青岛版七年级数学上册2.2.2《数轴》课件
- 格式:ppt
- 大小:485.50 KB
- 文档页数:15
知识点解读:数轴知识点一:数轴(基础)知识详析:1.数轴的定义:数轴是规定了原点、正方向和单位长度的特殊的直线.理解数轴应把握以下三点:(1)数轴是一条特殊的直线,但直线不是数轴;(2)数轴有三个要素:①有原点(表示数0的点);②正方向(向右的方向);③单位长度,缺少三个要素中的任何一个都不是数轴;(3)数轴上的原点的位置、单位长度都是根据实际问题需要规定的,在同一条数轴上的单位长度必须一致.2.数轴的画法:第一步:画直线、定原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选的靠右些;正数的个数较多时,原点选的靠左些.第二步:定方向:通常取原点向右的方向为正方向,用箭头表示出来.第三步:定单位长度:数轴上单位长度的选取要根据实际情况,灵活处理,如要在数轴上表示-0.1,-0.2等小数,则单位长度可选长一些,可用1cm代表一个单位长度;要在数轴上表示-100,-300等数时,则单位长度可取短一些,如用1cm长度表示100.第四步:标数:在数轴上从原点向右依次标出1,2,3,…等各点;从原点向左依次标出-1,-2,-3,…等各点.例1判断下列图形是不是数轴,并指出你判断的理由.解析:图①没有方向;图②没有原点;图③单位长度不统一;图④标数不按顺序,所以以上图形都不是数轴.3.数轴与有理数间的关系:(1)会准确地由数轴上的有理数点把所表示的有理数写出来.①②③④(2)会准确地把所有的有理数在数轴上表示出来,表示时要用实心圆点. 要特别注意的是,所有的有理数都可以用数轴上点来表示;反过来,却不成立,这一点在学习了实数后就会明白.知识点二:利用数轴解决问题(重点) 知识详析: 在数轴上表示的两个有理数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数.例1 写出数轴上符合下列条件的点所表示的数.(1)与原点的距离为3个单位长度的点所表示的数,(2)若点A 所表示的数是1,与点A 的距离是是3个单位长度的点所表示的数.解析:根据题意建立如图1的数轴.(1)从数轴上很容易观察到与原点3个单位长度的点所表示的数有两个,分别为3;-3.(2)与点A 距离为3个单位的点有两个,这两个点所表示的数分别是-2和4. 例2 有理数a 、b 、c 、d 、e 在数轴上的对应点的位置如图2所示:试用“<”把它们连接起来.解析:比较数轴上两个数的大小,依据是右边的数总比左边的数大,所以观察数轴得到:a <c <b <d <e.例3 有一座三层楼房不幸起火,一位消防队员搭梯子爬往三楼去抢救物品,当他爬到梯子正中一级时,二楼窗户喷出火来,他就往下退了三级,等到火过去了,他又爬上7级,这时屋顶有两块砖掉下来,他又后退两级,幸好没打着他,他又爬上8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?解析:根据题意画出数轴如图3,设梯子中间一级为原点,爬上为正,后退为负,易知梯子共有23级.图1图2 图3 0 2 10 4 最高中间 -3。
青岛版七年级上册数学电子课本青岛版七年级上册数学电子课本第一章:实数1.1 正实数与负实数1.2 数轴与有理数1.3 无理数第二章:代数式与方程2.1 代数式的定义和性质2.2 一元一次方程2.3 两个一元一次方程的联立2.4 解一元一次方程的应用第三章:图形的初步认识3.1 图形元素:点、直线、线段、射线、角、面3.2 基本图形:三角形、四边形、圆3.3 图形的相似第四章:解直角三角形的问题4.1 直角三角形及其判定4.2 正弦定理4.3 余弦定理第五章:数据的统计与分析5.1 统计图5.2 中心倾向度量5.3 离散程度度量5.4 相关度量第六章:平面直角坐标系6.1 平面直角坐标系及其基本性质6.2 相关线段和中点6.3 点与直线的位置关系6.4 直线的斜率6.5 点到直线的距离第七章:多边形7.1 多边形的定义和性质7.2 三角形的性质7.3 角平分线与垂线7.4 几何作图第八章:函数8.1 函数的概念8.2 一次函数8.3 反比例函数表格索引:第一章:实数1.1 正实数与负实数本章重点介绍了实数的概念以及正实数和负实数的性质。
正实数是指大于零的实数,负实数是指小于零的实数,零既不是正实数也不是负实数。
实数集包括有理数和无理数两部分。
有理数是可以表示为两个整数的比的数,无理数是不能表示为两个整数的比的数,例如,$\sqrt{2}$为无理数。
1.2 数轴与有理数本章介绍了数轴的概念和用法,以及有理数在数轴上的表示。
数轴是一条用于表示数的直线,数轴上的左侧表示负数,右侧表示正数,零位于数轴的中央。
有理数可以用分数的形式表示,也可以用小数的形式表示。
对于无限不循环小数,可以通过近似值来表示,例如,$\pi$可以近似为3.14。
1.3 无理数本章介绍了无理数的概念和性质。
无理数是不能表示为两个整数的比的数,例如,根号2、根号3等。
无理数的表示法有小数表示法和根式表示法。
在小数表示法中,无理数可以用无限不循环小数表示,例如,$\sqrt{2}$可以表示为1.41421356...;在根式表示法中,无理数可以用根式表示,例如,$\sqrt{2}$。