极化
- 格式:docx
- 大小:12.17 KB
- 文档页数:2
电磁波的极化和偏振电磁波是一种在空间中传播的波动现象,它由电场和磁场的相互作用所构成。
在电磁波的传播过程中,我们常常会遇到两个重要的概念,即极化和偏振。
一、极化的概念极化是指电磁波中电场振动方向的限定。
在自然界中,电磁波可以存在多种不同的极化方式,包括线性极化、圆极化和椭圆极化等。
极化方式的不同,决定了电磁波在空间中的传播性质。
1. 线性极化线性极化是指电磁波电场振动方向沿着一条直线传播的方式。
在这种情况下,电磁波的电场矢量在时间上的变化是简谐的,沿着某个特定的方向振动。
常见的线性极化方式包括水平极化和垂直极化两种,分别表示电场矢量沿着水平方向和垂直方向振动。
2. 圆极化圆极化是指电磁波电场矢量在传播过程中沿圆周方向旋转的方式。
在这种情况下,电场矢量的大小和方向都在不断改变,形成一个圆形的振动轨迹。
圆极化可以进一步分为左旋圆极化和右旋圆极化两种,表示电场矢量的旋转方向。
3. 椭圆极化椭圆极化是指电磁波电场矢量在传播过程中既有振幅变化又有方向变化的方式。
在这种情况下,电场矢量的振动轨迹变成一个椭圆,其长短轴的比例和方向都在不断改变。
二、偏振的产生电磁波的偏振是由于电场和磁场的耦合关系所导致的。
当电磁波通过介质传播或者在特定条件下反射、折射时,会发生偏振现象。
1. 反射偏振当电磁波射入介质表面时,会发生反射现象。
在特定入射角下,反射的电磁波会发生偏振,其中平行于介质表面的电场矢量被增强,垂直于介质表面的电场矢量被减弱或消失。
这种现象称为反射偏振。
2. 折射偏振当电磁波由一种介质传播到另一种介质时,会发生折射现象。
在特定折射角下,折射的电磁波会发生偏振,其偏振性质与反射偏振类似。
折射偏振也可以通过使用偏振片来实现。
三、应用领域电磁波的极化和偏振在许多科学和工程领域中都有广泛的应用。
1. 通信领域在无线通信领域,对电磁波的极化和偏振进行研究可以提高通信信号的传输效果和抗干扰能力。
对于天线设计和信号处理等方面的应用,了解和控制电磁波的极化和偏振是十分重要的。
介质的极化
介质的极化是指在电场或其他外部影响下,介质中正负电荷的重新排列和分离过程。
当介质处于外部电场中时,其分子或原子会发生极化现象,即正负电荷分离,形成电偶极子。
介质的极化可以分为电子极化和离子极化两种情况。
1. 电子极化:在介质中,外部电场会对电子产生作用力,使电子相对于正电荷偏离原来的位置,形成电偶极子。
当电场消失时,电子将重新回到平衡位置。
2. 离子极化:某些介质中含有离子,当外部电场施加在介质上时,正负离子会
分别受到电场力的作用而移动,形成电偶极子。
这种极化通常发生在液体和一些离子化合物中。
介质的极化对电磁现象和物质性质具有重要影响。
极化可以导致介质对电场产生响应,使其具有电磁感应性质。
例如,在电磁波传播中,极化会影响波的传播速度和方向。
此外,极化还影响介质的介电常数和介电损耗,这对电容器、电子元件和电路设计等方面具有重要意义。
极化现象也在其他领域中得到应用,如液晶显示技术和声学装置中。
总之,介质的极化是指在外部电场或其他影响下,介质中正负电荷的重新排列和分离现象。
它对电磁现象和物质性质产生重要影响,是电磁学和材料科学中的重要概念。
第3章 电化学极化 (电荷转移步骤动力学)绪论中曾提到:一个电极反应是由若干个基本步骤形成的,一个反应至少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒子自溶液深处向电极表面的扩散——液相传质步骤。
2) 反应粒子在界面得失电子的过程——电化学步骤。
3) 产物生成新相,或向溶液深处扩散。
当有外电流通过电极时,ϕ将偏离平衡值,我们就说此时发生了极化。
如果传质过程是最慢步骤,则ϕ的偏离是由浓度极化引起的(此时0i s i C C ≠,e ϕ的计算严格说是用s i C 。
无浓度极化时0i s i C C =,ϕ的改变是由s i C 的变化引起)。
这时电化学步骤是快步骤,平衡状态基本没有破坏。
因此反映这一步骤平衡特征的Nernst 方程仍能使用,但须用ϕ代e ϕ,s i C 代0i C ,这属于下一章的研究内容。
如果传质等步骤是快步骤,而电化学步骤成为控制步骤,则这时ϕ偏离e ϕ是由电化学极化引起的,也就是本章研究的内容。
实际上该过程常常是比较慢的,反应中电荷在界面有积累(数量渐增),ϕ随之变化。
