2016年辽宁省沈阳市中考数学(全解全析)
- 格式:doc
- 大小:367.50 KB
- 文档页数:11
2016年辽宁省中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×1053.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.65.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a66.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=°.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=.13.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=.14.(3分)(2015•丹东)不等式组的解集为.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×105【解答】解:将27.8万用科学记数法表示为2.78×105.故选:C.3.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.6【解答】解:∵这组数据的众数是4,∴x=4,=(2+4+4+3+5)=3.6.故选:D.5.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a6【解答】解:A、2a+a=3a,故A错误;B、4﹣2==,故B错误;C、,故C错误;D、(a3)2=a3×2=a6,故D正确.故选:D.6.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=,∴CD=AB=,∵∠DCF=30°,∴CF=÷=2,∴EF=2.故选A.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,飞镖落在阴影区域的概率是;故答案为:.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=110°.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=3(x﹣2)2.【解答】解:原式=3(x2﹣4x+4)=3(x﹣2)2,故答案为:3(x﹣2)213.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=8.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.14.(3分)(2015•丹东)不等式组的解集为﹣1<x<1.【解答】解:,由①得,x>﹣1,由②得,x<1.所以,不等式组的解集为﹣1<x<1.故答案为﹣1<x<1.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=﹣3.【解答】解:将x=1代入得:1+2+a=0,解得:a=﹣3.故答案为:﹣3.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2).故答案为(3×2n﹣2,×2n﹣2).三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.【解答】解:原式=×=,当a=3时,原式==.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:=π.故点B旋转到点B2所经过的路径长是π.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.【解答】解:(1)小红摸出标有数字3的小球的概率是;故答案为;种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,第二象限或第四象限的结果有8种,所以小红获胜的概率==,小颖获胜的概率==.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【解答】解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60,如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵,在Rt△ADB中,则AB=tan48°•BD≈(米),∵,在Rt△ACE中,则AE=tan37°•CE≈(米),∴CD=BE=AB﹣AE=66﹣45=21(米),∴乙楼的高度CD为21米.25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0 则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.【解答】解:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=m•BP时,PE=(m﹣1)•PF.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0).参与本试卷答题和审题的老师有:sdwdmahongye;1987483819;1286697702;梁宝华;星期八;gsls;sks;守拙;张其铎;HLing;fangcao;caicl(排名不分先后)菁优网2016年5月19日。
2024年辽宁省中考数学试卷(附答案解析)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图是由5个相同的小立方块搭成的几何体,这个几何体的俯视图是()A .B .C .D .【解答】解:从上边看,底层左边是一个小正方形,上层是两个小正方形,左齐.故选:A .2.(3分)亚洲、欧洲、非洲和南美洲的最低海拔如表:大洲亚洲欧洲非洲南美洲最低海拔/m﹣415﹣28﹣156﹣40其中最低海拔最小的大洲是()A .亚洲B .欧洲C .非洲D .南美洲【解答】解:∵﹣415<﹣156<﹣40<﹣28,∴海拔最低的是亚洲.故选:A .3.(3分)越山向海,一路花开.在5月24日举行的2024辽宁省高品质文体旅融合发展大产业招商推介活动中,全省30个重大文体旅项目进行集中签约,总金额达532亿元.将53200000000用科学记数法表示为()A .532×108B .53.2×109C .5.32×1010D .5.32×1011【答案】C .4.(3分)如图,在矩形ABCD 中,点E 在AD 上,当△EBC 是等边三角形时,∠AEB 为()A.30°B.45°C.60°D.120°【分析】根据平行线的性质和等边三角形的性质即可解答.【解答】证明:∵△EBC是等边三角形,∴∠CBE=60°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE=60°.故选:C.【点评】本题考查矩形的性质,等边三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)下列计算正确的是()A.a2+a3=2a5B.a2•a3=a6C.(a2)3=a5D.a(a+1)=a2+a【答案】D.6.(3分)一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,每个球除颜色外都相同.从中随机摸出一个球,则下列事件发生的概率为的是()A.摸出白球B.摸出红球C.摸出绿球D.摸出黑球【分析】分别求得各个事件发生的概率,即可得出答案.【解答】解:∵一个不透明袋子中装有4个白球,3个红球,2个绿球,1个黑球,共有10个球,∴从中随机摸出一个球,摸出白球的概率为=,摸出红球的概率为,摸出绿球的概率为=,摸出黑球的概率为.故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)纹样是我国古代艺术中的瑰宝.下列四幅纹样图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】一个平面内,如果一个图形沿一条直线折叠,若直线两旁的图形能够完全重合,那么这个图形即为轴对称图形;一个平面内,如果一个图形绕某个点旋转180°,若旋转后的图形与原来的图形完全重合,那么这个图形即为中心对称图形;据此进行判断即可.【解答】解:A中图形既不是轴对称图形,也不是中心对称图形,则A不符合题意;B中图形既是轴对称图形,也是中心对称图形,则B符合题意;C中图形是轴对称图形,但不是中心对称图形,则C不符合题意;D中图形不是轴对称图形,但它是中心对称图形,则D不符合题意;故选:B.【点评】本题考查轴对称图形,中心对称图形,熟练掌握其定义是解题的关键.8.(3分)我国古代数学著作《孙子算经》中有“雉兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”其大意是:鸡兔同笼,共有35个头,94条腿,问鸡兔各多少只?设鸡有x只,兔有y只,根据题意可列方程组为()A.B.C.D.【分析】根据“上有35个头,下有94条腿”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵上有35个头,∴x+y=35;∵下有94条腿,∴2x+4y=94.∴根据题意可列方程组.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图,▱ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD,若AC=3,BD=5,则四边形OCED的周长为()A.4B.6C.8D.16【分析】根据平行四边形对角线互相平分得出OC、OD的长,再证明四边形OCED是平行四边形即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴OC=,OD=,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED的周长=2(OC+OD)=2×()=8,故选:C.【点评】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题的关键.10.(3分)如图,在平面直角坐标系xOy中,菱形AOBC的顶点A在x轴负半轴上,顶点B在直线上,若点B的横坐标是8,则点C的坐标为()A.(﹣1,6)B.(﹣2,6)C.(﹣3,6)D.(﹣4,6)【分析】利用一次函数图象上点的坐标特征,可求出点B的坐标,利用两点间的距离公式,可求出OB 的长,结合菱形的性质,可得出BC的长及BC∥x轴,再结合点B的坐标,即可得出点C的坐标.【解答】解:当x=8时,y=×8=6,∴点B的坐标为(8,6),∴OB==10.∵四边形AOBC是菱形,且AO在x轴上,∴BC=OB=10,且BC∥x轴,∴点C的坐标为(8﹣10,6),即(﹣2,6).故选:B.【点评】本题考查了一次函数图象上点的坐标特征以及菱形的性质,利用一次函数图象上点的坐标特征及菱形的性质,求出点B的坐标及BC的长是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.(3分)方程的解为x=3.【分析】先把分式方程变形成整式方程,求解后再检验即可.【解答】解:,方程的两边同乘(x+2),得5=x+2,解得:x=3,经检验x=3是分式方程的解,所以原分式方程的解为x=3.故答案为:x=3.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.12.(3分)在平面直角坐标系中,线段AB的端点坐标分别为A(2,﹣1),B(1,0),将线段AB平移后,点A的对应点A′的坐标为(2,1),则点B的对应点B′的坐标为(1,2).【分析】根据点A及点A对应点的坐标,得出平移的方向和距离,据此可解决问题.【解答】解:因为点A坐标为(2,﹣1),且平移后对应点A′的坐标为(2,1),所以2﹣2=0,1﹣(﹣1)=2,所以1+0=1,0+2=2,所以点B的对应点B′的坐标为(1,2).故答案为:(1,2).【点评】本题主要考查了坐标与图形变化﹣平移,熟知图形平移的性质是解题的关键.13.(3分)如图,AB∥CD,AD与BC相交于点O,且△AOB与△DOC的面积比是1:4,若AB=6,则CD的长为12.【分析】根据AB∥CD,得出△AOB和△DOC相似,从而得出,由此得出CD的长.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴,∴,∵AB=6,∴,∴DC=12,故答案为:12.【点评】本题考查了相似三角形的性质与判定,掌握相似三角形面积之比等于相似比的平方是解题的关键.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴相交于点A,B,点B的坐标为(3,0),若点C(2,3)在抛物线上,则AB的长为4.【分析】依据题意,由抛物线y=ax2+bx+3过B(3,0),C(2,3),可得,求出a,b后可得抛物线的解析式,再求得对称轴,依据对称性可得A的坐标,进而可以判断得解.【解答】解:由题意,∵抛物线y=ax2+bx+3过B(3,0),C(2,3),∴.∴.∴抛物线为y=﹣x2+2x+3.∴抛物线的对称轴是直线x=﹣=1.∵抛物线与x轴的一交点为B(3,0),∴另一交点为A(1﹣2,0),即A(﹣1,0).∴AB=3﹣(﹣1)=4.故答案为:4.【点评】本题主要考查了二次函数图象上点的坐标特征、抛物线与x轴的交点,解题时要熟练掌握并能灵活运用二次函数的性质是关键.15.(3分)如图,四边形ABCD中,AD∥BC,AD>AB,AD=a,AB=10,以点A为圆心,以AB长为半径作弧,与BC相交于点E,连接AE.以点E为圆心,适当长为半径作弧,分别与EA,EC相交于点M,N,再分别以点M,N为圆心,大于的长为半径作弧,两弧在∠AEC的内部相交于点P,作射线EP,与AD相交于点F,则FD的长为a﹣10(用含a的代数式表示).【分析】利用基本作图得到AE=AB=10,EF平分∠AEC,接着证明∠AEF=∠AFE得到AF=AE=10,然后利用FD=AD﹣AF求解.【解答】解:由作法得AE=AB=10,EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AF=AE=10,∴FD=AD﹣AF=a﹣10.故答案为:a﹣10.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了列代数式、平行线的性质和角平分线的定义.三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)计算:;(2)计算:.【分析】(1)先算乘方、化简二次根式,再化简绝对值算除法,最后加减;(2)先算分式乘法,再算加法.【解答】解:(1)=16﹣10+2+3﹣=9+;(2)=•+=+==1.【点评】本题考查了实数的混合运算及分式的混合运算,掌握实数的运算法则和绝对值的意义及分式的运算法则是解决本题的关键.17.(8分)甲、乙两个水池注满水,蓄水量均为36m3.工作期间需同时排水,乙池的排水速度是8m3/h.若排水3h,则甲池剩余水量是乙池剩余水量的2倍.(1)求甲池的排水速度.(2)工作期间,如果这两个水池剩余水量的和不少于24m3,那么最多可以排水几小时?【分析】(1)设甲池的排水速度是x m3/h,根据“36﹣3×甲池的排水速度=2×(36﹣3×乙池的排水速度)”列方程并求解即可;(2)设排水t小时,根据“t小时后这两个水池剩余水量的和≥24”列关于t的一元一次不等式并求解即可.【解答】解:(1)设甲池的排水速度是x m3/h.根据题意,得36﹣3x=2(36﹣3×8),解得x=4,∴甲池的排水速度是4m3/h.(2)设排水t小时.根据题意,得36×2﹣(4+8)t≥24,解得t≤4,∴最多可以排水4小时.【点评】本题考查一元一次方程和一元一次不等式的应用,根据题意列一元一次方程和一元一次不等式并求解是解题的关键.18.(8分)某校为了解七年级学生对消防安全知识掌握的情况,随机抽取该校七年级部分学生进行测试,并对测试成绩进行收集、整理、描述和分析(测试满分为100分,学生测试成绩x均为不小于60的整数,分为四个等级:D:60≤x<70,C:70≤x<80,B:80≤x<90,A:90≤x≤100),部分信息如下:信息一:信息二:学生成绩在B等级的数据(单位:分)如下:80,81,82,83,84,84,84,86,86,86,88,89.请根据以上信息,解答下列问题;(1)求所抽取的学生成绩为C等级的人数;(2)求所抽取的学生成绩的中位数;(3)该校七年级共有360名学生,若全年级学生都参加本次测试,请估计成绩为A等级的人数.【分析】(1)用B等级组人数除以40%可得样本容量,再用样本容量减去其它三个等级的人数可得C 等级的人数;(2)根据中位数的定义解答即可;(3)用360乘样本中成绩为A等级的人数所占比例即可.【解答】解:(1)样本容量为:12÷40%=30,30﹣1﹣12﹣10=7(人),即所抽取的学生成绩为C等级的人数为7人;(2)所抽取的学生成绩为C等级的人数为=85;(3)360×=120(人),答:该校七年级估计成绩为A等级的人数大约为120人.【点评】本题考查中位数以及用样本估计总体,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(8分)某商场出售一种商品,经市场调查发现,日销售量y(件)与每件售价x(元)之间满足一次函数关系,部分数据如表所示:每件售价x/元…455565…日销售量y/件…554535…(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价;如果不能,说明理由.【分析】(1)依据题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),可得,求出k,b即可得解;(2)依据题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,从而可得x2﹣100x+2600=0,又Δ=(﹣100)2﹣4×2600=﹣400<0,进而可以判断得解.【解答】解:(1)由题意,设一次函数的关系式为y=kx+b,又结合表格数据图象过(45,55),(55,45),∴.∴.∴所求函数关系式为y=﹣x+100.(2)由题意,销售额=x(﹣x+100)=﹣x2+100x,又销售额是2600元,∴2600=﹣x2+100x.∴x2﹣100x+2600=0.∴Δ=(﹣100)2﹣4×2600=10000﹣10400=﹣400<0.∴方程没有解,故该商品日销售额不能达到2600元.【点评】本题主要一元二次方程的应用、一次函数的应用,解题时要熟练掌握并能灵活运用是关键.20.(8分)如图1,在水平地面上,一辆小车用一根绕过定滑轮的绳子将物体竖直向上提起.起始位置示意图如图2,此时测得点A到BC所在直线的距离AC=3m,∠CAB=60°,停止位置示意图如图3,此时测得∠CDB=37°(点C,A,D在同一直线上,且直线CD与地面平行),图3中所有点在同一平面内.定滑轮半径忽略不计,运动过程中绳子总长不变.(1)求AB的长;(2)求物体上升的高度CE(结果精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈ 1.73)【分析】(1)在Rt△ABC中,由∠CAB的度数求出∠ABC=30°,利用30°角所对的直角边等于斜边的一半求出AB的长即可;(2)EC的长即为BD﹣BA的长,求出BD,在Rt△BCD中,利用锐角三角函数定义求出BD的长,由(1)得到AB的长,上升高度CE即为AB变为BD的长,即CE=BD﹣BA,求出即可.