斜边分别相等8.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是A .15B .30C .45D .609.在平面直角坐标系中,点P 1(,)2-关于x 轴对称的点的坐标是A .(1,2)B .(1-,2-)C .(1-,2)D .(2-,1)10.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确结论的个数是 A .1个 B .2个C .3个D .4个11.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .30°D .25°12.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD=AC ,∠A =50°,则∠ACB 的度数为 A .90° B .95°C .100° 13.已知:在△ABC 中,∠A =60°,如要判定△ABC 还需添加一个条件.现有下面三种说法:①如果添加条件“AB =AC ”,那么△ABC 是等边三角形; ②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB ,BC 上的高相等”,那么△ABC 是等边三角形. 其中正确的说法有 A .3个B .2个C .1个D .0个题图第8题图第10题图第1114.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是B.①②④C.①③④D.②③④二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.如图,要测量池塘两端A,B 的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC并延长AC到点D,使CD=CA,连接BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,这是因为△ABC≌△DEC,而这个判定全等的依据是.16.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D= .17.等腰三角形的一个内角为80°,则顶角的度数是.18.如图,在△ABC中,点D在BC上且AB=AD,AC=AE,∠BAD=∠CAE,DE=12,CD=4,则BD= .19. 如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是.三、解答题(本大题共7小题,共63分)20.(本题满分7分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.题图第20题图第14题图第19题图第15题图第16题图第1821.(本题满分7分)如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.22.(本题满分8分)如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线.求证:BE =BD .题图第21题图第2223.(本题满分8分)将一副直角三角板如图摆放,等腰直角三角板ABC 的斜边BC 与含30°角的直角三角板DBE 的直角边BD 长度相同,且斜边BC 与BE 在同一直线上,AC 与BD 交于点O ,连接CD .求证:△CDO 是等腰三角形.24.(本题满分10分)如图,在直角坐标平面内,已知点A (8,0),点B (3,0),点C 是点A 关于直线m (直线m 上各点的横坐标都为3)的对称点.(1)在图中标出点A ,B ,C 的位置,并求出点C 的坐标;(2)如果点P 在y 轴上,过点P 作直线l ∥x 轴,点A 关于直线l 的对称点是点D ,那么当△BCD 的面积等于15时,求点P 的坐标.题图第24题图第2325.(本题满分10分)如图,四边形ABCD 中,DC ∥AB ,BD ⊥AD ,∠A =45°,E 、F 分别是AB 、CD 上的点,且BE=DF,连接EF 交BD 于O .(1)求证:BO=DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =2时,求AE 的长. 26.(本题满分13分)【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分题图第26类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你在图③中画出△DEF,使△DEF和△ABC不全等.2017-2018学年度上学期期中教学质量监测八年级数学参考答案与评分标准一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1—5 CBADD 6—10 BCBAC 11—14BDAC二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.SAS 16.40° 17.80°或20° 18.8 19.75°.三、解答题(本大题共7小题,共63分)20.(本题满分7分)解:∵CD是AB边上高,∴∠BDF=90°,………………………………….1分∠ABE=∠BFC-∠BDF=113°-90°=23°,………………………………………3分∵BE为角平分线,∴∠CBF=∠ABE=23°,…………………………………………………………..5分∴∠BCF=180°-∠BFC-∠CBF=44°.………………………………………..7分21.(本题满分7分)解:CD∥AB,CD=AB,……………………………………………………………….2分理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,…………………………………………………………………………3分在△AEB和△CFD中,,∴△AEB≌△CFD (SAS)……5分∴CD=AB,∠C=∠B,…………………………………6分∴CD∥AB. (7)分22.(本题满分8分)证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°, (3)分∴∠BAE=∠BAD=30°,………………………………………………………5分在△ABE和△ABD中,,∴△ABE≌△ABD (SAS),…..7分∴BE=BD.…………………………………………………………………….8分23.(本题满分8分)证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD. (2)分∵∠DBE=30°∴∠BDC=∠BCD=75°,……………………….4分∵∠ACB=45°,∴∠DOC=30°+45°=75°.……………….…6分∴∠DOC=∠BDC,∴△CDO是等腰三角形.