由此引起的ϕ偏离就是电化学极化,这时Nernst 方程显然不适用了,这时ϕ的改变将直接以所谓“动力学方式”来影响反应速度。
3.1 电极电位与电化学反应速度的关系电化学反应是一种特殊的氧化—还原反应(一个电极上既有氧化过程,又有还原过程)。
若一个电极上有净的氧化反应发生,而另一个电极上有净的还原反应发生,则在这两个电极所构成的电化学装置中将有电流通过,而这个电流刚好表征了反应速度的大小,)(nFv i v i =∝[故电化学中总是用i 表示v ,又i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也用i 表示v 。
i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。
既然电极上有净的反应发生(反应不可逆了),说明电极发生了极化,ϕ偏离了平衡值,偏离的程度用η表示,极化的大小与反应速度的大小有关,这里就来研究i ~ϕ二者间的关系。
极化的定义通常,在三维直角坐标系中,沿Z轴正方向的行波的电场同时具有x分量和y分量,两个分量之间存在相位差,电场的瞬时总矢量场表示为电场瞬时总矢量场公式[1](公式1)(公式1)中, E1为沿x方向的线极化波幅度;E2为沿y方向的线极化波幅度;δ为Ey滞后于Ex的时间减去相位角。
极化方式的分类极化方式分为三大类:线极化、椭圆极化、圆极化。
其中,线极化又分为水平极化和垂直极化,椭圆极化又可分为左旋椭圆极化和右旋椭圆极化,圆极化又可分为左旋圆极化与右旋圆极化。
水平极化(H):例如,卫星向地面发射信号时,其无线电波的振动方向是水平方向。
就类似于我们拿一条绳子左右抖动,产生的波是左右波动。
垂直极化(V):例如,卫星向地面发射信号时,其无线电波的振动方向是垂直方向。
就类似于我们拿一条绳子上下抖动,产生的波是上下波动。
极化方式的判断方法在确定的z点处电场矢量作为时间的函数而旋转,其矢尖所描出的椭圆称为极化椭圆。
该椭圆的轴比(AR)表征了极化方式,判断方式如下。
极化方式判断天线的极化方式直接影响到收发天线的匹配和接收效率,因此在构建无线通信系统时,必须清楚所使用天线的极化方式。
极化方式(Polarization): H垂直极化;V水平极化,即电磁场的振动方向,卫星向地面发射信号时,所采用的无线电波的振动方向可以有多种方式,水平极化(V):水平极化是指卫星向地面发射信号时,其无线电波的振动方向是水平方向。
例如:我们拿一条绳子左右抖动,产生的波是左右波动。
垂直极化(H):垂直极化是指卫星向地面发射信号时,其无线电波的振动方向是垂直方向。
例如:我们拿一条绳子上下抖动,产生的波是上下波动。
极化作用:一种离子被异号离子极化而变形的作用称为该离子的极化作用。
②变形性:被异号离子极化而发生离子电子云变形的性质。
称为该离子的变形性或可极化性。
注意:无论是阳离子还是阴离子都有极化作用和变形性两个方向。
但是阳离子半径一般比阴离子小,电场强,所以阳离子的极化作用大。
电极上有(净)电流流过时,电极电势偏离其平衡值,此现象称作极化。
根据电流的方向又可分为阳极化和阴极化。
极化是指腐蚀电池作用一经开始,其电子流动的速度大于电极反应的速度。
在阳极,电子流走了,离子化反应赶不上补充;在阴极,电子流入快,取走电子的阴极反应赶不上,这样阳极电位向正移,阴极电位向负移,从而缩小电位差,减缓了腐蚀。
电极的去极化:
凡是能减弱或消除极化过程的作用称为去极化作用。
在溶液增加去极剂的浓度、升温、搅拌以及其它降低活化超电压的措施都将促进阴极去极化作用的增强;阳极去极化作用是指减少或消除阳极极化的作用,例如搅拌、升温等均会加快金属阳离子进入溶液的速度,从而减弱阳极极化。
溶液中加入络合剂或沉淀剂,它们会与金属离子形成难溶解的络合物或沉淀物,不仅可以使金属表面附近溶液中金属离子浓度降低,并能一定程度地减弱阳极电化学极化。
如果溶液中加入某些活性阴离子,就有可能使已经钝化了的金属重新处于活化状态。
显然,从控制腐蚀的角度,总是希望如何增强极化作用用以降低腐蚀速度。
但是对于电解过程,腐蚀加工,为了减少能耗却常常力图强化去极化作用。
用作牺牲阳极保护的材料也是要求极化性能越小越好。
注意:电导率探头在不通电的情况下也会极化,其可能是电极不对称或材质不同造成!
用数字万用表测量放在0.05mol/L的kcl溶液中,自动生成40mV左右电压。