【解答】解:(1)如图2,在Rt△ABC中,AC=3m,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=6m,则AB的长为6m;(2)在Rt△ABC中,AB=6m,AC=3m,根据勾股定理得:BC===3m,在Rt△BCD中,∠CDB=37°,sin37°≈0.60,≈1.73,∴sin∠CDB=,即≈0.60,∴BD≈8.65m,∴CE=BD﹣BA=8.65﹣6=2.65≈2.7(m),则物体上升的高度CE约为2.7m.【点评】此题考查了解直角三角形的应用,锐角三角函数定义,勾股定理,熟练掌握各自的性质是解本题的关键.21.(8分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在上,,点E在BA的延长线上,∠CEA=∠CAD.(1)如图1,求证:CE是⊙O的切线;(2)如图2,若∠CEA=2∠DAB,OA=8,求的长.【分析】(1)连接OC,根据三角形外角的性质证得∠DAB=∠ACE,根据同弧所对的圆周角相等得出∠ABC=∠DAB,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出∠ABC+∠OAC=90°,再证∠OAC=∠OCA,即可得出∠ACE+∠OCA=90°,于是问题得证;(2)连接OD,设∠DAB=x,则∠CEA=∠CAD=2x,根据同弧所对的圆周角相等得出∠ABC=∠DAB =x,根据直径所对的圆周角是直角得出∠ACB=90°,即可得出x+2x+x=90°,从而求出x的值,最后根据弧长公式即可得解.【解答】(1)证明:如图1,连接OC,∵∠CAO是△ACE的一个外角,∴∠CAO=∠CEA+∠ACE,即∠CAD+∠DAB=∠CEA+∠ACE,∵∠CEA=∠CAD.∴∠DAB=∠ACE,∵,∴∠ABC=∠DAB,∴∠ABC=∠ACE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ABC+∠OCA=90°,∴∠ACE+∠OCA=90°,即∠OCE=90°,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:如图2,连接OD,设∠DAB=x,∵∠CEA=2∠DAB,∴∠CEA=2x,∵∠CEA=∠CAD,∴∠CAD=2x,∵,∴∠ABC=∠DAB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∴x+2x+x=90°,∴x=22.5°,即∠DAB=22.5°,∴∠BOD=2∠DAB=45°,∵OA=8,∴的长为=2π.【点评】本题考查了切线的判定与性质,圆周角定理及推论,弧长公式,熟练掌握这些知识点是解题的关键.22.(12分)如图,在△ABC中,∠ABC=90°,∠ACB=α(0°<α<45°).将线段CA绕点C顺时针旋转90°得到线段CD,过点D作DE⊥BC,垂足为E.(1)如图1,求证:△ABC≌△CED.(2)如图2,∠ACD的平分线与AB的延长线相交于点F,连接DF,DF的延长线与CB的延长线相交于点P,猜想PC与PD的数量关系,并加以证明.(3)如图3,在(2)的条件下,将△BFP沿AF折叠,在α变化过程中,当点P落在点E的位置时,连接EF.①求证:点F是PD的中点;②若CD=20,求△CEF的面积.【分析】(1)可证得∠D+∠DCE=90°,∠DCE+∠ACB=90°,从而∠ACB=∠D,进而证得△ABC ≌△CED;(2)可证得△ACF≌△DCF,从而∠A=∠PDC,进而证得∠PDC=∠DCE,从而得出PC=PD;(3)①由折叠得PF=EF,∠P=∠PEF,可证得∠PEF+∠DEF=90°,∠P+∠PDE=90°,从而∠PDE=∠DEF,从而得出EF=DF,进而得出PF=DF;②设CE=a,BC=DE=b,从而BE=BC﹣CE=b﹣a,可证得△PBF∽△PED,=,在Rt△∴,从而得出PE=2BE=2(b﹣a),BF=DE=,从而S△CEFPED中,根据勾股定理得出∠PED=90°,b2+[2(b﹣a)]2=(2b﹣a)2,从而得出b=3a,由∠DEC =90°得出a2+b2=202,从而得出a2+(3a)2=400,进一步得出结果.【解答】(1)证明:∵DE⊥BC,∴∠DEC=90°,∴∠D+∠DCE=90°,∵∠ABC=90°,∴∠ABC=∠DEC,∵线段CA绕点C顺时针旋转90°得到线段CD,∴∠ACD=90°,AC=CD,∴∠DCE+∠ACB=90°,∴∠ACB=∠D,∴△ABC≌△CED(AAS);(2)PC=PD,理由如下:∵CF是∠ACD的平分线,∴∠ACF=∠DCF,由(1)知,AC=CD,△ABC≌△CED,∴∠A=∠DCE,∵CF=CF,∴△ACF≌△DCF(SAS),∴∠A=∠PDC,∴∠PDC=∠DCE,∴PC=PD;(3)①∵△BFP沿AF折叠,点P落在点E,∴PF=EF,∠P=∠PEF,∵DE⊥BC,∴∠PED=90°,∴∠PEF+∠DEF=90°,∠P+∠PDE=90°,∴∠PEF+∠PDE=90°,∴∠PDE=∠DEF,∴EF=DF,∴PF=DF,∴点F是PD的中点;②解:设CE=a,BC=DE=b,∴BE=BC﹣CE=b﹣a,由①知,点F是PD的中点,∴PF=PD,∵∠ABC=∠PED=90°,∴BF∥DE,∴△PBF∽△PED,∴,∴PE=2BE=2(b﹣a),BF=DE=b,==,∴S△CEF∵∠PED=90°,DE=b,PE=2(b﹣a),PD=PC=PE+CE=2(b﹣a)+a=2b﹣a,∴b2+[2(b﹣a)]2=(2b﹣a)2,化简得,3a2﹣4ab+b2=0,∴b=a或b=3a,∵0°<α<45°,∴a=b舍去,∴b=3a,==,∴S△CEF∵∠DEC=90°,∴a2+b2=202,∴a2+(3a)2=400,∴a2=40,=,∴S△CEF∴△CEF的面积是30.【点评】本题考查了等腰三角形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解决问题的关键是熟练掌握有关基础知识.23.(13分)已知y1是自变量x的函数,当y2=xy1时,称函数y2为函数y1的“升幂函数”.在平面直角坐标系中,对于函数y1图象上任意一点A(m,n),称点B(m,mn)为点A“关于y1的升幂点”,点B在函数y1的“升幂函数”y2的图象上.例如:函数y1=2x,当时,则函数是函数y1=2x的“升幂函数”.在平面直角坐标系中,函数y1=2x的图象上任意一点A(m,2m),点B(m,2m2)为点A“关于y1的升幂点”,点B在函数y1=2x的“升幂函数”的图象上.(1)求函数的“升幂函数”y2的函数表达式.(2)如图1,点A在函数的图象上,点A“关于y1的升幂点”B在点A上方,当AB =2时,求点A的坐标.(3)点A在函数y1=﹣x+4的图象上,点A“关于y1的升幂点”为点B,设点A的横坐标为m.①若点B与点A重合,求m的值;②若点B在点A的上方,过点B作x轴的平行线,与函数y1的“升幂函数”y2的图象相交于点C,以AB,BC为邻边构造矩形ABCD,设矩形ABCD的周长为y,求y关于m的函数表达式;③在②的条件下,当直线y=t1与函数y的图象的交点有3个时,从左到右依次记为E,F,G,当直线y=t2与函数y的图象的交点有2个时,从左到右依次记为M,N,若EF=MN,请直接写出t2﹣t1的值.【分析】(1)根据题意直接列出式子即可;(2)根据条件得出y2=3,再根据AB=2建立方程即可;(3)①将A、B坐标用含有m的式子表示出,再根据AB重合时,横纵坐标相等建立关于m的方程,进而求解即可;②根据题意画出图形,再将线段用m表示出来,需要注意的是分类讨论;③第一种情况:如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度,分别令m=2和4得解,第二种情况:点M是抛物线y=﹣2m2+6m 的顶点,由M坐标推出N坐标,进而求出MN的长度,再通过MN=EF得出F的坐标,即可求解.【解答】(1),图象如图2所示.(2)如图3,∵,设,B(m,3).因为点B在点A的上方,当AB=2时,解得m=3.所以A(3,1).(3)①因为,所以A(m,﹣m+4),B(m,﹣m2+4m).如果点B与点A重合,那么﹣m+4=﹣m2+4m.整理,得m2﹣5m+4=0.解得m=1,或m=4.②由①可知,直线y=﹣x+4与抛物线y=﹣x2+4x有两个交点(1,3)和(4,0),如图4所示,函数的图象是开口向下的抛物线,对称轴是直线x=2.因为BC∥x轴,所以B、C两点关于直线x=2对称.如图4,当点B在点C右侧时,2<m<4,BC=2(m﹣2)=2m﹣4,如图5,当点B在点C左侧时,1<m<2,BC=2(2﹣m)=4﹣2m,由点B在点A的上方,得BA=(﹣m2+4m)﹣(﹣m+4)=﹣m2+5m﹣4,当2<m<4时,y=2[(2m﹣4)+(﹣m2+5m﹣4)]=﹣2m2+14m﹣16,当1<m<2时,y=2[(4﹣2m)+(﹣m2+5m﹣4)]=﹣2m2+6m.综上,y=2m2+14m﹣16或=﹣2m2+6m.③情形一:如图7,如果EF和MN平行且相等,那这两条平行线间得距离等于两个顶点之间的竖直高度,或者等于P、Q两点间的竖直高度.当m=2时,y=﹣2m2+6m=4,所以P(2,4).当m=4时,y=﹣2m2+14m﹣16=8,所以Q(4,8).所以t2﹣t1=8﹣4=4.情形2,如图7(局部,变形处理),点M是抛物线y=﹣2m2+6m的顶点.由,得,所以,第21页(共21页)所以点F 的横坐标,于是可得,所以.综上,t 2﹣t 1=4或3﹣2.。
函数(真题汇编)2023年辽宁省各市中考数学试题全解析版一.选择题(共8小题);1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.25.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.二.填空题(共7小题)9.(2023•锦州)如图,在平面直角坐标系中,△AOC的边OA在y轴上,点C在第一象限内,点B=(.(2023•锦州)如图,在平A4B4B5C4,…都是平行四边形,顶点C4,…都在正比例函数y=x2A4C3,…,连接A1B2,A2B3,.(2023•辽宁)如图,在平面直角坐标系中,点A的坐标为(0,2),将线段AO转120°,得到线段AB,连接OB,点B恰好落在反比例函数y=(x>0)的图象上,则值是 ..(2023•沈阳)若点=的图象上,则y2.(用“<”“>”或“=”填空).(2023•大连)如图,在数轴上,且A在OC上方.连接AB.(2023•辽宁)如图,矩形=(B,D,对角线CA的延长线经过原点三.解答题(共13小题).(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件的销售量y(件)与每件玩具售价.(2023•大连)如图1,在平面直角坐标系为线段OB上一动点(不与点B重合)的重叠面积为S,S关于t的函数图象如图(1)OB的长为 ;△OAB(2)求S关于t的函数解析式,并直接写出自变量21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C的坐标.25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,FG,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.28.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P 的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.函数(真题汇编)2023年辽宁省各市中考数学试题全解析版参考答案与试题解析一.选择题(共8小题)1.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【答案】B【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.2.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵y=﹣(x+1)2+2,∴顶点坐标为(﹣1,2),∴顶点在第二象限.故选:B.3.(2023•大连)已知蓄电池两端电压U为定值,电流I与R成反比例函数关系.当I=4A时,R=10Ω,则当I=5A时R的值为( )A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解答】解:设I=,则U=IR=40,∴R===8,故选:B.4.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为( )A.﹣2B.﹣1C.0D.2【答案】D【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴对称轴为直线x=1,∵a=1>0,∴抛物线的开口向上,∴当0≤x<1时,y随x的增大而减小,∴当x=0时,y=﹣1,当1≤x≤3时,y随x的增大而增大,∴当x=3时,y=9﹣6﹣1=2,∴当0≤x≤3时,函数的最大值为2,故选:D.5.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.【答案】A【解答】解:过点D作DH⊥CB于H,∵DE=DF=5,EF=8,∴EH=FH=EF=4,∴DH==3,当0≤t<4时,如图,重叠部分为△EPQ,此时EQ=t,PQ∥DH,∴△EPQ∽△EDH,∴,即,∴PQ=t,∴S==2,当4≤t<8时,如图,重叠部分为四边形POC′B′,此时BB′=CC′=t,PB∥DE.∴B′F=BC+CF﹣BB′=12﹣t,FC=8﹣t,∵PB∥DE,∴△PBF∽△DCF,∴,又S△DCF=,∴,∵DH⊥BC.∠AB′C′=90°,∴AC′∥DH,∴△C′QF∽△HFD.∴,即,∴,∴S=S△PB′F﹣S△C′QF==,当8≤t≤12时如图,重叠部分为四边形△PFB′,此时BB′=CC′=t,PB′∥DE.∴B′F=BC+CF﹣BB′=12﹣t,∵PB′∥DE.∴△PB′F∽△DCF,∴,即,∴,S=S△PB′F=,综上,∴符合题意的函数图象是选项A.故选:A.6.(2023•营口)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.下列说法:①abc<0;②抛物线的对称轴为直线x=﹣1;③当﹣3<x<0时,ax2+bx+c>0;④当x>1时,y随x的增大而增大;⑤am2+bm≤a﹣b(m为任意实数),其中正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),∴对称轴为直线x==﹣1,故②正确;∴﹣=﹣1,∴b=2a<0,∵与y轴的交点在正半轴上,∴c>0,∴abc>0,故①错误;由图象可知,当﹣3<x<0时,y>0,∴当﹣3<x<0时,ax2+bx+c>0,故③正确;由图象可知,当x>1时,y随x的增大而减小,故④错误;∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,函数有最大值,∴当m为任意实数时,am2+bm+c≤a﹣b+c,∴am2+bm≤a﹣b,故⑤正确;综上所述,结论正确的是②③⑤共3个.故选:C.7.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x 之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFHG全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,AE=x,∠EAF=60°,∴EF=AE=x,∴S=x2;②图3时,AE+AF=AC,即x+x=6,解得x=4,由图2到图3,此时3<x≤4,如图4,由题意可知△EQB是正三角形,∴EQ=EB=BQ=6﹣x,∴GQ=x﹣(6﹣x)=2x﹣6,∴S=S矩形EFHG﹣S△PQG=x2﹣×(2x﹣6)2=﹣x2+12x﹣18,③图6时,x=6,由图3到图6,此时4<x≤6,如图5,由题意可知△EKB是正三角形,∴EK=EB=BK=6﹣x,FC=AC﹣AF=6﹣x,EF=x,∴S=S梯形EFCK=(6﹣x+6﹣x)×x=﹣x2+3x,综上所述,S与x的函数关系式为S=,因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线,故选:A.8.(2023•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=3cm.动点P从点A出发,以1cm/s的速度沿射线AB匀速运动,到点B停止运动,同时动点Q从点A出发,以cm/s的速度沿射线AC匀速运动.当点P停止运动时,点Q也随之停止运动.在PQ的右侧以PQ为边作菱形PQMN,点N在射线AB上.设点P的运动时间为x(s),菱形PQMN与△ABC的重叠部分的面积为y(cm2),则能大致反映y与x之间函数关系的图象是( )A.B.C.D.【答案】A【解答】解:作PD⊥AC于点D,作QE⊥AB于点E,由题意得AP=x,AQ=x,∴AD=AP•cos30°=x,∴AD=DQ=AQ,∴PD是线段AQ的垂直平分线,∴∠PQA=∠A=30°,∴∠QPE=60°,PQ=AP=x,∴QE=AQ=x,PQ=PN=MN=QM=x,当点M运动到直线BC上时,此时,△BMN是等边三角形,∴AP=PN=BN=AB=1,x=1;当点Q、N运动到与点C,B重合时,∴AP=PN=AB=,x=;当点P运动到与点B重合时,∴AP=AB=3,x=3;∴当0<x≤1时,y=x•x=x2,≤时,如图,作则BN=FN=FB=3﹣2x,FM=MS=FS=(∴y=x2﹣(3x﹣3)•(3x﹣3)=﹣x+x﹣,当<x<3时,如图,作HI⊥AB于点则BP=PH=HB=3﹣x,HI=(3﹣x),∴y=•(3﹣x)•(3﹣x)=x2﹣x+,综上,y与x之间函数关系的图象分为三段,当0<x≤时,是开口向下的一段抛物线,当<x<3时,是开口向上的一段抛物线,=(【答案】4.【解答】解:过点C作CD⊥y轴于点D,如图:设点C的坐标为(a,b),点A的坐标为(0,c),∴CD=a,OA=c,∵△AOC的面积是6,∴,∴ac=12,∵点C(a,b)在反比例函数(x>0)的图象上,∴k=ab,∵点B为AC的中点,∴点,∵点B在反比例函数(x>0)的图象上,∴,即:4k=a(b+c),∴4k=ab+ac,将ab=k,ac=12代入上式得:k=4.故答案为:4.10.(2023•锦州)如图,在平面直角坐标系中,四边形A1B1B2C1,A2B2B3C2,A3B3B4C3,A4B4B5C4,…都是平行四边形,顶点B1,B2,B3,B4,B5…都在x轴上,顶点C1,C2,C3,C4,…都在正比例函数y=x(x≥0)的图象上,且B2C1=2A2C1,B3C2=2A3C2,B4C3=2A4C3,…,连接A1B2,A2B3,A3B4,A4B5,…,分别交射线OC1于点O1,O2,O3,O4,…,连接O1A2,O2A3,O3A4,…,得到△O1A2B2,△O2A3B3,△O3A4A4,…若B1(2,0),B2(3, .【答案】.【解答】解:∵B2(3,0),A1(3,1)∴O1(3,),A1B2⊥x轴,同理可得:A2B3⊥x轴,A3B4⊥x轴,∴,∴,=,∴=O=,:=(∴=()=()=,故答案为:.=( .【答案】.【解答】解:过点B由旋转的性质得,AO∵点A的坐标为(0,∴,由勾股定理得,的坐标为,恰好落在反比例函数(∴,故答案为:.=的图象上,则则,则,【答案】15.【解答】解:设AB为xm1+ .1+,===,=,1+,1+.1+,=(【答案】6.【解答】解:如图,延长∵矩形ABCD的面积是由几何意义得,=三.解答题(共13小题)16.(2023•辽宁)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中100≤x≤160,且x为整数),当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?