……………………8分24.(本题满分10分)解:(1)三个点位置标注正确……………………………………………………3分点C的坐标为(﹣2,0);…………………………………………….4分(2)如图,由题意知S△BCD=21BC•AD=15,BC=5,∴AD=6,则OP=3,………..8分∴点P的坐标为(0,3)或(0,﹣3).…………………………....10分25.(本题满分10分)解:(1)证明:∵ DC ∥AB , ∴∠OBE =∠ODF . ………………1分在△OBE 与△ODF 中, ∵∴△OBE ≌△ODF(AAS ). ………3分∴BO =DO . ………………………………4分 (2)解:∵EF ⊥AB ,DC ∥AB , ∴∠GEA=∠GFD =90°. ∵∠A =45°,∴∠G =∠A =45°. ……………………6分∴AE =GE …………………………………7分 ∵BD ⊥AD , ∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°. (8)分∴DG =DO∴OF =FG = 2 ……………………………………9分 由(1)可知,OE = OF =2, ∴GE =OE +OF +FG =6 ∴AE = GE =6 ………………………10分 26.(本题满分13分)(1)解:HL ;……………………………………………………………………..1分 (2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,…………………………………………………………..2分 ∵∠ABC =∠DEF ,且∠ABC 、∠DEF 都是钝角, ∴180°﹣∠ABC =180°﹣∠DEF ,即∠CBG =∠FEH ,…………………………………………………4分 在△CBG 和△FEH 中,,∴△CBG ≌△FEH (AAS ),∴CG =FH ,……………………………………………………….…6分在Rt △ACG 和Rt △DFH 中,⎩⎨⎧==FHCG DFAC ,∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D, (8)分在△ABC和△DEF中,,∴△ABC≌△DEF (AAS);………………………………………..10分(3)解:如图,△DEF和△ABC不全等;………………………13分。
成都市外国语学校2018-2019学年八年级上学期开学考试数学试题(考试时间:120分钟 满分:150分)A 卷(共100分)一、选择题(每小题3分,共30分)1、下列四个图案中,不是轴对称图案的是( )A B C D 2、 下列各式中,计算正确的是( ) A. b a a b an n 1110)2()5(++=-⋅- B. c b a c b b a b a 643222221)()4(=⋅-⋅-C. z y x xy z x xy 332236)()3(=⋅-⋅- D. 1311331)61)(2(-+-=-n n n n b a ab b a 3、若25)3(22+--x a x 是完全平方式,那么a 的值是( )A . -2,8 B. 2 C. 8 D. ±24、在一个不透明的盒子中,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A 、12个B 、16个C 、20个D 、30个 5、下列说法:①已知734=-y x ,若用x 的代数式表示y ,则437yx +=;②数轴上的点与有理数对一一对应;③由两个二元一次方程组成的方程组一定是二元一次方程组;④等腰三角形是对称图形,顶角的角平分线是它的对称轴;其中正确的说法个数是( )A 、1B 、2C 、3D 、06、解方程组2,78ax by cx y +=⎧⎨-=⎩时,一学生把c 看错而得到⎩⎨⎧=-=22y x ,而正解是⎩⎨⎧-==23y x ,则c b a 、、的值是( )A 、不能确定B 、254-===c b a ,,C 、b a 、不能确定,2-=cD 、274===c b a ,,7、小李骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b <a ),再前进c 千米,则他离起点的距离s 与时间t 的关系示意图是( )8、已知,如图AE =CF ,∠AFD =∠CEB ,那么添加下列一个条件后,仍无法判定CBE ADF ∆≅∆的是( )A. ∠A =∠CB. AD =CBC. BE =DFD. AD //BC9、如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =18,DE =3,AB =8,则AC 长是( )A .3B .4C .6D .510、已知:如图在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD =CE ;②BD ⊥CE ; ③∠ACE +∠DBC =45°;④BE =AC +AD 。
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。
广东省深圳市百合外国语学校八年级(上)期中数学试卷一.选择题(每题3分,共30分)1.家长会前,四个孩子分别向家长描述自己在班里的座位,家长能准确找到自己孩子座位的是()A.小明说他坐在第1排B.小白说他坐在第3列C.小清说她坐在第2排第5列D.小楚说他的座位靠窗2.下列函数是一次函数的是()A.y=2B.y=2x C.D.y=x2+23.如图,小手盖住的点的坐标可能是()A.(2,1)B.(﹣2,3)C.(﹣2,﹣1)D.(3,﹣2)4.在下列各式中,结果是无理数的是()A.B.C.D.5.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.7,14,15B.6,8,10C.5,12,13D.8,15,17 6.把△ABC各点的纵坐标都乘以﹣1,横坐标不变,符合上述要求的图是()A.B.C.D.7.下列说法正确的是()A.实数和数轴上的点是一一对应的B.实数可以分为有理数、零和无理数C.带根号的数都是无理数D.不带根号的数都是有理数8.按如图所示的程序计算,若开始输入的值为25,则最后输出的y值是()A.B.C.5D.±59.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是2、3、3、6,则最大正方形E的面积是()A.14B.34C.58D.7210.已知三角形的三边长分别为a、b、c,求其面积.对此问题,中外数学家曾经进行过深入研究.古希腊几何学家海伦(Heron,约公元50年),给出了求其面积的海伦公式:S=,其中p=.①我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式:S=.②若一个三角形的三边长依次为,,,请选用适当的公式求出这个三角形的面积为()A.B.C.D.