第三章 信源熵(3)
- 格式:ppt
- 大小:211.00 KB
- 文档页数:28
2006-11-61信息理论基础第8讲北京航空航天大学201教研室陈杰2006-11-62当前状态u l =(a l1, a l2, a l3, …, a lm )当前输出X l =a l1.信源状态S={S 1, S 2 ,…S J }, J =q m⎧⎪⎪⎨⎪⎪⎩()12|m q i j S S S p S S ⎡⎤⎢⎥⎢⎥⎣⎦()112|m mi i i i p a a a a + 状态转移概率p (S i |S j )由条件符号概率确定u lu l+1X l =a l新状态u l+1=(a l2, a l3, …, a lm ,a l )2.状态空间2006-11-633.极限熵当时间足够长时,遍历的m 阶马尔可夫信源可视为平稳信源()121lim |N N N H H X X X X ∞−→∞= ()112|m m H X X X X += 1m H +=()()|jj j s p S H X S =∑H (X|S j )是信源处于状态S j 时的条件熵()()()||log |jj i j i j S H X S p a S p a S =∑()()|log |ji j i j S p S S p S S =∑2006-11-64例3.7一阶马尔可夫信源的状态如例题图所示,信源X 的符号集为{0,1,2}。
(1)求平稳后的信源的概率分布;(2)求信源熵H ∞(3)求当p =0或p =1时信源的熵12pppppp2006-11-65解(1)状态转移矩阵令信源的平稳分布为则0 00 p p p p p p ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P []012 W W W =W 0011120121W pW pW W pW pW W W W =+⎧⎪=+⎨⎪++=⎩2006-11-66整理得,平稳后信源的概率分布(2)求信源熵H ∞。
根据平稳分布01213W W W ===()()jj k j s H p S H a S ∞=∑1113[lo g lo g ]3p p p p =×+11log logp p p p=+2006-11-67(3)p =0时p =1时∞→→=+=−=0311lim [loglog]lim ()log 0p p H p p ppp e∞→→=+=−=0311lim [loglog]lim ()log 0P P H p p ppp e3.5.3 马尔可夫信源解释:•信源熵表示的是信源的平均不确定性。