【答案】见试题解答内容【解答】解:(1)设y与x之间的函数关系式为y=kx+b,∵当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件,∴,解得,即y与x之间的函数关系式为y=﹣2x+320;(2)设利润为w元,由题意可得:w=(x﹣100)(﹣2x+320)=﹣2(x﹣130)2+1800,∴当x=130时,w取得最大值,此时w=1800,答:当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.17.(2023•营口)某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同,当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销,该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;根据题意得:=,)代入得,解得,∴y=﹣x+140;(2)∵规定销售单价不低于进价,且不高于进价的2倍,∴40≤x≤80,设每月出售这种护眼灯所获的利润为w元,根据题意得,w=(x﹣40)y=(x﹣40)(﹣x+140)=﹣x2+180x﹣5600=﹣(x﹣90)2+2500,∴当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.19.(2023•锦州)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?【答案】(1)y与x的函数关系式为y=﹣40x+680;(2)当粽子的售价定为12.5元/袋时,日销售利润最大,最大日销售利润是810元.【解答】解:(1)设y与x的函数关系式为y=kx+b,把x=10,y=280和x=14,y=120别代入解析式,得,解得,∴y与x的函数关系式为y=﹣40x+680;(2)设这种粽子日销售利润为w元,则w=(x﹣8)(﹣40x+680)=40x2+1000x﹣5440=40(x﹣)2+810,∵﹣40<0,抛物线开口向下, ;【答案】(1)4,;(2)S=.【解答】解:(1)t=0时,P与O重合,此时S=S△ABO=,t=4时,S=0,P与B重合,∴OB=4,B(4,0),,;=OB,即×=,=,∴A(,);当0≤t≤时,设OA交PD于E,如图:∵∠AOB=45°,PD⊥OB,∴△PEO是等腰直角三角形,∴PE=PO=t,∴S△POE=t2,∴S=﹣S△POE=﹣t2;当<t<4时,如图:由A(,),B(4,0)得直线AB解析式为y=﹣x+2,当x=0时,y=2,∴C(0,2),∴OC=2,∵tan∠CBO====,∴DP=PB=(4﹣t)=2﹣t,∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4;综上所述,S=.21.(2023•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(4,0),与y轴交于点C (0,4),点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【答案】(1)见解答.(2)EH=4,(3)点N的坐标为(4,4)或(﹣,)或(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(4,0)和C(0,4),∴解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(4,0)和C(0,4).设直线BC的解析式为v=kx+4,则0=4k+4,解得k=﹣1.直线BC的解析式为y=﹣x+4,设E(x,﹣x2+x+4),且0<x<4,则F(x,﹣x+4),GH﹣EF=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴解析式的对称轴为﹣,∴H(2﹣x,﹣x2+x+4),∴GF﹣EH=x﹣(4﹣x)=2x﹣2,依题意得2(﹣x2+2x+2x﹣2)=11.解得x=5(舍去)或x=3.∴EH=4,(3)令y=0,则﹣x2+x+4=0,解得x=﹣2或x=4.∴A(﹣2,0).同理,直线AC的解析式为y=2x+4,∵四边形OENM是正方形,∴OE=OM,∠EOM=90°,分别过点M、E作y轴的垂线,垂足分别为P、Q,如图,∠OPM=∠EQO=90°,∠OMP=90°﹣∠MOP=∠EOQ.∴△OMP≌ΔEOQ(AAS).∴PM=OQ,PO=EQ.设E(m,﹣m2+m+4),∴PM=OQ=﹣m,PO﹣EQ=﹣m2+m+4.则M(m2﹣m+4,m),∵点M在直线AC上,∴m=2(﹣m﹣4)+4.解得m=4或m=﹣1当m=4时,M(0,4),E(4,0),即点M与点C重合,点E与点B重合时,四边形OENM是正方形,此时N(4,4):当m=﹣1时,M(﹣,﹣1),E(﹣1,),点O向左平移个单位,再向下平移1个单位,得到点M,则点E向左平移个单位,再向下平移1个单位,得到点N,N(﹣1﹣,﹣1),即N(﹣,).当OM沿着点O逆时针旋转90°得到OE,如图:设M(a,b),则点E(b,﹣a),∵点M在y=2x+4,∴b=2a+4,则点M(a,2a+4),此时点E(2a+4,﹣a),点E在y=﹣x2+x+4的图象上,∴,解得a=0或﹣,∴M1(0,4),E1(4,0),M2(﹣,﹣1),E2(﹣1,),当点E为点M绕点O逆时针旋转90°时,点E(﹣b,a),M(a,2a+4),E(﹣2a﹣4,a),点E在y=﹣x2+x+4的图象上,∴﹣(﹣2a﹣4)2﹣2a﹣4+4=a,解得a=,∴M1(,),E1(,),M2(,),E2(,),∴点N的坐标为(,)或(,),综上,点N的坐标为(4,4)或(﹣,)或(,)或(,).22.(2023•锦州)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和B,交y轴于点C(0,3),顶点为D.(1)求抛物线的表达式;(2)若点E在第一象限内对称轴右侧的抛物线上,四边形ODEB的面积为7,求点E的坐标;(3)在(2)的条件下,若点F是对称轴上一点,点H是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,如果存在,请直接写出点G的坐标;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)E(2,3);(3)存在,G的坐标为(,)或(,).【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0)和点C(0,3),∴,∴,∴抛物线的表达式y=﹣x2+2x+3.(2)设抛物线的对称轴与x轴交于点M,过点E作EN⊥x轴于点N,设E(x,﹣x2+2x+3),∴BN=3﹣x,MN=x﹣1,∴S四边形ODEB=S△ODM+S梯形DMNE+S△ENB=×1×4+(4﹣x2+4x+3)(x﹣1)+(﹣x2+2x+3)(3﹣x)=﹣x2+4x+3,∵四边形ODEB的面积为7,∴﹣x2+4x+3=7,∴x2﹣4x+4=0,∴x1=x2=2,∴E(2,3).(3)存在点G,使以点E,F,G,H为顶点的四边形是菱形,且∠EFG=60°,满足条件G的坐标为(,)或(,).理由如下:如图,连接CG,DG,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△CEG≌△DEF,∴∠ECG=∠EDF=30°,∴直线CG的表达式为y=﹣x+3,∴,∴G(,);如图,连接CG、DG、CF,∵四边形EFGH是菱形,且∠EFG=60°,∴△EFG是等边三角形,∴△DCE是等边三角形,∴△DGE≌△CFE,∴DG=CF,∴CF=FE,GE=FE,∴DG=GE,∴△CDG≌△CEG,∴∠DCG=∠ECG=30°,∴直线CG的表达式为y=x+3,∴,∴G(,),综上,G(,)或(,).23.(2023•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象交x轴于点A(8,0),交y轴于点B.直线y=x﹣与y轴交于点D,与直线AB交于点C(6,a).点M是线段BC上的一个动点(点M不与点C重合),过点M作x轴的垂线交直线CD于点N.设点M的横坐标为m.(1)求a的值和直线AB的函数表达式;(2)以线段MN,MC为邻边作▱MNQC,直线QC与x轴交于点E.①当0≤m<时,设线段EQ的长度为l,求l与m之间的关系式;②连接OQ,AQ,当△AOQ的面积为3时,请直接写出m的值.【答案】(1)a的值为,直线AB解析式为y=﹣x+6;(2)①l=;②或.【解答】解:(1)∵点C(6,a)在直线y=x﹣上,∴a==,∵一次函数y=kx+b的图象过点A(8,0)和点C(6,),∴,解得,∴直线AB的解析式为y=﹣x+6;(2)①∵M点在直线y=﹣x+6上,且M的横坐标为m,∴M的纵坐标为:﹣m+6,∵N点在直线y=x﹣上,且N点的横坐标为m,∴N点的纵坐标为:m﹣,∴|MN|=﹣m+6﹣m+=﹣,∵点C(6,),线段EQ的长度为l,∴|CQ|=1+,∵|MN|=|CQ|,∴﹣=1+,即l=;②∵△AOQ的面积为3,∴OA•EQ=3,即,解得EQ=,由①知,EQ=6﹣,∴|6﹣|=,解得m=或,即m的值为或.24.(2023•营口)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,tan∠AOB=,AB=2.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接AC并延长交x轴于点D,且∠ADO=45°,求点C 的坐标.【答案】(1)反比例函数的解析式为y=;(2)C(4,2).【解答】解:(1)∵AB⊥y轴于点B,∴∠OBA=90°,在Rt△OBA中,AB=2,tan∠AOB=,∴OB=4,∴A(2,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×2=8;∴反比例函数的解析式为y=;(2)如图,过A作AF⊥x轴于F,∴∠AFD=90°,∵∠ADO=45°,∴∠FAD=90°﹣∠CDE=45°,∴AF=DF=OB=4,∵OF=AB=2,∴OD=6,∴D(6,0),设直线AC的解析式为y=ax+b,∵点A(2,4),D(6,0)在直线AC上,∴,∴,∴直线AC的解析式为y=﹣x+6①,由(1)知,反比例函数的解析式为y=②,联立①②解得,或,∴C(4,2).25.(2023•辽宁)抛物线y=ax2+x+c与x轴交于点A和点B(3,0),与y轴交于点C(0,4),点P为第一象限内抛物线上的动点,过点P作PE⊥x轴于点E,交BC于点F.(1)求抛物线的解析式;(2)如图1,当△BEF的周长是线段PF长度的2倍时,求点P的坐标;(3)如图2,当点P运动到抛物线顶点时,点Q是y轴上的动点,连接BQ,过点B作直线l⊥BQ,连接QF并延长交直线l于点M,当BQ=BM时,请直接写出点Q的坐标.【答案】(1)y=﹣x2+x+4;(2)P(,5);(3)Q(0,+)或(0,﹣).【解答】解:(1)将点B(3,0),点C(0,4)代入y=ax2+x+c,∴,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)∵点B(3,0),点C(0,4),∴OB=3,OC=4,∴tan∠OBC=,∴BE=EF,BF=EF,∴△BEF的周长=3EF,∵△BEF的周长是线段PF长度的2倍,∴3EF=2PF,设直线BC的解析式为y=kx+4,∴3k+4=0,解得k=﹣,∴直线BC的解析式为y=﹣x+4,设P(t,﹣t2+t+4),则F(t,﹣t+4),E(t,0),∴EF=﹣t+4,PF=﹣t2+t+4+t﹣4=﹣t2+4t,∴3(﹣t+4)=2(﹣t2+4t),解得t=3(舍)或t=,∴P(,5);(3)∵y=﹣x2+x+4=﹣(x﹣1)2+,∴P(1,),∵FP⊥x轴,∴F(1,),设Q(0,n),过点M作MN⊥x轴交于点N,∵∠QBM=90°,∴∠QBO+∠MBN=90°,∵∠QBO+∠OQB=90°,∴∠MBN=∠OQB,∵BQ=BM,∴△BQO≌△MBN(AAS),∴QO=BN,MN=OB,∴M(3+n,3),设直线QM的解析式为y=k'x+n,∴k'(3+n)+n=3,解得k'=,∴直线QM的解析式为y=x+n,将点F代入,+n=,解得n=+或n=﹣,∴Q(0,+)或(0,﹣).26.(2023•沈阳)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B(,0)和点C.(1)求这个二次函数的表达式;(2)点E,G在y轴正半轴上,OG=2OE,点D在线段OC上,OD=OE.以线段OD,OE 为邻边作矩形ODFE,连接GD,设OE=a.①连接FC,当△GOD与△FDC相似时,求a的值;②当点D与点C重合时,将线段GD绕点G按逆时针方向旋转60°后得到线段GH,连接FH,F G,将△GFH绕点F按顺时针方向旋转α(0°<α≤180°)后得到△G′FH′,点G,H的对应点分别为G′、H′,连接DE.当△G′FH′的边与线段DE垂直时,请直接写出点H′的横坐标.【答案】(1)y=﹣x+2;(2)①或;②当△G′FH′的边与线段DE垂直时,点H ′的横坐标为2+3或2+或.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过点A(0,2),与x轴的交点为点B (,0),∴,解得:,∴此抛物线的解析式为y=﹣x+2;(2)①令y=0,则﹣x+2=0,解得:x=或x=2,∴C(2,0),∴OC=2.∵OE=a,OG=2OE,OD=OE,∴OG=2a,OD=a.∵四边形ODFE为矩形,∴EF=OD=a,FD=OE=a,∴E(0,a),D(a,0),F(a,a),G(0,2a),∴CD=OC﹣OD=2﹣a.Ⅰ.当△GOD∽△FDC时,∴,∴,∴a=;Ⅱ.当△GOD∽△CDF时,∴,∴,∴a=.综上,当△GOD与△FDC相似时,a的值为或;②∵点D与点C重合,∴OD=OC=2.∴OE=2,OG=2OE=4,EF=OD=2,DF=OE=2,∴EG=OE=2.∴EG=DF=2,∵EG∥DF,∴四边形GEDF为平行四边形,∴FG=DE===4,∴∠GFE=30°,∴∠EGF=60°,∵∠DGH=60°,∴∠EGF=∠DGH,∴∠OGD=∠FGH.在△GOD和△GFH中,,∴△GOD≌△GFH(SAS),∴FH=OD=2,∠GOD=∠GFH=90°.∴GH===2.Ⅰ.当G′F所在直线与DE垂直时,如图,∵∠GFH=90°,GF∥DE,∴∠G′FH′=90°,∴G,F,H′三点在一条直线上,∴GH′=GF+FH′=FG+FH=4+2.过点H′作H′K⊥y轴于点K,则H′K∥FE,∴∠KH′G=∠EFG=30°,∴H′K=H′G•cos30°=×(4+2)=2+3,∴此时点H′的横坐标为2+3;Ⅱ.当G′H′所在直线与DE垂直时,如图,∵GF∥DE,∴G′H′⊥GF,设GF的延长线交G′H′于点M,过点M作MP⊥EF,交EF的延长线于点P,过点H′作H′N⊥MP,交PM的延长线于点N,则H′N∥PF∥x轴,∠PFM=∠EFG=30°.∵G′H′•FM=FH′•FG′,∴4×2=2FM,∴FM=.∴FP=FM•cos30°==,∴PE=PF+EF=2+.∵H′M==,∴H′N=H′M•sin30°=,∴此时点H′的横坐标为PE﹣H′N=2=2+;Ⅲ.当FH′所在直线与DE垂直时,如图,∵∠H′FG′=90°,GF∥DE,∴∠GFH′=90°,∴H,F,H′三点在一条直线上,则∠H′FD=30°,过点H′作H′L⊥DF,交FD的延长线于点L,H′L=H′F•sin30°=2×=,∴此时点H′的横坐标为EF﹣H′L=2=.综上,当△G′FH′的边与线段DE垂直时,点H′的横坐标为2+3或2+或.27.(2023•大连)如图,在平面直角坐标系中,抛物线C1:y=x2上有两点A、B,其中点A的横坐标为﹣2,点B的横坐标为1,抛物线C2:y=﹣x2+bx+c过点A、B.过A作AC∥x轴交抛物线C1另一点为点C.以AC、AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式;(2)将矩形ACDE向左平移m个单位,向下平移n个单位得到矩形A′C′D′E′,点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式,并直接写出自变量m的取值范围;②直线A′E′交抛物线C1于点P,交抛物线C2于点Q.当点E′为线段PQ的中点时,求m 的值;③抛物线C2与边E′D′、A′C′分别相交于点M、N,点M、N在抛物线C2的对称轴同侧,当MN=时,求点C′的坐标.【答案】(1)y=﹣x2﹣2x+4.(2)①n=﹣m2+4m(0<m<4).②.③或.【解答】(1)根据题意,点A的横坐标为﹣2,点B的横坐标为1,代入抛物线C1:y=x2,∴当x=﹣2时,y=(﹣2)2=4,则A(﹣2,4),当x=1时,y=1,则B(1,1),将点A(﹣2,4),B(1,1)代入抛物线C2:y=﹣x2+bx+c,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C,当y=4时,x=±2,。
专题06一元一次方程【专题目录】技巧1:巧用一元一次方程求字母系数的值技巧2:特殊一元一次方程的解法技巧【题型】一、一元一次方程概念【题型】二、一元一次方程的解法【题型】三、一元一次方程应用之配套问题和工程问题【题型】四、一元一次方程应用之销售盈亏问题【题型】五、一元一次方程应用之比赛积分问题【考纲要求】1、了解等式、方程、一元一次方程的概念,掌握等式的基本性质.2、掌握一元一次方程的标准形式,熟练掌握一元一次方程的解法.3、会列方程(组)解决实际问题.【考点总结】一、一元一次方程【注意】一元一次方程的特征1.只含有一个未知数x2.未知数x 的次数都是13.等式两边都是整式,分母中不含未知数。
整式方程一元一次方程概念只含有一个未知数,并且未知数的次数是一次的整式方程,叫做一元一次方程。