二.填空题(每题3分,共15分)11.一个正方体木块的体积为125cm3,则它的棱长为cm.12.如图,以数轴的单位长线段为边作一个矩形,以数轴的原点为圆心,矩形对角线长度为半径画圆弧,交数轴负半轴的点A处,则点A表示的数是.13.小明想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,如表是小明测得的弹簧的长度y(cm)与所挂物体质量x (kg)的几组对应值.所挂物体质量x/kg012345弹簧长度y/cm151821242730请写出y与x的函数关系式为.(不需要考虑自变量x的取值范围)14.在平面直角坐标系中,正方形ABCD如图所示,点A的坐标是(﹣1,0),点D的坐标是(﹣2,4),则点C的坐标是.15.如图,四边形ABCD中,AD=4,BC=7,∠D=∠B=45°,连接AC,∠ACB+∠CAD =180°,则AB的长度为.三.解答题(共55分)16.计算:(1);(2);(3);(4)().17.根据表中的数据填空:代数式 结果 x 2x +11 3 1 11718.1876年,美国总统加菲尔德利用如图验证了勾股定理.(1)请用含a 、b 、c 的代数式通过两种不同的方法表示直角梯形的面积(不需要化简): 方法1: ; 方法2: .(2)利用“等面积法”,推导a 、b 、c 之间满足的数量关系,完成勾股定理的验证.19.在海洋上有一近似于四边形的岛屿,其平面如图①,小明据此画出该岛的一个数学模型(如图②四边形ABCD ),AC 是四边形岛屿上的一条小溪流,其中∠B =90°,AB =BC =5千米,CD =千米,AD =4千米.求四边形ABCD 的面积.(结果保留根号)20.如图,网格中每个小正方形的边长都是1,请按下列要求画图: (1)请在网格①中画出△ABC ,要求:,AC ⊥AB ,且AC =2AB .(画出一种即可)(2)图③是5个边长为1的小正方形,剪一剪,可以拼成一个正方形.请在图③上画出“剪”的痕迹,并在网格②中画出拼成后的正方形.21.综合与实践【问题情境】在平面直角坐标系中,有不重合的两点A(x1,y1)和点B(x2,y2),若x1=x2,则AB ∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|.【知识应用】(1)若点A(﹣1,1),B(2,1),则AB∥x轴,AB的长度为;【拓展延伸】我们规定:平面直角坐标系中,任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|.例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.【问题解决】(2)如图2,已知E(2,0),若F(﹣1,﹣1),则d(E,F)=;(3)如图2,已知E(2,0),G(1,t),若d(E,G)=3,则t的值为;(4)如图3,已知E(2,0),H(0,2),点P是△EOH的边上一点,若,求点P的坐标.22.如图,等腰△ABC中,AB=AC=5cm,BC=6cm,请探究下列问题:(1)求△ABC的面积;(2)若点P以每秒2cm的速度从点A出发,沿折线A﹣B﹣C方向运动,运动到点C时停止,设运动时间为t秒.①当点P在线段AB上运动时,线段CP的长度何时最短?求出此时t的值.②当t为何值时,△ACP为等腰三角形?(直接写出结果)。
2018-2019学年广东省深圳外国语学校高二(上)期末数学试卷(理科)1.(单选题,5分)命题“∃x∈R,2x+x2≤1”的否定是()A.∀x∈R,2x+x2>1B.∀x∈R,2x+x2≥1C.∃x∈R,2x+x2>1D.∃x∈R,2x+x2≥12.(单选题,5分)复数z=1+ 1−i1+i(是虚数单位)在复平面内对应的点落在()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,5分)已知函数f(x)的导函数f′(x)的图象如图所示,则函数f(x)在区间[a,b]上的极值点的个数为()A.2B.3C.4D.54.(单选题,5分)函数f(x)=e-x sinx的单调递增区间()(k∈Z)A. [2kπ−5π4,2kπ−π4]B. [2kπ−3π4,2kπ+π4]C. [2kπ−π4,2kπ+3π4]D. [2kπ+π4,2kπ+5π4]5.(单选题,5分)将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足BP⃗⃗⃗⃗⃗= 12CA⃗⃗⃗⃗⃗ + BD⃗⃗⃗⃗⃗⃗ ,则| BP⃗⃗⃗⃗⃗ |2的值为()A. 32B.2C. 10−√24 D. 946.(单选题,5分)若抛物线y2=ax的焦点与椭圆x26+y22=1的左焦点重合,则a的值为()A.-8B.-16C.-4D.47.(单选题,5分)命题“∀x∈(1,+∞),都有x2-lnx>ax成立”为真命题,则实数a的取值范围是()A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)8.(单选题,5分)已知F1、F2是椭圆C:x2a2+y2b2=1的左右焦点,P是C上一点,3| PF1⃗⃗⃗⃗⃗⃗⃗ |•|PF2⃗⃗⃗⃗⃗⃗⃗ |=4b2,则C的离心率的取值范围是()A. (0,12]B. (0,√32]C. [√32,1)D. [12,1)9.(单选题,5分)正四棱锥P-ABCD的底面积为3,体积为√22,E为侧棱PC的中点,则PA 与BE所成的角为()A. π6B. π3C. π4D. π210.(单选题,5分)已知正四面体A-BCD的棱长为2,点E是AD的中点,则下面四个命题中正确的是()A.∀F∈BC,EF⊥ADB.∃F∈BC,EF⊥ACC.∀F∈BC,EF≥ √3D.∃F∈BC,EF || AC11.(单选题,5分)已知函数f(x)=x3+ax2+x在区间(-1,1)内有且仅有一个极值并且为极小值,则实数a的取值范围是()A.(2,+∞)B.[2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)12.(单选题,5分)把正整数按一定的规则排成了如图所示的三角形数表,设a ij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,若a ij=2015,则i与j的和为()A.104B.102C.80D.8113.(填空题,5分)计算定积分∫1(√1−x2−1)dx =___ .14.(填空题,5分)曲线y=e-2x+1在点(0,2)处的切线方程是___ .15.(填空题,5分)已知双曲线 C:x2a2 - y2b2=1(a>0,b>0)的离心率为√3,A B 为左、右顶点,点 P 为双曲线 C 在第一象限的任意一点,点 O 为坐标原点,若直线PA,PB,PO 的斜率分别为k1,k2,k3,记m=k1k2k3,则 m 的取值范围为___ .16.