第三章 信源熵(3)
- 格式:ppt
- 大小:211.00 KB
- 文档页数:28
2006-11-61信息理论基础第8讲北京航空航天大学201教研室陈杰2006-11-62当前状态u l =(a l1, a l2, a l3, …, a lm )当前输出X l =a l1.信源状态S={S 1, S 2 ,…S J }, J =q m⎧⎪⎪⎨⎪⎪⎩()12|m q i j S S S p S S ⎡⎤⎢⎥⎢⎥⎣⎦()112|m mi i i i p a a a a + 状态转移概率p (S i |S j )由条件符号概率确定u lu l+1X l =a l新状态u l+1=(a l2, a l3, …, a lm ,a l )2.状态空间2006-11-633.极限熵当时间足够长时,遍历的m 阶马尔可夫信源可视为平稳信源()121lim |N N N H H X X X X ∞−→∞= ()112|m m H X X X X += 1m H +=()()|jj j s p S H X S =∑H (X|S j )是信源处于状态S j 时的条件熵()()()||log |jj i j i j S H X S p a S p a S =∑()()|log |ji j i j S p S S p S S =∑2006-11-64例3.7一阶马尔可夫信源的状态如例题图所示,信源X 的符号集为{0,1,2}。
(1)求平稳后的信源的概率分布;(2)求信源熵H ∞(3)求当p =0或p =1时信源的熵12pppppp2006-11-65解(1)状态转移矩阵令信源的平稳分布为则0 00 p p p p p p ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P []012 W W W =W 0011120121W pW pW W pW pW W W W =+⎧⎪=+⎨⎪++=⎩2006-11-66整理得,平稳后信源的概率分布(2)求信源熵H ∞。
根据平稳分布01213W W W ===()()jj k j s H p S H a S ∞=∑1113[lo g lo g ]3p p p p =×+11log logp p p p=+2006-11-67(3)p =0时p =1时∞→→=+=−=0311lim [loglog]lim ()log 0p p H p p ppp e∞→→=+=−=0311lim [loglog]lim ()log 0P P H p p ppp e3.5.3 马尔可夫信源解释:•信源熵表示的是信源的平均不确定性。
3-1 设有一离散无记忆信源,其概率空间为12()0.60.4X x x P x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,信源发出符号通过一干扰信道,接收符号为12{,}Y y y =,信道传递矩阵为51661344P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求: (1) 信源X 中事件1x 和2x 分别含有的自信息量;(2) 收到消息j y (j =1,2)后,获得的关于i x (i =1,2)的信息量; (3) 信源X 和信宿Y 的信息熵;(4) 信道疑义度(/)H X Y 和噪声熵(/)H Y X ; (5) 接收到消息Y 后获得的平均互信息量(;)I X Y 。
解:(1)12()0.737,() 1.322I x bit I x bit ==(2)11(;)0.474I x y bit =,12(;) 1.263I x y bit =-,21(;) 1.263I x y bit =-,22(;)0.907I x y bit =(3)()(0.6,0.4)0.971/H X H bit symbol ==()(0.6,0.4)0.971/H Y H bit symbol ==(4)()(0.5,0.1,0.1,0.3) 1.685/H XY H bit symbol ==(/) 1.6850.9710.714/H X Y bit symbol =-= (/)0.714/H Y X bit symbol =(5)(;)0.9710.7140.257/I X Y bit symbol =-=3-2 设有扰离散信道的输入端是以等概率出现的A 、B 、C 、D 四个字母。
该信道的正确传输概率为0.5,错误传输概率平均分布在其他三个字母上。
验证在该信道上每个字母传输的平均信息量为0.21比特。
证明:信道传输矩阵为:11112666111162661111662611116662P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,信源信宿概率分布为:1111()(){,,,}4444P X P Y ==, H(Y/X)=1.79(bit/符号),I(X;Y)=H(Y)- H(Y/X)=2-1.79=0.21(bit/符号)3-3 已知信源X 包含两种消息:12,x x ,且12()() 1/2P x P x ==,信道是有扰的,信宿收到的消息集合Y 包含12,y y 。