其一般形式是ax +b =0(a,b 为常数,且a ≠0).解法解法依据是等式的基本性质.性质①:若a =b ,则a ±m =b ±m ;性质②:若a =b ,则am =bm ;若a =b ,则db d a (d ≠0).解法的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.2.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.【技巧归纳】技巧1:巧用一元一次方程求字母系数的值【类型】一、利用一元一次方程的定义求字母系数的值1.已知方程(m -2)x |m|-1+16=0是关于x 的一元一次方程,求m 的值及方程的解.2.已知方程(3a +2b)x 2+ax +b =0是关于x 的一元一次方程,求方程的解.3.已知(m 2-1)x 2-(m +1)x +8=0是关于x 的一元一次方程,求式子199(m +x)(x -2m)+9m +17的值.【类型】一、利用方程的解求字母系数的值题型1:利用方程的解的定义求字母系数的值4.关于x 的方程a(x -a)+b(x +b)=0有无穷多个解,则()A .a +b =0B .a -b =0C .ab =0D .a b=05.关于x 的方程(2a +b)x -1=0无解,则ab 是()A .正数B .非正数C .负数D .非负数6.已知关于x 的方程9x -3=kx +14有整数解,那么满足条件的整数k =__________.7.已知x =12是方程6(2x +m)=3m +2的解,求关于y 的方程my +2=m(1-2y)的解.8.当m 取什么整数时,关于x 的方程12mx -53=题型2:利用两个方程同解或解具有已知倍数关系确定字母系数的值9.如果方程x -43-8=-x +22的解与关于x 的方程2ax -(3a +5)=5x +12a +20的解相同,确定字母a 的值.题型3:利用方程的错解确定字母系数的值10.小马虎解方程2x -13=x +a 2-1,去分母时,方程右边的-1忘记乘6,其他步骤都正确,这时方程的解为x =2,试求a 的值,并正确解方程.参考答案1.解:-1=1,-2≠0,所以m =-2.将m =-2代入原方程,得-4x +16=0,解得x =4.2.解:+2b =0,,所以3a =-2b ,即a =-23b.当3a +2b =0时,原方程可化为ax +b =0,则x =-b a.将a =-23b 代入方程的解中,得x =-b a =32.3.解:2-1=0,+1≠0,所以m =1.当m =1时,原方程可化为-2x +8=0,解得x =4.当m =1,x =4时,199(m +x)(x -2m)+9m +17=199×5×2+9×1+17=2016.4.A 5.B 6.8,-8,10或267.解:将x =12代入方程6(2x +m)=3m +2,得2×12+3m +2,解得m =-43.将m =-43代入方程my +2=m(1-2y),得-43y +2=-43(1-2y),解得y =56.点拨:已知一元一次方程的解,确定关于某一个未知数的方程中另外一个字母的值,只需把未知数的值(方程的解)代入原方程,即可得出含另一个字母的方程,通过求解确定另一个字母的值,从而进行关于其他字母的计算.8.解:原方程可化为12mx -53=12x -23,所以12(m -1)x =1,所以(m -1)x =2.因为x 必须为正整数且m 为整数,故m -1=1或2.当m -1=1,即m =2时,x =2;当m -1=2,即m =3时,x =1.所以当m =2或3时,方程的解为正整数.9.解:x -43-8=-x +22,去分母,得2(x -4)-48=-3(x +2).去括号、移项、合并同类项,得5x =50.系数化为1,得x =10.把x =10代入方程2ax -(3a +5)=5x +12a +20,得2a×10-(3a +5)=5×10+12a +20,去括号、移项,得20a -3a -12a =5+50+20.合并同类项,得5a =75,系数化为1,得a =15.10.解:由题意得4x -2=3x +3a -1,移项、合并同类项,得x =3a +1.因为x =2,所以2=3a +1,则a =13.当a =13时,原方程为2x -13=x +132-1,解得x =-3.技巧2:特殊一元一次方程的解法技巧【类型】一、分子、分母含小数的一元一次方程题型1:巧化分母为11.解方程:4x -1.60.5-3x -5.40.2=1.8-x 0.1.2.解方程:2x +10.25-x -20.5=-10.题型2:巧化同分母3.解方程:x 0.6-0.16-0.5x 0.06=1.题型3:巧约分去分母4.解方程:4-6x 0.01-6.5=0.02-2x 0.02-7.5.【类型】二、分子、分母为整数的一元一次方程题型1:巧用拆分法5.解方程:x -12-2x -36=6-x 3.6.解方程:x 2+x 6+x 12+x 20=1.题型2:巧用对消法7.解方程:x 3+x -25=337-6-3x 15.题型3:巧通分8.解方程:x +37-x +25=x +16-x +44.【类型】三、含括号的一元一次方程题型1:利用倒数关系去括号92-x =2.题型2:整体合并去括号10.解方程:x -13x -13(x -9)=19(x -9).题型3:整体合并去分母11.解方程:13(x -5)=3-23(x -5).题型4:不去括号反而添括号12.解方程:12x -12(x -1)=23(x -1).题型5:由外向内去括号13-6+2=0.题型6:由内向外去括号14.解方程:243x =34x.参考答案1.解:去分母,得2(4x -1.6)-5(3x -5.4)=10(1.8-x).去括号、移项、合并同类项,得3x =-5.8.系数化为1,得x =-2915.点拨:本题将各分数分母化为整数1,从而巧妙地去掉了分母,给解题带来了方便.2.解:去分母、去括号,得8x +4-2x +4=-10.移项、合并同类项,得6x =-18.系数化为1,得x =-3.点拨:由0.25×4=1,0.5×2=1,可巧妙地将分母化为整数1.3.解:化为同分母,得0.1x 0.06-0.16-0.5x 0.06=0.060.06.去分母,得0.1x -0.16+0.5x =0.06.解得x =1130.4.解:原方程可化为4-6x 0.01+1=0.01-x 0.01.去分母,得4-6x +0.01=0.01-x.解得x =45.点拨:本题将第二个分数通过约分处理后,使两个分数的分母相同,便于去分母.5.解:拆项,得x 2-12-x 3+12=2-x 3.移项、合并同类项,得x 2=2.系数化为1,得x =4.点拨:方程通过拆项处理后,便于合并同类项,使复杂方程简单化.6.解:x 1.整理得x -x 5=1.解得x =54.点拨:因为x 2=x -x 2,x 6=x 2-x 3,x 12=x 3-x 4,x 20=x 4-x 5,所以把方程的左边每一项拆项分解后再合并就很简便.7.解:原方程可化为x 3+x -25=247+x -25,即x 3=247.所以x =727.点拨:此题不要急于去分母,通过观察发现-6-3x 15=x -25,两边消去这一项可避免去分母运算.8.解:方程两边分别通分后相加,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012.解得x =-36211.点拨:本题若直接去分母,则两边应同乘各分母的最小公倍数420,运算量大容易出错,但是把方程左右两边分别通分后再去分母,会给解方程带来方便.9.解:去括号,得x 4-1-3-x =2.移项、合并同类项,得-34x =6.系数化为1,得x =-8.点拨:观察方程特点,由于32与23互为倒数,因此让32乘以括号内的每一项,则可先去中括号,同时又去小括号,非常简便.10.解:原方程可化为x -13x +19(x -9)-19(x -9)=0.合并同类项,得23x =0.系数化为1,得x =0.11.解:移项,得13(x -5)+23(x -5)=3.合并同类项,得x -5=3.解得x =8.点拨:本题将x -5看成一个整体,通过移项、合并同类项进行解答,这样避免了去分母,给解题带来简便.12.解:原方程可化为12[(x -1)+1-12(x -1)]=23(x -1).去中括号,得12(x -1)+12-14(x -1)=23(x -1).移项、合并同类项,得-512(x -1)=-12.解得x =115.13.解:-2+2=0.[来源:学科网]去小括号,得136x -112=0.移项,得136x =112.系数化为1,得x =3.14.解:去小括号,得2[43x -23x +12]=34x.去中括号,得43x +1=34x.移项,合并同类项,得712x =-1.系数化为1,得x =-127.【题型讲解】【题型】一、一元一次方程概念例1、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为()A .9B .8C .5D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C .【题型】二、一元一次方程的解法例2、解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x+=-C .2(1)63x x +=-D .3(1)62x x+=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .例3、解方程:221123x x x ---=-【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【详解】解:221123x x x ---=-()()6326221x x x --=--636642x x x -+=-+634662x x x -+=-+72x =27x =【题型】三、一元一次方程应用之配套问题和工程问题例4、某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x 名工人生产螺钉,依题意列方程为()A .1200x =2000(22﹣x )B .1200x =2×2000(22﹣x )C .1200(22﹣x )=2000xD .2×1200x =2000(22﹣x )【答案】D【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x ),即2×1200x=2000(22-x ),故选D .【题型】四、一元一次方程应用之销售盈亏问题例5、随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A .180B .170C .160D .150【答案】A【分析】设该超市该品牌粽子的标价为x 元,则售价为80%x 元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x 元,则售价为80%x 元,由题意得:80%x ﹣120=20%×120,解得:x =180.即该超市该品牌粽子的标价为180元.故选:A .【题型】五、一元一次方程应用之比赛积分问题例6、一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A .17道B .18道C .19道D .20道【答案】C 【分析】设作对了x 道,则错了(25-x )道,根据题意列出方程进行求解.【详解】设作对了x 道,则错了(25-x )道,依题意得4x-(25-x)=70,解得x=19故选C.一元一次方程(达标训练)一、单选题1.(2020·浙江·模拟预测)下列各式:①253-+=;②235=3x x x -+;③211x +=;④21=x ;⑤23x +;⑥4x =.其中是一元一次方程的有()A .1个B .2个C .3个D .4个【答案】B【分析】根据一元一次方程的定义逐个判断即可【详解】解:①不含未知数,故错②未知数的最高次数为2,故错③含一个未知数,次数为1,是等式且两边均为整式,故对④左边不是整式,故错⑤不是等式,故错⑥含一个未知数,次数为1,是等式且两边均为整式,故对故选:B【点睛】本题考查了一元一次方程的定义,熟练掌握并理解一元一次方程的定义是解本题的关键2.(2022·浙江温州·三模)解方程2233522x x x x x--+=--,以下去分母正确的是()A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-【答案】D【分析】利用等式的性质在分式方程两边分别乘()2x -即可.【详解】A ,()223352,x x x x +--=-故此选项不符合题意.B ,()223352,x x x x +--=-故此选项不符合题意.C ,()223352,x x x x +--=-故此选项不符合题意.D ,()223352,x x x x +--=-故此选项符合题意.故选:D .【点睛】本题主要考查了解分式方程去分母,根据等式的性质在分式方程两边分别乘以分母的最简公分母,熟练掌握等式的性质是解此题的关键.3.(2022·重庆沙坪坝·一模)若关于x 的方程25x a +=的解是2x =,则a 的值为()A .9-B .9C .1-D .1【答案】D【分析】把2x =代入方程计算即可求出a 的值.【详解】解:把2x =代入方程得:45a +=,解得1a =.故选:D .【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(2022·河北石家庄·二模)1x =是下列哪个方程的解()A .65x=-B .2233+=+x x C .21133x x x x -=--D .2x x =【答案】D【分析】把x =1代入各选项进行验算即可得解.【详解】解:A 、5−1=4≠6,故本选项错误;B 、2124⨯+=,3136⨯+=,4≠6,故本选项错误;C 、当x =1时,x -1=0即分式的分母为0,故本选项错误;D 、211=,故本选项正确.故选:D .【点睛】本题考查了方程的解的概念,使方程的左右两边相等的未知数的值是方程的解.5.(2022·广东·佛山市南海外国语学校三模)我国古代的《洛书》中记载了最早的三阶幻方—九宫图.在如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等,则m 的值是()A .5B .3C .1-D .2-【答案】A 【分析】根据幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等列出方程,即可求解.【详解】解:设幻方正中间的数字为a ,依题意得:124a m a ++=++,解得:5m =.故选A .【点睛】此题考查了一元一次方程的应用,正确理解题意是解题的关键.二、填空题6.(2022·四川达州·二模)方程2x -3=5的解为________.【答案】x =4【分析】根据解一元一次方程的解法求解即可得.【详解】解:2x -3=5,移项得2x =8,系数化为1得:x =4,故答案为:x =4.【点睛】题目主要考查解一元一次方程,熟练掌握方法是解题关键.7.(2022·四川广元·二模)已知:A ,B 在数轴上对应的数分别用a ,b 表示,且2(4)|12|0a b ++-=.若点C 点在数轴上且满足3AC BC =,则C 点对应的数为________.【答案】8或20##20或8【分析】先根据非负数的性质求出a ,b 的值,分C 点在线段AB 上和线段AB 的延长线上两种情况讨论,即可求解.【详解】解:∵2(4)|12|0a b ++-=∴a +4=0,b −12=0解得:a =−4,b =12∴A 表示的数是−4,B 表示的数是12设数轴上点C 表示的数为c∵AC =3BC∴|c +4|=3|c −12|当点C 在线段AB 上时则c +4=3(12−c )解得:c =8当点C 在AB 的延长线上时则c +4=3(c −12)解得:c =20综上可知:C 对应的数为8或20.【点睛】本题考查了非负数的性质,方程的解法,数轴两点之间的距离,运用分类讨论思想方程思想和数形结合思想是解本题的关键.三、解答题8.(2022·四川广元·一模)解方程:2(1)13x x x --=-.【答案】12x =-【分析】先去括号,再移项,合并同类项,最后把未知数的系数化“1”,从而可得答案.【详解】解:去括号,得2213x x x -+=-.移项及合并同类项,得21x =-.系数化为1,得12x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.9.(2022·湖南·长沙市长郡双语实验中学二模)“小口罩,大温暖”,为有效防控疫情,缓解基层防疫物资短缺问题,2020年2月10日,福山区首批4万只口罩免费派发.烟台市政府紧急调拨的这批民用口罩包括A ,B 两种不同款型,其中A 型口罩单价100元,B 型口罩单价80元.(1)先进行试点发放,某社区环卫工人共收到A ,B 两种款型的口罩100盒,总价值共计9200元,求免费发放给该社区环卫工人的A 型口罩和B 型口罩各多少盒?(2)我区某街道办事处决定将此项公益活动在其整个街道社区全面铺开,按照试点发放中A ,B 两种款型的数量比共发放2000盒.若该社区人口平均每500人发放A型口罩m盒,B型口罩(328m-)盒.求该街道社区人口总数.【答案】(1)免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒(2)该街道社区人口总数为50000人【分析】(1)设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,根据题意,列出方程,即可求解;(2)根据题意可得3286040m m-=,从而得到m=12,即可求解.(1)解:设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,依题意得:100100809200x yx y+=⎧⎨+=⎩,解得:6040xy=⎧⎨=⎩.答:免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒.(2)解:依题意得:328 6040m m-=,解得:m=12,∴m+3m−28=20.∴该街道社区人口总数=200020×500=50000(人).答:该街道社区人口总数为50000人.【点睛】本题主要考查了一元一次方程的应用,二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.一元一次方程(提升测评)一、单选题1.(2022·湖北十堰·一模)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数,羊价各是多少?如果我们设合伙人数为x ,则可列方程()A .54573x x +=+B .54573x x -=-C .45357x x +=+D .45357x x -=+【答案】A【分析】根据每人出5钱,还差45钱;若每人出7钱,还差3钱,可以列出相应的一元一次方程,本题得以解决.【详解】解:设合伙人数为x ,则可列方程为54573x x +=+;故选:A【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.2.(2022·浙江温州·二模)若代数式()()2132x x +++的值为8,则代数式()()2231x x -+-的值为()A .0B .11C .7-D .15-【答案】C【分析】由()()2132x x +++的值为8,求得x =0,再将x =0代入计算可得.【详解】解:∵()()2132x x +++的值为8,∴2x +2+3x +6=8,∴x =0,当x =0时,()()2231x x -+-=2×(-2)+3×(-1)=-7.故选:C .【点睛】本题考查了解一元一次方程,代数式的求值,掌握解一元一次方程的解法是解题的关键.3.(2022·河北·石家庄市第四十一中学模拟预测)已知m n =,下列等式不成立的是()A .2m n m +=B .0-=m nC .22m x n x -=-D .235m n n-=【答案】D【分析】根据等式的性质和合并同类项即可判断.【详解】由m n =,得2m n m m m +=+=,故A 成立;0m n m m -=-=,故B 成立;根据等式的性质,等式两边同加或减一个等式,左右两边仍相等,22m x n x -=-,故C 成立;2323m n n n n -=-=-,故D 不成立;故选D .【点睛】本题考查了等式的性质和合并同类项,熟记运算法则是解题的关键.4.(2022·河北保定·一模)已知分式:341(32a a a a -+---■的某一项被污染,但化简的结果等于2a +,被污染的项应为()A .0B .1C .23a a --D .32a a --【答案】B【分析】设被污染的部分为p ,然后根据等式的性质解关于p 的方程,求出p 的表达式即可.【详解】解:设被污染的部分为p ,则341()(232a a p a a a -+-=+--,∴241()232a p a a a --=+--,∴()()()132222a p a a a a --=+⨯--+,∴3122a p a a -=+--,∴22a p a -=-,∴1p =.故选:B .【点睛】本题主要考查了分式的混合运算和利用等式的性质解一元一次方程,解题的关键是根据等式的性质解方程和掌握分式混合运算顺序和运算法则.5.(2022·重庆·三模)下列四种说法中正确的有()①关于x 、y 的方程24107x y +=存在整数解.②若两个不等实数a 、b 满足()()244222a b a b +=+,则a 、b 互为相反数.③若2()4()()0a c a b b c ---=-,则2b a c =+.④若222x yz y xz z xy ---==,则x y z ==.A .①④B .②③C .①②④D .