(填空题,5分)已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为274,则a的值为___ .17.(问答题,10分)设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x−3x−2≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.18.(问答题,12分)已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.19.(问答题,12分)如图1所示,直角梯形ABCD中,∠BCD=90°,AD || BC,AD=6,DC=BC=3.过B作BE⊥AD于E,P是线段DE上的一个动点.将△ABE沿BE向上折起,使平面AEB⊥平面BCDE.连结PA,PC,AC(如图2).(Ⅰ)取线段AC的中点Q,问:是否存在点P,使得PQ || 平面AEB?若存在,求出PD的长;不存在,说明理由;(Ⅱ)当EP= 23ED时,求平面AEB和平面APC所成的锐二面角的余弦值.20.(问答题,12分)已知函数f(x)=x-ln(x+a)(a是常数).(1)求函数f(x)的单调区间;(2)当y=f(x)在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[ 12,2]上恰有两个不相等的实数根,求实数b的取值范围;(3)求证:当n≥2,n∈N*时,(1+ 122)(1+ 132)…(1+ 1n2)<e.21.(问答题,12分)已知A,B是椭圆C:x2a2 + y2b2=1(a>b>0)的左,右顶点,B(2,0),过椭圆C的右焦点F的直线交于其于点M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列.(Ⅰ)求椭圆C的方程;(Ⅱ)若记△AMB,△ANB的面积分别为S1,S2求S1S2的取值范围.22.(问答题,12分)已知函数f(x)=x+a2x,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a 的取值范围.。
2021-2022学年广东省深圳市福田外国语学校八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.16的平方根是()A. ±8B. 8C. 4D. ±42.下列实数中,无理数是()B. √2C. √9D. −|−5|A. −323.如图,小石同学在正方形网格中确定点A的坐标为(−1,1),点B的坐标为(2,0),则点C的坐标为()A. (1,−2)B. (−2,1)C. (−1,−2)D. (1,−1)4.下列二次根式中属于最简二次根式的是()B. √11C. √24D. √36A. √125.下列计算中,正确的是()3=−2A. √4=±2B. −√25=5C. √(−7)2=−7D. √−86.已知Rt△ABC的两直角边分别是6cm,8cm,则Rt△ABC的斜边上的高是()A. 4.8cmB. 2.4cmC. 48cmD. 10cm7.对于一次函数y=−2x+4,下列结论正确的是()A. 函数的图象与y轴的交点坐标是(4,0)B. 函数的图象不经过第三象限C. 函数的图象向上平移4个单位长度得y=−2x的图象D. 若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y28.如图,圆柱体的底面圆周长为8cm,高AB为3cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则爬行的最短路程为()A. 4cmB. 5cmC. √73cmD. √7cm9.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是()A. B.C. D.10.如图,已知正方形ABCD的边长为6,E为CD边上一点(点E不与端点C,D重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF,对角线BD与AG、AE分别交于P、Q两点.以下各结论:①∠EAG=45°;②线段CF的最小值为6√2−6;③BP2+DQ2=PQ2;④若DE=2,则G为BC的中点.正确的结论有()个.A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,共15.0分)11.通过估算,比较大小:√5−12______12.12.点P(3,−5)关于y轴对称的点的坐标为______ .13.已知一次函数y=kx+b的图象与x轴的交点坐标是(−1,0),则关于x的一元一次方程kx+b=0的解是______.14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为______.15.在平面直角坐标系xOy中,直线y=−x+1与直线y=−2x交于点A,点B(m,0)是x轴上的一个动点,过点B作y轴的平行线分别交直线y=−x+1、直线y=−2x于C、D两点,若S△ACD=5,则m的值为______.三、解答题(本大题共7小题,共55.0分)16.计算:(1)√18−√32+2√8;(2)√15+√60√3−√45;(3)√54×1√6+√−83+|1−√2|.17.如图,在直角坐标系中,△ABC的位置如图所示,请回答下列问题:(1)请直接写出A、B、C三点的坐标______、______、______.(2)画出△ABC关于x轴的对称图形△A1B1C1.(3)△ABC的面积为______.(4)已知P为x轴上一动点,则AP+BP的最小值为______.18.如右图,一块四边形花圃ABCD中,已知∠B=90°,AB=4m,BC=3m,CD=12m,AD=13m.(1)连接AC,判断△ACD的形状,并说明理由;(2)求四边形花圃ABCD的面积.19.“龟兔赛跑”的故事同学们都非常热悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中______(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是______米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.20.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)经过点(−1,4)与点(0,2),与直线y=−12x−1相交于点P.直线y=−12x−1和直线y=kx+b(k≠0)分别与x轴交于点A,B.(1)求这个一次函数的解析式;(2)求交点P的坐标;(3)点Q是y轴负半轴上的一点,若S△PBQ=4,则点Q的坐标为______.21.