②③④【答案】B【分析】将24x y +提公因式2得2(2)x y +,由x 、y 为整数,则2(3)x y +为偶数,因为107为奇数,即原等式不成立,即可判断①;将442222()()a b a b +=+,整理得222()0a b -=,即得出22a b =,由于实数a 、b 不相等,即得出a 、b 互为相反数,故可判断②;2()4()()0a c a b b c ---=-整理得2(2)0a c b +-=,即得20a c b +-=,即2a c b +=,故可判断③;由222x yz y xz z xy ---==,得出2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,即可变形为222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,可以得出x y z ==或0x y z ++=,故可判断④.【详解】解:∵262(3)x y x y +=+,∴如果x 、y 为整数,那么2(3)x y +为偶数,∵107为奇数,∴24107x y +=不存在整数解,故①错误;442222()()a b a b +=+444422222a b a b a b +++=442220a b a b +-=222()0a b -=∴22a b =,∵实数a 、b 不相等,∴a 、b 互为相反数,故②正确;2()4()()0a c ab bc ---=-222244440a ac c ab ac b bc -+-++-=()()22440a cb ac b +-++=2(2)0a cb +-=∴20ac b +-=,即2a c b +=,故③正确;∵222x yz y xz z xy---==∴2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,∴2222222211441144x xz z y yz z y xy x z xz x ⎧++=++⎪⎪⎨⎪++=++⎪⎩,即222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,∴11()2211()22x z y z y x z x ⎧+=±+⎪⎪⎨⎪+=±+⎪⎩,∴x y z ==或0x y z ++=,故④不一定正确.综上可知正确的有②③.故选B .【点睛】本题考查因式分解,整式的混合运算.熟练掌握完全平方公式是解题关键.二、填空题6.(2022·山东临沂·一模)如图,用一块长7.5cm 、宽3cm 的长方形纸板,和一块长6cm 、宽1.5cm 的长方形纸板,与一块小正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则小正方形的边长是______cm ,拼成的大正方形的面积是______cm 2.【答案】 4.581【分析】设小正方形的边长为x cm ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】解:设小正方形的边长为x cm ,则大正方形的边长为(6+7.5-x )cm 或(x +3+1.5)cm ,根据题意得:6+7.5-x =x +3+1.5,解得:x =4.5,则大正方形的边长为6+7.5-x =6+7.5-4.5=9(cm ),大正方形的面积为92=81(cm 2),故答案为:4.5;81.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,设出小正方形的边长并表示出大正方形的边长.7.(2022·上海静安·1=的解是________.【答案】x =1【分析】首先方程两边同时平方,把无理方程化为有理方程,再解方程即可求得【详解】解:方程两边同时平方,得3x -2=1,解得x =1,经检验,x =1是原方程的解,所以,原方程的解为x =1.故答案为:x =1.【点睛】本题考查了无理方程的解法,熟练掌握和运用无理方程的解法是解决本题的关键,注意要检验.三、解答题8.(2022·河北·育华中学三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a 、c 的值,;②求代数式222a c ac +-的值;(2)若将数轴折叠,使得点A 与点C 重合,求与点B 重合的点表示的数;(3)请在数轴上确定一点D ,使得AD =2BD ,则D 表示的数是.【答案】(1)①-2,6;②64(2)3(3)4或0【分析】(1)①根据平方和绝对值的非负性即可求出a 和c ,②把a 和c 的值代入222a c ac +-求值即可;(2)根据题意,求出b 的值,然后求出线段AC 的中点,即可求出结论;(3)设点D 表示的数为x ,然后根据点D 的位置分类讨论,分别根据2AD BD =列出方程即可分别求出结论.(1)解:①∵()2620c a -++=,∴20a +=,60c -=,解得2a =-,6c =.故答案为:-2,6.②把2a =-,6c =代入222a c ac +-,2224362464a c ac +-=++=;(2)解:∵b 是最小的正整数,∴1b =,∴线段AC 的中点为()2622-+÷=,设与点B 重合的点表示的数为n ,则(1+n )÷2=2,解得:n =3.∴与点B 重合的点表示的数是3.故答案为:3.(3)解:因为a =-2,b =1,c =6,设点D 表示的数为x ,若2AD BD =,分三种情况讨论:①若点D 在点A 的左侧,则x <-2且()221x x --=-,解得4x =(不符合题意,舍去);②若点D 在点A 、B 之间,则-2<x <1且()()221x x --=-,解得0x =;③若点D 在点B 右侧,则x >1且x -(-2)=2(x -1),解得:x =4.综上所述,点D 表示的数是0或4.故答案为:0或4.【点睛】此题考查了非负性的应用、数轴上两点之间的距离、中点公式和一元一次方程的应用,解题的关键是掌握平方、绝对值的非负性、数轴上两点之间的距离公式、中点公式和等量关系.。
2019年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2019辽宁沈阳中考,1,2分,★☆☆)﹣5的相反数是()A.5 B.﹣5 C.15D.152.(2019辽宁沈阳中考,2,2分,★☆☆)2019年1月1日起我国开始贯彻《国务院关于印发个人所得税专项附加扣除暂行办法的通知》的要求,此次减税范围广,其中有6500万人减税70%以上,将数据6500用科学记数法表示为()A.6.5×102B.6.5×103C.65×103D.0.65×104 3.(2019辽宁沈阳中考,3,2分,★☆☆)如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.4.(2019辽宁沈阳中考,4,2分,★☆☆)下列说法正确的是()A.若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.04,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件5.(2019辽宁沈阳中考,5,2分,★☆☆)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2 6.(2019辽宁沈阳中考,6,2分,★☆☆)某青少年篮球队有12名队员,队员的年龄情况统计如下:年龄(岁)12 13 14 15 16人数 3 1 2 5 1 则这12名队员年龄的众数和中位数分别是()A.15岁和14岁B.15岁和15岁C.15岁和14.5岁D.14岁和15岁7.(2019辽宁沈阳中考,7,2分,★★☆)已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5 B.9:25 C.5:3 D.25:9 8.(2019辽宁沈阳中考,8,2分,★★☆)已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A.k<0 B.k<﹣1 C.k<1 D.k>﹣1 9.(2019辽宁沈阳中考,9,2分,★★☆)如图,AB是⊙O的直径,点C和点D是⊙O 上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.1213B.125C.512D.51310.(2019辽宁沈阳中考,10,2分,★★☆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A .abc <0B .b 2﹣4ac <0C .a ﹣b +c <0D .2a +b =0二、填空题(每小题3分,共18分)11.(2019辽宁沈阳中考,11,3分,★☆☆)因式分解:﹣x 2﹣4y 2+4xy = . 12.(2019辽宁沈阳中考,12,3分,★☆☆)二元一次方程组32325x y x y -=⎧⎨+=⎩的解是 .13.(2019辽宁沈阳中考,13,3分,★☆☆)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 个白球.14.(2019辽宁沈阳中考,14,3分,★★☆)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,若AD =BC =2,则四边形EGFH 的周长是 .15.(2019辽宁沈阳中考,15,3分,★★☆)如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=2k x(x >0)的图象相交于点A 33点B 是反比例函数图象上一点,它的横坐标是3,连接OB ,AB ,则△AOB 的面积是 .16.(2019辽宁沈阳中考,16,3分,★★☆)如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(2019辽宁沈阳中考,17,6分,★☆☆)计算:(﹣12)﹣2+2cos30°﹣|13|+(π﹣2019)0.18.(2019辽宁沈阳中考,18,8分,★★☆)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回...,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.19.(2019辽宁沈阳中考,19,8分,★★☆)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.四、(每小题8分,共16分)20.(2019辽宁沈阳中考,20,8分,★★☆)“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做一些力所能及的家务.在本学期开学初,小颖同学随机调查了部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)请根据以上信息直接在答题卡中.......补全条形统计图;(3)扇形统计图中m的值是,类别D所对应的扇形圆心角的度数是度;(4)若该校有800名学生,根据抽样调查的结果,请你估计该校有多少名学生寒假在家做家务的总时间不低于20小时.21.(2019辽宁沈阳中考,21,8分,★★☆)2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?五、(本题10分)22.(2019辽宁沈阳中考,22,10分,★★☆)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.六、(本题10分)23.(2019辽宁沈阳中考,23,10分,★★☆)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接..写出点C的坐标.七、(本题12分)24.(2019辽宁沈阳中考,24,12分,★★★)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;2的值.③当α=150°时,若BC=3,DE=l,请直接..写出PC八、(本题12分)25.(2019辽宁沈阳中考,25,12分,★★★)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N (点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接..写出此时点N的坐标.2019年辽宁省沈阳市中考数学试卷答案全解全析1.答案:A解析:根据只有符号不同的两个数互为相反数,可得﹣5的相反数是5.故选A.考查内容:相反数.命题意图:本题主要考查学生对相反数概念的识记,属于基础题,难度较小。
辽宁省沈阳市2017中考数学试题(考试时间120分钟 满分120分)一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.7的相反数是( )A.-7B.47-C.17D.7 【解析】根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.【答案】A.2. 如图所示的几何体的左视图是( )A. B. C. D.【解析】这个几何体从左面看到的图形是两个竖排的正方形,故选D.【答案】D.3. “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
将数据830万用科学记数法可以表示为 ( )A.8310⨯B.28.310⨯C. 38.310⨯D. 50.8310⨯【解析】科学记数法表示形式为a ×10n ,其中1≤|a|<10,n 为整数,n 的值用所给的数的整数位数减1,所以830=8.3×102,故选B .【答案】B.4. 如图,//AB CD ,150,2∠=︒∠的度数是( )A.50︒B.100︒C.130︒D.140︒【解析】已知//AB CD ,150,∠=︒根据平行线的性质可得1350,∠=∠=︒再由邻补角的性质可得∠2=180°-∠3=130°,故选C.【答案】C.5. 点()-2,5A 在反比例函数()0k y k x=≠的图象上,则k 的值是( )A.10B.5C.5-D.10-【解析】已知点()-2,5A 在反比例函数()0k y k x=≠的图象上,可得k=-2×5=-10,故选D. 【答案】D.6. 在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是()2,8-,则点B 的坐标是( ) A. ()2,8-- B. ()2,8 C. ()2,8- D. ()8,2【解析】关于y 轴对称点的坐标的特点是横坐标互为相反数,纵坐标不变,由此可得点B 的坐标为(-2,-8),故选A. 【答案】A.7. 下列运算正确的是( )A.358x x x +=B. 3515x x x +=C.()()2111x x x +-=-D.()5522x x =【解析】选项A ,不是同类项,不能够合并,选项A 错误;选项B ,不是同底数幕的乘法,不能够计算,选项B 错误;选项C ,根据平方差公式,选项C 计算正确;选项D ,根据积的乘方可得原式=32x 5,选项D错误,故选C.【答案】C.8. 下利事件中,是必然事件的是( )A.将油滴在水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果22a b =,那么a b =D.掷一枚质地均匀的硬币,一定正面向上【解析】选项A ,将油滴在水中,油一定会浮在水面上,故是必然事件;选项B ,车辆随机到达一个路口,可能遇到红灯,也可能是黄灯或者绿灯,故是随机事件;选项C ,如果a 2=b 2,那么a=b 或a=-b ,故是随机事件;选项D ,掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,故是随机事件,故选A.【答案】A.9. 在平面直角坐标系中,一次函数1y x =-的图象是( ) A. B. C. D .【解析】一次函数1y x =-的图象过(1,0)、(0,-1)两个点,观察图象可得,只有选项B 符合要求,故选B.【答案】B.10. 正方形ABCDEF 内接与O ,正六边形的周长是12,则O 的半径是( )3 B.2 C.22 D.23【解析】已知正六边形的周长是12,可得BC=2,连接OB 、OC ,可得∠BOC=00360606=,所以△BOC 为等边三角形,所以OB=BC=2,即O 的半径是2,故选B.【答案】B.二、填空题(每小题3分,共18分)11. 因式分解23a a += . 【解析】直接提公因式a 即可,即原式=3(3a+1). 【答案】3(3a+1). 12. 一组数2,3,5,5,6,7的中位数是 . 【解析】这组数据的中位数为5552+=. 【答案】5.13. 2121x x x x x +⋅=++ . 【解析】原式= 211(1)1x x x x x +⋅=++. 【答案】11x +. 14. 甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是2220.53,0.51,0.43S S S ===甲乙丙,则三人中成绩最稳定的是 .(填“甲”或“乙”或“丙”)【解析】平均数相同,方差越小,这组数据越稳定,根据题意可得三人中成绩最稳定的是丙.【答案】丙.15. 某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出 400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元时,才能在半月内获得最大利润.【解析】设销售单价为x 元,销售利润为y 元.根据题意得:y=(x-20)[400-20(x-30)]=(x-20)(1000-20x )=-20x2-1400x-20000,当x=-b 2a =-14002×(-20)=35时,可获得利润最大 【答案】35.16. 如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【解析】如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt △BCG 中,根据勾股定理求得CG=4,再由1122BCG SBC CG BG CM =⋅=⋅,即可求得CM=125 ,在Rt △BCM 中,根据勾股定理求得22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=95,所以CN=MN-CM=3-125=35,在Rt △ECN 中,根据勾股定理求得EC=22223990310()()55255CN EN +=+==.【答案】3105. 三、解答题(第17题6分,第18、19小题各8分,共22分) 17. 计算()022132sin 454π--+-︒+- 【分析】根据绝对值的性质、负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质分别计算各项后合并即可.解:原式=1212121929-+-⨯+=. 18. 如图,在菱形ABCD 中,过点D 做DE AB ⊥于点E ,做DF BC ⊥于点F ,连接EF ,求证:(1)ADE CDE ∆≅∆;(2)BEF BFE ∠=∠【分析】(1)根据菱形的性质可得AD=CD ,A C ∠=∠,再由DE AB ⊥,DF BC ⊥,可得090AED CFD ∠=∠=,根据AAS 即可判定ADE CDE ∆≅∆;(2)已知菱形ABCD ,根据菱形的性质可得AB=CB ,再由ADE CDE ∆≅∆,根据全等三角形的性质可得AE=CF ,所以BE=BF ,根据等腰三角形的性质即可得BEF BFE ∠=∠. 解:(1) ∵菱形ABCD ,∴AD=CD ,A C ∠=∠∵DE AB ⊥,DF BC ⊥∴090AED CFD ∠=∠=∴ADE CDE ∆≅∆(2) ∵菱形ABCD ,∴AB=CB∵ADE CDE ∆≅∆∴AE=CF∴BE=BF∴BEF BFE ∠=∠19. 把3、5、6三个数字分别写在三张完全不同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字、放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.【分析】根据题意列表(画出树状图),然后由表格(或树状图)求得所有等可能的结果与两次抽取的卡片上的数字都是奇数的情况,再利用概率公式求解即可求得答案.解:列表得:或(或画树形图)总共出现的等可能的结果有9种,其中两次抽取的卡片上的数字都是奇数的结果有4种,所以两次抽取的卡片上的数字都是奇数的概率为49.四、(每题8分,共16分)20. 某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他。
一、选择题1.(2016四川省雅安市)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)2.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为()A.(4,0)B.(5,0)C.(4,0)或(﹣4,0)D.(5,0)或(﹣5,0)3.(2015来宾)如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,﹣1) B.(2,3) C.(0,1) D.(4,1)4.(2015钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)5.(2015扬州)如图,在平面直角坐标系中,点B 、C 、E 、在y 轴上,Rt△ABC 经过变换得到Rt△ODE .若点C 的坐标为(0,1),AC =2,则这种变换可以是( )A .△ABC 绕点C 顺时针旋转90°,再向下平移3B .△ABC 绕点C 顺时针旋转90°,再向下平移1C .△ABC 绕点C 逆时针旋转90°,再向下平移1D .△ABC 绕点C 逆时针旋转90°,再向下平移36.(2015广元)如图,把RI △ABC 放在直角坐标系内,其中∠CAB =90°, B C =5.点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为( )A .4B .8C .16D .827.(2015黔西南州)在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),P M 的延长线与x 轴交于点N (n ,0),如图3,当m=3时,n 的值为( )A .423-B .432-C .332-D .3328.(2014年广西来宾3分)将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)9.(2014年广西玉林、防城港3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B. C. D.10.(2014年湖南益阳4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A. 1 B. 1或5 C. 3 D. 511.(2014年浙江台州4分)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm,得到菱形EFGH,则图中阴影部分图形的面积与四边形E M CN的面积之比为()A.4∶3 B.3∶2 C.14∶9 D.17∶9二、填空题12.(2016四川省成都市)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQ M处(边PQ与DC重合,△PQ M和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形P M QRN中,对角线M N长度的最小值为.13.(2016广东省广州市)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB 的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为 cm.14.(2016黑龙江省龙东地区)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x 轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.15.(2015镇江)如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为 cm.16.(2015咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线34y x=-上,则点B与其对应点B′间的距离为.17.(2014年湖南邵阳3分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动▲ 次后该点到原点的距离不小于41.18.(2014年山东德州4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(▲ ,▲ ).三、解答题19.(2016山东省聊城市)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.20.(2016四川省巴中市)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;21.(2016四川省资阳市)已知抛物线与x 轴交于A (6,0)、B (54-,0)两点,与y 轴交于点C ,过抛物线上点M (1,3)作M N ⊥x 轴于点N ,连接O M .(1)求此抛物线的解析式;(2)如图1,将△O M N 沿x 轴向右平移t 个单位(0≤t ≤5)到△O ′M′N ′的位置,M N ′、M′O ′与直线AC 分别交于点E 、F .①当点F 为M′O ′的中点时,求t 的值;②如图2,若直线M′N ′与抛物线相交于点G ,过点G 作GH ∥M′O ′交AC 于点H ,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t 的值;若不存在,请说明理由.22.(2016四川省达州市)如图,已知抛物线226y ax x =++(a ≠0)交x 轴与A ,B 两点(点A 在点B 左侧),将直尺WXYZ 与x 轴负方向成45°放置,边WZ 经过抛物线上的点C (4,m ),与抛物线的另一交点为点D ,直尺被x 轴截得的线段EF =2,且△CEF 的面积为6.(1)求该抛物线的解析式;(2)探究:在直线AC 上方的抛物线上是否存在一点P ,使得△ACP 的面积最大?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由.(3)将直尺以每秒2个单位的速度沿x 轴向左平移,设平移的时间为t 秒,平移后的直尺为W ′X ′Y ′Z ′,其中边X ′Y ′所在的直线与x 轴交于点M ,与抛物线的其中一个交点为点N ,请直接写出当t 为何值时,可使得以C 、D 、M 、N 为顶点的四边形是平行四边形.23.(2016山东省聊城市)如图,已知抛物线2y ax bx c =++经过点A (﹣3,0),B (9,0)和C (0,4).CD 垂直于y 轴,交抛物线于点D ,DE 垂直与x 轴,垂足为E ,l 是抛物线的对称轴,点F 是抛物线的顶点.(1)求出二次函数的表达式以及点D 的坐标;(2)若Rt△AOC 沿x 轴向右平移到其直角边OC 与对称轴l 重合,再沿对称轴l 向上平移到点C 与点F 重合,得到Rt△A 1O 1F ,求此时Rt△A 1O 1F 与矩形OCDE 重叠部分的图形的面积;(3)若Rt△AOC 沿x 轴向右平移t 个单位长度(0<t ≤6)得到Rt△A 2O 2C 2,Rt△A 2O 2C 2与Rt△OED 重叠部分的图形面积记为S ,求S 与t 之间的函数表达式,并写出自变量t 的取值范围.24.(2016山东省菏泽市)在平面直角坐标系xOy 中,抛物线22y ax bx =++过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线12y x =-向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.25.(2016广东省)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值.26.(2016四川省南充市)如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接M F,如果sin∠A M F 10Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.27.(2016浙江省湖州市)如图,已知二次函数2y x bx c =-++(b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移m (m >0)个单位,使平移后得到的二次函数图象的顶点落在△ABC 的内部(不包括△ABC 的边界),求m 的取值范围;(3)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标(直接写出结果,不必写解答过程).28.(2016浙江省金华市)在平面直角坐标系中,点O 为原点,平行于x 轴的直线与抛物线L :2y ax =相交于A ,B 两点(点B 在第一象限),点D 在AB 的延长线上.(1)已知a =1,点B 的纵坐标为2.①如图1,向右平移抛物线L 使该抛物线过点B ,与AB 的延长线交于点C ,求AC 的长.②如图2,若BD =12AB ,过点B ,D 的抛物线L 2,其顶点M 在x 轴上,求该抛物线的函数表达式. (2)如图3,若BD =AB ,过O ,B ,D 三点的抛物线L 3,顶点为P ,对应函数的二次项系数为a 3,过点P 作PE ∥x 轴,交抛物线L 于E ,F 两点,求3a a 的值,并直接写出AB EF的值.29.(2016湖北省荆州市)如图,将一张直角三角形ABC 纸片沿斜边AB 上的中线CD 剪开,得到△ACD ,再将△ACD 沿DB 方向平移到△A ′C ′D ′的位置,若平移开始后点D ′未到达点B 时,A ′C ′交CD 于E ,D ′C ′交CB 于点F ,连接EF ,当四边形EDD ′F 为菱形时,试探究△A ′DE 的形状,并判断△A ′DE 与△EFC ′是否全等?请说明理由.(1)求抛物线的解析式及点G 的坐标;①求m 的值;②连接CG 交x 轴于点H ,连接FG ,过B 作BP ∥FG ,交CG 于点P ,求证:PH=GH .31.(2016湖北省鄂州市)如图,在平面直角坐标系xOy 中,直线y =2x +4与y 轴交于A 点,与x 轴交于B 点,抛物线C 1:214y x bx c =-++过A 、B 两点,与x 轴另一交点为C . (1)求抛物线解析式及C 点坐标.(2)向右平移抛物线C 1,使平移后的抛物线C 2恰好经过△ABC 的外心,抛物线C 1、C 2相交于点D ,求四边形AOCD 的面积.(3)已知抛物线C 2的顶点为M ,设P 为抛物线C 1对称轴上一点,Q 为抛物线C 1上一点,是否存在以点M 、Q 、P 、B 为顶点的四边形为平行四边形?若存在,直接写出P 点坐标;不存在,请说明理由.32.(2016湖南省张家界市)已知抛物线2(1)3y a x =--(a ≠0)的图象与y 轴交于点A (0,﹣2),顶点为B .(1)试确定a 的值,并写出B 点的坐标;(2)若一次函数的图象经过A 、B 两点,试写出一次函数的解析式;(3)试在x 轴上求一点P ,使得△PA B 的周长取最小值;(4)若将抛物线平移m (m≠0)个单位,所得新抛物线的顶点记作C ,与原抛物线的交点记作D ,问:点O 、C 、D 能否在同一条直线上?若能,请求出m 的值;若不能,请说明理由.33.(2016湖南省益阳市)如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为316时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E 1F 1G 1H 1,将矩形E 1F 1G 1H 1绕G 1点按顺时针方向旋转,当H 1落在CD 上时停止转动,旋转后的矩形记为矩形E 2F 2G 1H 2,设旋转角为α,求cosα的值.34.(2016辽宁省沈阳市)如图,在平面直角坐标系中,△AOB 的顶点O 为坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,1),点C 为边AB 的中点,正方形OBDE 的顶点E 在x 轴的正半轴上,连接CO ,CD ,CE .(1)线段OC 的长为 ;(2)求证:△CBD ≌△COE ;(3)将正方形OBDE 沿x 轴正方向平移得到正方形O 1B 1D 1E 1,其中点O ,B ,D ,E 的对应点分别为点O 1,B 1,D 1,E 1,连接CD ,CE ,设点E 的坐标为(a ,0),其中a ≠2,△CD 1E 1的面积为S .①当1<a <2时,请直接写出S 与a 之间的函数表达式;②在平移过程中,当S =14时,请直接写出a 的值.35.(2016重庆市)如图1,在平面直角坐标系中,抛物线212333y x x =-+与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,抛物线的顶点为点E .(1)判断△ABC 的形状,并说明理由;(2)经过B ,C 两点的直线交抛物线的对称轴于点D ,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E ′,点A 的对应点为点A ′,将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A ,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A ′,C 1E ′,△A ′C 1E ′是否能为等腰三角形?若能,请求出所有符合条件的点E ′的坐标;若不能,请说明理由.36.(2015宜宾)如图,在平面直角坐标系中,四边形ABCD 是矩形,AD ∥x 轴,A (3-,32),AB =1,AD =2. (1)直接写出B 、C 、D 三点的坐标;(2)将矩形ABCD 向右平移m 个单位,使点A 、C 恰好同时落在反比例函数k y x=(0x >)的图象上,得矩形A ′B ′C ′D ′.求矩形ABCD 的平移距离m 和反比例函数的解析式.37.(2014年福建莆田14分)如图,抛物线C 1:y =(x +m )2(m 为常数,m >0),平移抛物线y =﹣x 2,使其顶点D 在抛物线C 1位于y 轴右侧的图象上,得到抛物线C 2.抛物线C 2交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C ,设点D 的横坐标为a .(1)如图1,若m=12. ①当OC =2时,求抛物线C 2的解析式;②是否存在a ,使得线段BC 上有一点P ,满足点B 与点C 到直线OP 的距离之和最大且AP =BP ?若存在,求出a 的值;若不存在,请说明理由;(2)如图2,当OB=23m(0<m<3)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).38.(2014年甘肃天水12分)如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=43,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠B M E的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.39.(2014年广东广州14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首尾依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.40.(2014年广东深圳9分)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.41.(2014年广西贵港11分)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y 轴交于点C(0,2),连接BC.(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.,0)、B两点,与y轴交于42.(2014年广西桂林12分)如图,已知抛物线y=ax2+bx+4与x轴交于A(2C点,其对称轴为直线x=1.(1)直接写出抛物线的解析式▲ :(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;(3)除(2)中的点A ′、C ′外,在x 轴和抛物线上是否还分别存在点E 、F ,使得以A 、C 、E 、F 为顶点的四边形为平行四边形,若存在,求出E 、F 的坐标;若不存在,请说明理由.43.(2014年广西玉林、防城港12分)给定直线l :y =kx ,抛物线C :y =ax 2+bx +1.(1)当b =1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y =2交于Q 点,O 为原点.求证:OP =PQ .44.(2014年贵州贵阳12分)如图,经过点A (0,﹣6)的抛物线21y x bx c 2=++与x 轴相交于B (﹣2,0),C 两点.(1)求此抛物线的函数关系式和顶点D 的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m (m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围;(3)在(2)的结论下,新抛物线y 1上是否存在点Q ,使得△QAB 是以AB 为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m 的取值范围.45.(2014年湖北鄂州12分)如图,在平面直角坐标系xOy中,一次函数5y x m4=+的图象与x轴交于A (﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,2512),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究1211M F M F+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:()221y x h4=--,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.46.(2014年湖北宜昌12分)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x 轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△▲ ≌△B M C(不需证明);用含t的代数式表示A点纵坐标:A(0,▲ ;(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线1x 22t=-,顶点随着t 的增大向上移动时,求t 的取值范围.47.(2014年湖北十堰12分)已知抛物线C 1:()2y a x 12=+-的顶点为A ,且经过点B (﹣2,﹣1).(1)求A 点的坐标和抛物线C 1的解析式;(2)如图1,将抛物线C 1向下平移2个单位后得到抛物线C 2,且抛物线C 2与直线AB 相交于C ,D 两点,求S △OAC :S △OAD 的值;(3)如图2,若过P (﹣4,0),Q (0,2)的直线为l ,点E 在(2)中抛物线C 2对称轴右侧部分(含顶点)运动,直线m 过点C 和点E .