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,点D在线段BC上,∠DAE=∠BAC=90°,连接CE,请写出:①BD和CE之间的位置和数量关系为______、______;②BD、CD和AE之间的数量关系为______.(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,AC=√7,求线段BE的长;(3)如图3,点D是等边△ABC外一点,∠ADC=75°,若CD=3,AD=√2,则BD的长为______,请简要写出解答过程.x−5与x轴、y轴分别交于B、C两点,点A为y轴正半轴上一点,22.如图1,直线y=12且S△ABC=75.(1)请直接写出点B、C的坐标及直线AB的解析式:______、______、______;(2)如图2,点P为线段OB上一点,若∠BCP=45°,请写出点P的坐标:______,并简要写出解答过程;(3)如图3,点D是AB的中点,M是OA上一点,连接DM,过点D作DN⊥DM交OB于点N,连接BM,若∠OBM=2∠ADM,请写出点M的坐标,并简要写出解答过程.答案和解析1.【答案】D【解析】解:∵(±4)2=16,∴16的平方根是±4.故选:D.根据平方根的概念解答即可.此题考查的是平方根的概念,掌握其概念是解决此题的关键.2.【答案】B,√9|−5|是有理数,【解析】解:−32√2是无理数,故选:B.根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.3.【答案】A【解析】解:如图所示:点C的坐标为(1,−2).故选:A.直接利用已知点坐标确定平面直角坐标系,进而得出答案.此题主要考查了点的坐标,正确得出原点位置是解题的关键.4.【答案】B【解析】解:A、√12=√22,被开方数含分母,不是最简二次根式,不符合题意;B、√11是最简二次根式,符合题意;C、√24=2√6,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;D、√36=6,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;故选:B.根据最简二次根式的概念判断即可.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式5.【答案】D【解析】解:A.√4=2,错误,不符合题意;B.−√25=−5,错误,不符合题意;C.√(−7)2=√49=7,错误,不符合题意;D.√−83=−2,正确,符合题意.故选:D.根据二次根式的性质逐项分析可得答案.考查了二次根式的性质与化简,属于基础题计算题,难度不大,熟记计算法则是解题关键.6.【答案】A【解析】解:设Rt△ABC斜边上的高为ℎcm,∵Rt△ABC的两直角边分别是6cm,8cm,∴斜边长=√62+82=10(cm),∵12×10×ℎ=12×6×8,∴ℎ=4.8(cm),即Rt△ABC的斜边上的高是4.8cm,故选:A.由勾股定理求出斜边长=10cm,再由三角形面积即可求解.本题考查了勾股定理以及三角形面积等知识;由勾股定理求出斜边的长是解题的关键.7.【答案】B【解析】解:A、令y=−2x+4中y=0,则x=2,∴一次函数的图象与x轴的交点坐标是(2,0),故本选项不符合题意;B、∵k=−2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,即函数的图象不经过第三象限,故本选项符合题意;C、根据平移的规律,函数的图象向上平移4个单位长度得到的函数解析式为y=−2x+ 4+4,即y=−2x+8,故本选项不符合题意;D、∵k=−2<0,∴一次函数中y随x的增大而减小,∴若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1>y2,故本选项不符合题意.故选:B.代入y=0求出与之对应的x值,即可得出A不正确;根据一次函数的系数结合一次函数的性质,即可得知B选项正确、D选项不正确,根据平移的规律求得平移后的解析式,即可判断C不正确,此题得解.本题考查了一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.8.【答案】B【解析】解:如图所示,圆柱体的侧面展开图为:∵底面圆周长为8cm,∴AD=BC=4cm,又∵AB=3cm,在Rt△ABC中,AC=√AB2+BC2=√32+42=5(cm),∴蚂蚁爬行的最短路程为5cm,故选:B.先把圆柱体沿AB剪开,则AD的长为圆柱体的底面圆周长的一半,在Rt△ACD中,利用勾股定理即可求出AC的长.本题考查了平面展开---最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.【答案】B【解析】解:A、一条直线反映k>0,b>0,一条直线反映k>0,b<0,故本选项错误;B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.故选:B.根据k和b的符号判断即可得出答案.此题考查了一次函数图象与k和b符号的关系,关键是掌握当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.10.【答案】D【解析】解:由折叠知,∠FAE=∠DAE,AD=AF,∠AFE=∠ADE=90°,∴∠AFG=90°,∵四边形ABCD是正方形,∴∠ABG=∠ADE=90°,AB=AD,∴∠AFG=∠ABG=90°,AB=AF,在Rt△ABG和Rt△AFG中,{AB=AFAG=AG,∴Rt△ABG≌Rt△AFG(HL),故①正确,符合题意;由折叠可知,AF的长始终为6,∴点F在以点A为圆心,半径长为6的圆上,∴当点A、F、C在同一条直线上时,CF长度最小,∵正方形ABCD的边为6,∴AC=6√2,∵AF=6,=AC−AF=6√2−6,故②正确,符合题意;∴CF最小值连接PF、QF,由对称性得,QF=QD,∠QDE=∠QFE=45°,∵△ABG≌△AFG,∴BG=BF,∠PGB=∠PGF,∵PG=PG,∴△PGB≌△PGF(SAS),∴∠PFG=∠PBG=45°,BP=PF,∴∠PFG+∠QFE=45°+45°=90°,∴∠PFQ=90°,在Rt△PFQ中,PF2+QF2=PQ2,∴BP2+DQ2=PQ2,故③正确,符合题意;设BG=x,则FG=x,CG=6−x,∵ED=2,∴EF=2,EC=4,∴EG=FE+FG=2+x,在Rt△ECG中,EC2+CG2=EG2,∴42+(6−x)2=(2+x)2,解得:x=3,∴BG=3,∴点G为BC的中点,故④正确,符合题意.∴正确的选项有①②③④,故选:D.由折叠得到∠FAE=∠DAE,AD=AF=AB,∠AFG=∠AFE=∠ADE=∠ABG=90°,然后利用HL定理得到△ABG≌△AFG,从而得到∠BAG=∠FAG,结合∠BAD=90°即可判定①;由折叠得到AF始终=AD=6,得到点F的运动轨迹为以点A为圆心,半径长为6的圆上,然后结合两点之间线段最短求得CF的最小值,从而判定②;连接PF、QF,结合对称性得到∠PFG=∠PBG=∠QFE=∠QDE=45°,BP=PF,FQ=DQ,然后得到∠PFQ=90°,再利用勾股定理判定③;设BG=FG=x,得到EG、CG,然后利用勾股定理求得x的值,进而得到BG的长度判定④.本题考查了折叠的性质、正方形的性质、全等三角形的判定与性质、勾股定理,解题的关键是利用折叠的性质得到相关边长与角度相等,为构造全等三角形奠定基础.11.【答案】>【解析】解:∵4<5<9,∴√4<√5<√9,即2<√5<3.∴2−1<√5−1<3−1,即1<√5−1<2.∴√5−12>12.故答案为:>.由4<5<9,得2<√5<3,故1<√5−1<2,那么√5−12>12.本题主要考查算术平方根的性质以及不等式的性质,熟练掌握算术平方根的性质以及不等式性质是解题关键.12.【答案】(−3,−5)【解析】解:点P(3,−5)关于y轴对称的点的坐标为(−3,−5).故答案为:(−3,−5).根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【答案】x=−1【解析】解:∵一次函数y=kx+b的图象与x轴的交点坐标是(−1,0),∴关于x的一元一次方程kx+b=0的解为x=−1.故答案为x=−1.利用自变量x=−1时对应的函数值为0可确定程kx+b=0的解.本题考查了一次函数与一元一次方程:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.14.【答案】3【解析】解:由题意可知:中间小正方形的边长为:a −b ,∵每一个直角三角形的面积为:12ab =12×8=4,∴4×12ab +(a −b)2=25, ∴(a −b)2=25−16=9,∴a −b =3,故答案是:3.由题意可知:中间小正方形的边长为:a −b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.15.【答案】−1±√10【解析】解:联立直线y =−x +1与直线y =−2x ,解得{x =−1y =2, ∴A(−1,2),∵点B(m,0),过点B 作y 轴的平行线分别交直线y =−x +1、直线y =−2x 于C 、D 两点, ∴C(m,−m +1),D(m,−2m),∴|CD|=|−2m +m −1|=|−m −1|,∵点A 到BD 的距离为|m +1|,S △ACD =5,∴12×|m +1|×|−m −1|=5,即(m +1)2=10,解得m =−1±√10,故答案为:−1±√10.联立直线y =−x +1与直线y =−2x 求出A 点的坐标,根据B(m,0),求出C 点和D 点的坐标,得出CD 的长度,再根据S △ACD =5,得出关于m 的方程,求出m 的值即可.本题主要考查一次函数的性质,熟练掌握一次函数的性质是解题的关键.16.【答案】解:(1)原式=3√2−4√2+4√2=3√2;(2)原式=√5+√20−√45=√5+2√5−3√5=0;(3)原式=3+(−2)+√2−1=√2.【解析】(1)先分别化简,再合并即可;(2)先计算二次根式除法,再计算减法;(3)先根据二次根式乘法法则、立方根和绝对值进行化简,再合并即可.本题考查二次根式的计算,熟练掌握运算法则是解题关键.17.【答案】(1,4)(4,2)(3,5) 3.53√5【解析】解:(1)A、B、C三点的坐标为(1,4),(4,2),(3,5);故答案为:(1,4),(4,2),(3,5);(2)如图所示:(3)△ABC的面积=3×3−12×2×3−12×1×3−12×1×2=3.5,故答案为:3.5;(4)点P即为所求,AP+BP的最小值=AB1=√32+62=3√5,故答案为:3√5.(1)根据图形得出坐标即可;(2)依据轴对称的性质即可得到点A关于x轴对称的点的坐标;(3)根据割补法进行计算即可得到△ABC的面积;(4)作点B关于x轴的对称点B1,连接AB1,依据两点之间,线段最短,可得与x轴的交点P即为所求.本题主要考查了利用轴对称变换作图,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.18.【答案】解:(1)连接AC,因为∠B=90°,所以直角△ABC中,由勾股定理得:AC2=AB2+BC2,AC2=42+32,AC2=25,∴AC=5m,又CD=12m,AD=13m,所以△ACD中,AC2+CD2=AD2,所以△ACD是直角三角形;(2)S四边形ABCD =12AC⋅CD+12AB⋅BCS四边形ABCD =12×5×12+12×4×3=30+6=36(m2),答:该花圃的面积为36m2.【解析】(1)连接AC,则△ABC为直角三角形,AC为斜边,解直角△ABC求AC,根据AC,AD,CD判定△ACD为直角三角形;(2)根据直角三角形面积计算可以计算该花圃的面积.本题考查了勾股定理在实际生活中的运用,考查了直角三角形面积计算,本题中正确的根据勾股定理的逆定理判定△ACD是直角三角形是解题的关键.19.【答案】(1)兔子,1500.(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(分钟),(3)700÷30=703所以乌龟用了70分钟追上了正在睡觉的兔子.3(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5−2−2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.【解析】解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)见答案.(3)见答案.(4)见答案.【分析】(1)利用乌龟始终运动,中间没有停留,而兔子中间有休息的时刻,即可得出折线OABC 的意义和全程的距离;(2)根据图象中点A、D实际意义可得速度;(3)根据乌龟的速度及兔子睡觉时的路程即可得;(4)利用兔子的速度,求出兔子走完全程的时间,再求解即可.本题主要考查一次函数的应用,结合题意弄清函数图象中每个点的实际意义是解题的关键.20.【答案】(0,−23)【解析】解:(1)将(−1,4)与(0,2)代入y =kx +b 得{4=−k +b 2=b, 解得{k =−2b =2, ∴y =−2x +2.(2)联立两直线方程得{y =−2x +2y =−12x −1,解得{x =2y =−2, ∴点P 坐标为(2,−2).(3)作PF ⊥x 轴于点F ,把y =0代入y =−2x +2得x =1, ∴点B 坐标为(1,0),∴OB =OF =1,又∵PF =2,OF =2,则S △PBQ =S 梯形OQPF −S △BOQ −S △BPF =12(PF +OQ)⋅OF −12OB ⋅OQ −12FB ⋅PF =32OQ +3=4,解得OQ =23,∵点Q 在y 轴负半轴,∴点Q 坐标为(0,−23).故答案为:(0,−23).