问:是否存在直线m ,使直线l ,m 与x 轴围成的三角形和直线l ,m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式;若不存在,说明理由.48. (2014年湖北江汉油田、潜江、天门、仙桃10分)如图①,△ABC 与△DEF 是将△ACF 沿过A 点的某条直线剪开得到的(AB ,DE 是同一条剪切线).平移△DEF 使顶点E 与AC 的中点重合,再绕点E 旋转△DEF ,使ED ,EF 分别与AB ,BC 交于M ,N 两点.(1)如图②,△ABC 中,若AB =BC ,且∠ABC =90°,则线段E M 与EN 有何数量关系?请直接写出结论;(2)如图③,△ABC 中,若AB =BC ,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC 中,若AB :B C =m :n ,探索线段E M 与EN 的数量关系,并证明你的结论.49.(2014年湖南衡阳10分)如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线3y x4以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.50.(2014年湖南怀化10分)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC 以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC 扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x =3秒时,射线OC 平行移动到O ′C ′,与OA 相交于G ,如图2,求经过G ,O ,B 三点的抛物线的解析式;(3)现有一动点P 在(2)中的抛物线上,试问点P 在运动过程中,是否存在三角形POB 的面积S =8的情况?若存在,求出点P 的坐标,若不存在,请说明理由.51.(2014年江苏苏州9分)如图,已知l 1⊥l 2,⊙O 与l 1,l 2都相切,⊙O 的半径为2cm .矩形ABCD 的边AD ,AB 分别与l 1,l 2重合,AB =43 cm ,AD =4cm .若⊙O 与矩形ABCD 沿l 1同时..向右移动,⊙O 的移动速度为3cm/s ,矩形ABCD 的移动速度为4cm/s ,设移动时间为t (s ).(1)如图①,连接OA ,AC ,则∠OAC 的度数为 ▲ °;(2)如图②,两个图形移动一段时间后,⊙O 到达⊙O 1的位置,矩形ABCD 到达A 1B 1C 1D 1的位置,此时点O 1,A 1,C 1恰好在同一直线上,求圆心O 移动的距离(即OO 1的长);(3)在移动过程中,圆心O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为d (cm ).当d <2时,求t 的取值范围.(解答时可以利用备用图画出相关示意图)52.(2014年江苏盐城12分)如图①,在平面直角坐标系中,一块等腰直角三角板ABC 的直角顶点A 在y 轴上,坐标为(0,﹣1),另一顶点B 坐标为(﹣2,0),已知二次函数23y x bx c 2=++的图象经过B 、C 两点.现将一把直尺放置在直角坐标系中,使直尺的边A ′D ′∥y 轴且经过点B ,直尺沿x 轴正方向平移,当A ′D ′与y 轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段M N长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当10PQ2时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)53.(2014年江西抚州10分)如图,抛物线y=ax2+2ax(a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P12P的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,F n.我们把这组图象称为“波浪抛物线”.(1)当a=﹣1时,①求图象F1的顶点坐标;②点H(2014,﹣3)▲ (填“在”或“不在”)该“波浪抛物线”上;若图象F n的顶点T n的横坐标为201,则图象F n对应的解析式为▲ ,其自变量x的取值范围为▲ .(2)设图象F n、F n+1的顶点分别为T n、T n+1(m为正整数),x轴上一点Q的坐标为(12,0).试探究:当a 为何值时,以O、T n、T n+1、Q四点为顶点的四边形为矩形?并直接写出此时m的值.54.(2014年辽宁鞍山14分)如图,在平面直角坐标系中,将抛物线23y x =先向右平移1个单位,再向下平移43个单位,得到新的抛物线2y ax bx c =++,该抛物线与y 轴交于点B ,与 x 轴正半轴交于点C . (1)求点B 和点C 的坐标;(2)如图1,有一条与 y 轴重合的直线l 向右匀速平移,移动的速度为每秒1个单位,移动的时间为t 秒,直线l 与抛物线2y ax bx c =++交于点P . 当点P 在x 轴上方时,求出使△PBC 的面积为23的t 值;(3)如图 2,将直线 B C 绕点B 逆时针旋转,与x 轴交于点M (1,0),与抛物线2y ax bx c =++交于点 A ,在 y 轴上有一点D 230,⎛⎫ ⎪ ⎪⎝⎭. 在x 轴上另取两点E 、F (点E 在点F 的左侧)EF =2,线段EF 在x 轴上平移,当四边形ADEF 的周长最小时,先简单描述如何确定此时点E 的位置?再直接写出点 E 的坐标.55.(2014年辽宁阜新12分)已知,在矩形ABCD 中,连接对角线AC ,将△ABC 绕点B 顺时针旋转90°得到△EFG ,并将它沿直线AB 向左平移,直线EG 与BC 交于点H ,连接AH ,CG .(1)如图①,当AB =BC ,点F 平移到线段BA 上时,线段AH ,CG 有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB =BC ,点F 平移到线段BA 的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB =nBC (n ≠1)时,对矩形ABCD 进行如已知同样的变换操作,线段AH ,CG 有怎样的数量关系和位置关系?直接写出你的猜想.56.(2014年辽宁锦州14分)如图,平行四边形ABCD 在平面直角坐标系中,点A 的坐标为(﹣2,0),点B 的坐标为(0,4),抛物线y =﹣x 2+m x +n 经过点A 和C .(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO 分成两部分,对称轴左侧部分的图形面积记为S 1,右侧部分图形的面积记为S 2,求S 1与S 2的比.(3)在y 轴上取一点D ,坐标是(0,72),将直线OC 沿x 轴平移到O ′C ′,点D 关于直线O ′C ′的对称点记为D ′,当点D ′正好在抛物线上时,求出此时点D ′坐标并直接写出直线O ′C ′的函数解析式.57.(2014年山东济南9分)如图1,抛物线23y x 16=-平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积S 影阴;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边M N 与AP 相交于点N ,设OM t =,试探求:①t 为何值时,△MA N 为等腰三角形?②t 为何值时,线段PN 的长度最小,最小长度是多少?58.(2014年山东莱芜12分)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D 两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.59.(2014年山东临沂13分)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.60.(2014年山东青岛12分)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速。
2018年辽宁省沈阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106 3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a76.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60 °B. 100 ° C. 110 ° D.120 °7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数----WORD格式 -- 专业资料 -- 可编辑 ---B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<09.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.610.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()--WORD格式 -- 专业资料 -- 可编辑 ---A.πB.π C. 2π D.π二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.( 3.00分)(2018? 沈阳因)式分解:3x3﹣12x=.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是.13.(3.00分)( 2018? 沈阳化)简:﹣=.14.(3.00分)( 2018? 沈阳)不等式组<的解集是.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为 900m(篱笆的厚度忽略不计),当 AB=m 时,矩形土地 ABCD 的面积最大.--WORD格式 -- 专业资料 -- 可编辑 ---16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是.--WORD格式 -- 专业资料 -- 可编辑 ---19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的--WORD格式 -- 专业资料 -- 可编辑 ---值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切----WORD格式 -- 专业资料 -- 可编辑 ---交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;②求∠BDE 的度数;(2)当∠ ACB=α,其它多件不变时,∠BDE 的度数是(用含α的代数式表示)(3)若△ ABC 是等边三角形, AB=3 ,点 N 是 BC 边上的三等分点,直线 ED 与直线 BC 交于点 F,请直接写出线段 CF 的长.八、解答题(本题12 分)25.(12.00分)( 2018? 沈阳如)图,在平面角坐标系中,抛物线 C1:y=ax2+bx﹣1 经过点 A(﹣ 2,1)和点 B (﹣ 1,﹣ 1),抛物线 C2:y=2x2+x+1 ,动直线 x=t 与抛物线 C1交于点 N ,与抛物线 C2交于点 M.(1)求抛物线 C1的表达式;(2)直接用含 t 的代数式表示线段 MN 的长;(3)当△ AMN 是以 MN 为直角边的等腰直角三角形时,求 t 的值;(4)在(3)的条件下,设抛物线 C1与 y 轴交于点 P,点 M 在 y 轴右侧的抛物线 C2上,连接 AM 交 y 轴于点k,连接 KN ,在平面内有一点Q,连接 KQ 和 QN ,当 KQ=1 且∠ KNQ= ∠BNP 时,请直接写出点 Q 的坐标.2018年辽宁省沈阳市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10 小题,每题 2 分,共 20 分)1.( 2.00 分)( 2018? 沈阳)下列各数中是有理数的是()A.πB.0 C. D .【考点】 27:实数.【专题】 511:实数.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解: A、π是无限不循环小数,属于无理数,故本选项错误;B、0 是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选: B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.2.(2.00 分)( 2018? 沈阳)辽宁男蓝夺冠后,从 4 月21 日至 24 日各类媒体体关于“辽篮CBA 夺冠”的相关文章达到 81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81× 106 C.8.1×104D.8.1×106【考点】 1I:科学记数法—表示较大的数.【专题】 1:常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中 1≤|a| <10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:将 81000用科学记数法表示为: 8.1×104.故选: C.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其中 1≤|a| <10,n为整数,表示时关键要正确确定 a 的值以及 n 的值.3.( 2.00 分)( 2018? 沈阳)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【专题】 55:几何图形.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为: 2,1.左视图如下:【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.(2.00分)( 2018? 沈阳)在平面直角坐标系中,点 B 的坐标是( 4,﹣ 1),点 A 与点 B 关于 x 轴对称,则点 A 的坐标是()A.(4,1)B.(﹣ 1,4) C .(﹣ 4 ,﹣ 1 )D.(﹣ 1,﹣ 4)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【专题】 1:常规题型.【分析】直接利用关于x 轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点 B 的坐标是( 4,﹣1),点 A 与点 B 关于 x 轴对称,∴点 A 的坐标是:(4,1).【点评】此题主要考查了关于 x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(2.00分)( 2018? 沈阳)下列运算错误的是()A.(m2)3=m 6B.a10÷a9=a C . x3?x5=x 8 D.a4+a3=a7【考点】 35:合并同类项; 46:同底数幂的乘法; 47:幂的乘方与积的乘方; 48:同底数幂的除法.【专题】 11 :计算题.【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解: A、(m2)3=m 6,正确;B、a10÷a9=a,正确;C、x3?x5=x 8,正确;D、a4+a3=a4+a3,错误;----WORD格式 -- 专业资料 -- 可编辑 ---【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.(2.00分)( 2018? 沈阳)如图,AB∥CD,EF∥GH ,∠ 1=60 °,则∠2 补角的度数是()A. 60°B. 100 ° C. 110 °D. 120 °【考点】 IL :余角和补角; JA:平行线的性质.【专题】 551:线段、角、相交线与平行线.【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵ AB∥CD,∴∠ 1=∠EFH ,∵E F∥GH ,∴∠ 2=∠EFH ,∴∠ 2=∠ 1=60 °,∴∠ 2 的补角为 120 °,故选: D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.( 2.00 分)( 2018? 沈阳)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是 2 的倍数B.13 个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【考点】 X1:随机事件.【专题】 543:概率及其应用.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解: A 、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“ 13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选: B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.( 2.00 分)( 2018? 沈阳)在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则 k 和 b 的取值范围是()A.k>0,b>0 B.k>0, b<0 C.k<0,b>0 D.k <0,b<0【考点】 F7:一次函数图象与系数的关系.【专题】 53:函数及其图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数 y=kx+b 的图象经过一、二、四象限,∴k<0,b> 0.故选: C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数 y=kx+b (k≠0)中,当 k<0,b>0 时图象在一、二、四象限.9.(2.00分)( 2018? 沈阳)点A(﹣ 3,2)在反比例函数 y= (k≠0)的图象上,则k 的值是()A.﹣ 6 B.﹣C.﹣ 1 D.6【考点】 G6:反比例函数图象上点的坐标特征.【专题】 33 :函数思想.【分析】根据点 A 的坐标,利用反比例函数图象上点的坐标特征求出 k 值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y= (k≠0)的图象上,∴k=(﹣ 3)× 2= ﹣6.故选: A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.10.(2.00分)( 2018? 沈阳)如图,正方形ABCD 内接于⊙ O,AB=2,则的长是()A.πB.π C. 2π D.π【考点】 LE :正方形的性质; MN :弧长的计算.【专题】 1:常规题型.【分析】连接 OA 、OB,求出∠ AOB=90°,根据勾股定理求出 AO ,根据弧长公式求出即可.【解答】解:连接 OA 、OB,∵正方形 ABCD 内接于⊙ O,∴A B=BC=DC=AD ,∴===,∴∠ AOB= × 360 ° =90 °,在 Rt△AOB 中,由勾股定理得: 2AO2= (2 )2,解得: AO=2 ,∴的长为=π,故选: A.【点评】本题考查了弧长公式和正方形的性质,能求出∠ AOB 的度数和 OA 的长是解此题的关键.二、细心填一填(本大题共 6 小题,每小题 3 分,满分 18 分,请把答案填在答題卷相应题号的横线上)11.(3.00分)( 2018? 沈阳)因式分解:3x3﹣12x= 3x (x+2)(x﹣ 2).【考点】 55:提公因式法与公式法的综合运用.