(1)用待定系数法求函数解析式.(2)联立两直线方程求解.(3)作PF ⊥x 轴于点F ,先由直线解析式求出点B 坐标,再由S △PBQ =S 梯形OQPF −S △BOQ −S △BPF 求解.本题考查一次函数与图形的结合应用,解题关键是掌握一次函数与方程的关系,掌握坐标系内求图形面积的方法.21.【答案】BD⊥CE BD=CE BD2+CD2=2AE2√17【解析】解:(1)①BD和CE之间的位置和数量关系为:BD⊥CE,BD=CE,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC=90°,∴∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∴BD⊥CE,故答案为:BD⊥CE,BD=CE;②由①得:BD=CE,∠BCE=90°,∴CE2+CD2=DE2,∴BD2+CD2=DE2,又∵AD=AE,∠DAE=90°,∴△ADE是等腰直角三角形,∴DE=√2AE,∴BD2+CD2=2AE2,故答案为:BD2+CD2=2AE2;(2)连接BD,如图2所示:∵AE=AD=4,∠DAE=60°,∴△AED是等边三角形,∴∠DEA=∠ADE=60°,∵CE⊥AD,∴∠AEF=12∠DEA=30°,AF=12AD=2,∵∠DAE=∠BAC,∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS),∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=∠ADE+∠BDA=90°,∵AE=4,AF=2,AC=√7,∠EFA=∠AFC=90°,∴EF=√AE2−AF2=√42−22=2√3,CF=√AC2−AF2=√(√7)2−22=√3,∴BD=EC=EF+CF=3√3,∴BE=√DE2+BD2=√42+(3√3)2=√43;(3)以AD为边向上作等边△ADE,连接CE,过点E作EH⊥CD交CD延长线于H,如图3所示:∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE=DE=√2,∠BAC=∠DAE=∠ADE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE,∵∠EDH=180°−∠ADE−∠ADC=180°−60°−75°=45°,∴△DHE是等腰直角三角形,∴EH=DH=√2DE=1,2∴CH=CD+DH=3+1=4,在Rt△CHE中,由勾股定理得:CE=√EH2+CH2=√12+42=√17,∴BD=√17,故答案为:√17.(1)①证△BAD≌△CAE(SAS),得BD=CE,∠ABC=∠ACE=45°,则∠BCE=∠ACB+∠ACE=90°,得出BD⊥CE即可;②由①得BD=CE,∠BCE=90°,再由勾股定理得CE2+CD2=DE2,则BD2+CD2= DE2,然后由等腰直角三角形的性质得DE=√2AE,即可得出结论;(2)连接BD,证△AED是等边三角形,得∠DEA=∠ADE=60°,再证△EAC≌△DAB(SAS),得∠BDA=∠AEC=30°,EC=BD,则∠EDB=90°,然后由勾股定理得EF=2√3,CF=√3,则BD=EC√3,最后由勾股定理即可求解;(3)以AD为边向上作等边△ADE,连接CE,过点E作EH⊥CD交CD延长线于H,证△BAD≌△CAE(SAS),得BD=CE,再证△DHE是等腰直角三角形,得EH=DH=1,则CH=CD+DH=4,然后由勾股定理得CE=√17,即可求解.本题是三角形综合题目,考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、勾股定理等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质和等边三角形的判定与性质,证明△BAD≌△CAE是解题的关键,属于中考常考题型.,0)22.【答案】(10,0)(0,−5)y=−x+10(103【解析】解:(1)当y=0时,1x−5=0,2∴x=10,∴B(10,0),当x=0时,y=−5,∴C(0,−5),AC⋅OB=75,∵12×10⋅AC=75,∴12∴AC=15,∴OA=AC−OC=10,∴A(0,10),设直线AB的解析式是:y=kx+b,∴{b=1010k+b=0,∴{b=10k=−1,∴y=−x+10,故答案是(10,0),(0.−5),y=−x+10;(2)如图2,作∠CPQ=90°,交CB于Q,作QD⊥OB于D,可得△POC≌△QDP(AAS),∴PD=OC=5,QD=OP,设QD=OP=a,∴OD=5+a,BD=OB−OD=10−a,∵DQ//OC,∴△BDQ∽△BOC,∴BDOB =DQOC,∴10−a10=a5,∴a=103,∴P(103,0),故答案是(103,0);(3)如图3,连接OD,MN,在射线OB上截取EO=ON,∵MO⊥OB,∴∠ME=MN,∴∠EMN=2∠OMN,∠MEN=∠MNE,∵DN⊥DM,∴∠MDN=∠MON=90°,∴点M、O、N、D共圆,∴∠OMN=∠ODN,在Rt△AOB中,OA=OB,点D是AB的中点,∴∠OAD=∠DON=45°,OD=AD,∠ADO=90°,∵∠MDN=90°,∴∠ADO−∠MDO=∠MDN−∠MDO,∴∠ODN=∠ADM,∴△ADM≌△ODN(ASA),∴AM=ON,∵∠OBM=2∠ADM,∴∠OBM=∠EMN,∴∠BEM=∠BME,∴BM=BE,设OM=m,∴OE=ON=AM=10−m,∴BE=OE+OB=10−m+10=20−m,在Rt△BOM中,BM2=OB2+OM2=100+m2,∴100+m2=(20−m)2,∴m=152,∴M(0,15 2 ).(1)令y=0,x=0,求得B、C两点坐标,设直线AB的解析式是y=kx+b,将A、B两点坐标代入即可;(2)作∠CPQ=90°,交CB于Q,作QD⊥OB于D,由△POC≌△QDP得PD=OC=5,QD= OP,再根据△BDQ∽△BOC求得P点坐标;(3)连接OD,MN,在射线OB上截取EO=ON,可推得△ADM≌△ODN,从而AM=ON=OE,根据∠EMN=2∠MNO=2∠ODN=2∠ADM,从而得出∠EMN=∠OBM,从而推出BM=BE,进而列出方程,求得M点坐标.本题考查了一次函数及其图象性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟悉“一线三等角”模型及作辅助线构造全等三角形和等腰三角形.。
深圳外国语学校2018-2019第一学期阶段测试
初二数学试卷
一、选择题(每小题3分,共36分)
1.如果一次函数y kx b =+的图象经过一、二、三象限,那么,k b 应满足的条件是( )
A .0k >且0b >
B .0k <且0b <
C .0k >且 0b <
D .0k <且0b >
2.下列运算中,错误的有()
5112
4±2==-1194520+= A .1个 B .2个 C .3个
D.4个
3 A .
4 B .4- C .4± D .2±
4.已知直线483
y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的函数解析式是( )
A .182y x =-+
B .183y x =-+
C .132y x =-+
D .133
y x =-+
5.函数:①2y x =-,②231y x =-+,③123
y x =-,其中一次函数的个数有( ) A .0个 B .1个 C .2个 D .3个 6.已知方程组235321x y z x y z ++=⎧⎨--=⎩
,那么代数式:8x y z --的值是() A .6 B .7 C .8 D .9
7.已知4360270x y z x y z --=⎧⎨+-=⎩,则x y z x y z -+++=() A .31 B .32 C .1 D.3
4
8. 已知正比例函数(21)y m x =-的图象上两点A 11(,)x y ,B 22(,)x y ,当12x x <时,有12y y >,那么m 的取值范围是() A. 12m < B. 12m > C. 2m < D. 0m >
9.当0,0a b <>时,函数y ax b =+与y bx a =+在同一坐标系中的图象大致 是()
A. B.C. C. D. D.
10.下列实数中,1,227,3.141520.23 ,4
π,0.2727727772…(两个2之间一次多一个7),其中无理数的个数是( )
A .2
B .3
C .4
D .5
11.对任意非零数m ,直线25y mx m =+-都过一定点,则定点坐标是( )
A .()0,2
B .(1,2)
C .(5,2)
D .(2,2)-
12.已知,4412x y x =+-+则代数式:y
x 21+的值为() A .1.5 B .2 C .2.5 D .3
二、填空题(每小题3分,共12分)
13.a b =+,其中a 是整数,10<<b ,则(4)a b -=___________
14.已知一次函数的图象经过点(3,0)P -,且与两坐标轴截得的三角形面积为4,则此一次函数的解析式为
15.已知12a <<,则=--22)2(a a
16. 已知1a <,化简:(a -=
三、解答题(共52分)
17.(4分)计算题:0111(3.14)()2
π-+---. 18.(8分)解方程组:
(1)211154x y y x +=⎧⎨=-⎩ (2)2330%16%2%
x y x y ⎧=⎪⎨⎪-=⎩ 19.(6分)在直角坐标系中,有四个点A (8,3)-,B (4,5)-,C (0,)n ,D (,0)m ,当四边形ABCD 的周长最短时,求
n
m 的值
20. (6分)如右图,两直线1:21l y kx b =-+和2:(1)1l y k x b =-+-交于x 轴上
一点A ,与y 轴分别交于点B 、C ,若A 的横坐标为2,
(1)求这两条直线的解析式;
(2)求△ABC 的面积.
21.(8分)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),
点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12
y x m =-+交折线OAB 于点E .
(1)请写出m 的取值范围 ;
(2)记△ODE 的面积为S ,求S 与m 的函数关系式.
22.(8分)甲、乙两人从学校出发,沿相同的线路跑向公园.甲先跑一段路程
后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:
(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;
(2)乙最早出发时跑步的速度为米/秒,
乙在途中等候甲的时间为秒;
(3)乙出发秒后与甲第一次相遇.
23.(12分)如图:一次函数y=x轴、y轴相交于点A、B,以
线段AB为直角边在第一象限内作Rt△ABC,且∠ABC=30°
(1)求△ABC的面积
(2)如果在第二象限内有一点P(m,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值
(3)在坐标轴上是否存在点Q,使△QAB为等腰三角形,若存在,写出点Q 所有可能的坐标,若不存在,说明理由。
参考答案:
一选择题
A.D.D.C.C.
B. A.A.B.B.
C.C.
二填空题
13)9; 14)8893y x =+或8893
y x =--; 15)22a -; 16))1(3a --
三解答题 17. 33 18.1)x=2;y=7 2)13x =;12y = 19.23
- 20. ( 1 )直线l 1的解析式为312y x =-,直线l 2的解析式为112
y x =-+; (2)△ABC 的面积=1(13)242
⨯+⨯=.
21. (1)1 2.5m <<.
(2)S 与m 的函数关系式为S=
.
22. (1)甲共跑了 900 米,甲的速度为 1.5 米/秒;
(2)乙跑步的速度是2.5米/秒,乙在途中等候甲的时间是100秒;
(3)乙出发150秒时第一次与甲相遇.
23. (1)S=332 (2)S=m +56m =- (3) Q(0,23-) Q(0, 23+) Q(-1, 0)
33)。