【分析】首先提公因式 3x,然后利用平方差公式即可分解.【解答】解: 3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是: 3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.(3.00分)( 2018? 沈阳)一组数 3,4,7,4,3,4,5,6,5 的众数是4.【考点】 W5:众数.【专题】 1:常规题型;542:统计的应用.【分析】根据众数的定义求解可得.【解答】解:在这组数据中 4 出现次数最多,有 3 次,所以这组数据的众数为 4,故答案为: 4.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.13.(3.00分)( 2018? 沈阳化)简:﹣=.【考点】 6B:分式的加减法.【专题】 11 :计算题; 513:分式.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(3.00分)( 2018? 沈阳)不等式组<的解集是﹣2≤x<2.【考点】 CB:解一元一次不等式组.【专题】 11 :计算题; 524:一元一次不等式 (组)及应用.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式 x﹣2<0,得: x<2,解不等式 3x+6≥0,得: x≥﹣ 2,则不等式组的解集为﹣2≤x<2,故答案为:﹣ 2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3.00分)(2018? 沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与 CD 边平行的篱笆 EF 分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当 AB= 150 m 时,矩形土地 ABCD 的面积最大.【考点】 HE :二次函数的应用.【专题】 12 :应用题.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设 AB=xm ,则 BC= (900﹣3x),由题意可得, S=AB× BC=x ×( 900﹣ 3x)= ﹣( x2﹣300x)= ﹣(x﹣150)2+33750∴当 x=150 时, S 取得最大值,此时, S=33750,--WORD格式 -- 专业资料 -- 可编辑 ---∴A B=150m,故答案为: 150.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.16.(3.00分)( 2018? 沈阳)如图,△ABC 是等边三角形, AB= ,点 D 是边 BC 上一点,点 H 是线段 AD 上一点,连接 BH、CH.当∠ BHD=60°,∠ AHC=90°时, DH=.【考点】 KD :全等三角形的判定与性质; KK :等边三角形的性质; S9:相似三角形的判定与性质.【专题】11 :计算题.【分析】作 AE⊥BH 于 E,BF⊥AH 于 F,如图,利用等边三角形的性质得 AB=AC ,∠ BAC=60°,再证明∠ ABH= ∠CAH ,则可根据“AAS”证明△ABE ≌△CAH ,所以 BE=AH ,AE=CH ,在 Rt△AHE 中利用含 30 度的直角三角形三边的关系得到HE=AH ,AE= AH ,则 CH= AH ,于是在 Rt△AHC 中利用勾股定理可计算出AH=2 ,从而得到BE=2 , HE=1 ,AE=CH=,BH=1 ,接下来在Rt△ BFH 中计算出HF= ,BF=,然后证明△ CHD∽△ BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作 AE⊥BH 于 E,BF⊥AH 于 F,如图,∵△ ABC 是等边三角形,∴A B=AC ,∠ BAC=60°,∵ ∠ BHD= ∠ ABH+ ∠ BAH=60°,∠ BAH+ ∠CAH=60°,∴∠ ABH= ∠CAH ,在△ ABE 和△ CAH 中,∴△ ABE≌△ CAH ,∴B E=AH ,AE=CH ,在 Rt△AHE 中,∠ AHE= ∠ BHD=60°,∴sin∠AHE= ,HE= AH ,∴ AE=AH?sin60 °=AH ,∴C H= AH ,在 Rt△AHC 中, AH 2+ ( AH )2=AC 2= ()2,解得 AH=2 ,∴BE=2,HE=1 ,AE=CH=,∴B H=BE ﹣HE=2 ﹣1=1,在 Rt△BFH 中, HF= BH= ,BF= ,∵B F∥CH,∴△ CHD ∽△ BFD ,∴===2,∴D H=HF=×=.故答案为.--WORD格式 -- 专业资料 -- 可编辑 ---【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.三、解答题题( 17 题 6 分,18-19题各 8 分,请认真读题)17.(6.00分)( 2018? 沈阳)计算:2tan45 °﹣|﹣3|+()﹣20﹣( 4﹣π).【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂; T5:特殊角的三角函数值.【专题】 1 :常规题型.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值以及负指数幂的性质分别化简得出答案.【解答】解:原式 =2×1﹣( 3﹣)+4﹣1=2﹣3+ +4﹣1=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00 分)( 2018? 沈阳)如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点 D 作 AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若 CE=1,DE=2 ,ABCD 的面积是4.【考点】 L8:菱形的性质; LD :矩形的判定与性质.--WORD格式 -- 专业资料 -- 可编辑 ---【专题】 556:矩形菱形正方形.【分析】(1)欲证明四边形 OCED 是矩形,只需推知四边形 OCED 是平行四边形,且有一内角为90 度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形 ABCD 是菱形,∴AC⊥BD,∴∠ COD=90°.∵CE∥OD ,DE ∥OC,∴四边形 OCED 是平行四边形,又∠ COD=90°,∴平行四边形OCED 是矩形;( 2)由( 1)知,平行四边形OCED 是矩形,则CE=OD=1 ,DE=OC=2 .∵四边形 ABCD 是菱形,∴AC=2OC=4 ,BD=2OD=2 ,∴菱形 ABCD 的面积为:AC?BD= ×4×2=4.故答案是: 4.【点评】考查了矩形的判定与性质,菱形的性质.此题中,矩形的判定,首先要判定四边形是平行四边形,然后证明有一内角为直角.19.(8.00 分)( 2018? 沈阳)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【考点】 X6:列表法与树状图法.【专题】 1:常规题型;543:概率及其应用.【分析】画树状图展示所有9 种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有 9 种等可能的结果数,其中两人之中至少有一人直行的结果数为 5,所以两人之中至少有一人直行的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果 n,再从中选出符合事件 A 或 B 的结果数目 m,然后利用概率公式计算事件 A 或事件 B 的概率.四、解答题(每题8 分,请认真读题)20.(8.00 分)( 2018? 沈阳)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.--WORD格式 -- 专业资料 -- 可编辑 ---据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了50名学生,m的值是18.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是108度;(4)若该校九年级共有 1000 名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.【考点】 V5:用样本估计总体; VB :扇形统计图;VC:条形统计图.【专题】 54:统计与概率.【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m 的值;(2)根据( 1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【解答】解:( 1)在这次调查中一共抽取了: 10÷20%=50(名)学生,m%=9÷50× 100%=18%,故答案为: 50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如右图所示;(3)扇形统计图中,“数学”所对应的圆心角度数是:360 °× =108 °,故答案为: 108;(4)1000×=300(名),答:该校九年级学生中有300 名学生对数学感兴趣.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8.00分)( 2018? 沈阳)某公司今年1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是361万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.【考点】 AD :一元二次方程的应用.【专题】34 :方程思想; 523:一元二次方程及应用.--WORD格式 -- 专业资料 -- 可编辑 ---【分析】(1)设每个月生产成本的下降率为x,根据 2月份、 3 月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由 4 月份该公司的生产成本 =3 月份该公司的生产成本×( 1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为 x,根据题意得: 400(1﹣x)2=361,解得: x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为 5%.(2)361×( 1﹣5%)=342.95(万元).答:预测 4 月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.五、解答题(本题10)22.(10.00分)( 2018? 沈阳)如图,BE 是 O 的直径,点 A 和点 D 是⊙ O 上的两点,过点 A 作⊙ O 的切--交 BE 延长线于点.(1)若∠ ADE=25°,求∠C 的度数;(2)若 AB=AC ,CE=2,求⊙ O 半径的长.【考点】 KQ :勾股定理; M5:圆周角定理; MC:切线的性质.【专题】 55:几何图形.【分析】(1)连接 OA ,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【解答】解:(1)连接 OA ,∵A C 是⊙O 的切线,OA 是⊙O 的半径,∴OA⊥AC,∴∠ OAC=90°,∵,∠ ADE=25°,∴∠ AOE=2 ∠ ADE=50°,∴∠ C=90°﹣∠AOE=90°﹣ 50 ° =40 °;(2)∵ AB=AC ,∴∠ B=∠C,∵ ,∴∠ AOC=2∠B,∴∠ AOC=2∠C,∵∠OAC=90°,∴∠ AOC+ ∠ C=90°,∴3∠ C=90°,∴∠ C=30°,∴OA= OC,设⊙ O 的半径为 r,∵CE=2,∴r=,解得: r=2,∴⊙ O 的半径为 2.【点评】此题考查切线的性质,关键是根据切线的性质进行解答.六、解答题(本题10 分)23.(10.00分)( 2018? 沈阳)如图,在平面直角坐标系中,点 F 的坐标为(0,10).点 E 的坐标为(20,0),直线 l 1经过点 F 和点 E,直线 l1与直线 l2、y= x 相交于点 P.(1)求直线 l1的表达式和点 P 的坐标;(2)矩形 ABCD 的边 AB 在 y 轴的正半轴上,点 A与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB=6 ,AD=9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒个单位的速度匀速移动(点 A 移动到点 E 时止移动),设移动时间为 t 秒( t>0).①矩形 ABCD 在移动过程中, B、C、D 三点中有且只有一个顶点落在直线l1或 l2上,请直接写出此时t 的值;②若矩形 ABCD 在移动的过程中,直线CD 交直线 l1于点 N,交直线 l2于点 M.当△ PMN 的面积等于 18时,请直接写出此时t 的值.【考点】 FI:一次函数综合题.【专题】153:代数几何综合题; 31 :数形结合; 32 :分类讨论; 533:一次函数及其应用.【分析】(1)利用待定系数法求解析式,函数关系式联立方程求交点;(2)①分析矩形运动规律,找到点 D 和点 B 分别在直线 l2上或在直线 l1上时的情况,利用 AD 、AB 分别可以看成图象横坐标、纵坐标之差构造方程求点A 坐标,进而求出 AF 距离;②设点 A 坐标,表示△ PMN 即可.【解答】解:(1)设直线 l1的表达式为 y=kx+b ∵直线 l1过点 F(0,10),E( 20,0)∴解得直线 l1的表达式为 y= ﹣ x+10求直线 l1与直线 l2交点,得x=﹣ x+10解得 x=8y= ×8=6∴点 P 坐标为( 8,6)(2)①如图,当点 D 在直线上 l2时∵A D=9∴点 D 与点 A 的横坐标之差为 9 ∴将直线 l1与直线 l2交解析式变为x=20﹣2y,x= y∴y﹣( 20﹣2y)=9解得y=则点 A 的坐标为:(,)则 AF=∵点 A 速度为每秒个单位∴t=如图,当点 B 在 l2直线上时∵A B=6∴点 A 的纵坐标比点 B 的纵坐标高 6 个单位∴直线 l1的解析式减去直线l2的解析式得﹣x+10﹣ x=6解得 x=则点A坐标为(,)则 AF=∵点 A 速度为每秒个单位∴t=故 t 值为或②如图,设直线 AB 交 l2于点 H设点 A 横坐标为 a,则点 D 横坐标为 a+9 由①中方法可知: MN=此时点 P 到 MN 距离为:a+9﹣8=a+1∵△ PMN 的面积等于 18∴解得a1=,a2=﹣(舍去)∴A F=6 ﹣则此时 t 为当 t=时,△ PMN的面积等于18【点评】本题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.七、解答题(本题12 分)24.(12.00 分)( 2018? 沈阳)已知:△ABC 是等腰三角形, CA=CB , 0°<∠ACB≤ 90 °.点 M 在边 AC 上,点 N 在边 BC 上(点 M、点 N 不与所在线段端点重合),BN=AM ,连接 AN ,BM,射线 AG ∥BC,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且AE=DE .(1)如图,当∠ ACB=90°时①求证:△ BCM≌△ ACN ;。
2016年沈阳市中等学校招生统一考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共20分)一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.下列各数是无理数的是()A.0B.-1C.√2D.372.下图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5 400 000平方米,将数据5 400 000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.如图,在平面直角坐标系中,点P是反比例函数y=kx(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.-3C.32D.-325.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件6.下列计算正确的是()A.x4+x4=2x8B.x3·x2=x6C.(x2y)3=x6y3D.(x-y)(y-x)=x2-y27.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是78.一元二次方程x2-4x=12的根是()A.x1=2,x2=-6B.x1=-2,x2=6C.x1=-2,x2=-6D.x1=2,x2=69.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()B.4C.8√3D.4√3A.4√3310.在平面直角坐标系中,二次函数y=x2+2x-3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中-3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是-3D.y的最小值是-4第Ⅱ卷(非选择题,共100分)二、填空题(每小题3分,共18分)11.分解因式:2x2-4x+2=.12.若一个多边形的内角和是540°,则这个多边形是边形.)·(m+1)=.13.化简:(1-1m+114.三个连续整数中,n是最大的一个,这三个数的和为.(用含n的代数式表示)15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示,当甲车出发h 时,两车相距350 km.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线.点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN 是直角三角形,则DO的长是.三、解答题(第17小题6分,第18、19小题各8分,共22分))-2+√27.17.计算:(π-4)0+|3-tan 60°|-(1218.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》《三字经》《弟子规》(分别用字母A,B,C依次表示这三个诵读材料).将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.四、(每小题8分,共16分)20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目中的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名) 百分比丢沙包20 10%打篮球60 p%跳大绳n 40%踢毽球40 20%学生最喜欢的活动项目的人数条形统计图根据图表中提供的信息,解答下列问题:(1)m=,n=,p=;(2)请根据以上信息补全条形统计图;(3)根据抽样调查结果,请你估计该校2 000名学生中有多少名学生最喜欢跳大绳.21.如图,在△ABC中,以AB为直径的☉O分别与BC,AC相交于点D,E,BD=CD,过点D作☉O的切线交边AC于点F.(1)求证:DF⊥AC;⏜的长.(结果保留π)(2)若☉O的半径为5,∠CDF=30°,求BD五、(本题10分)22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买. (1)若购买A,B两种型号的健身器材共50套,且恰好支出20 000 元,求A,B两种型号健身器材各购买多少套;(2)若购买A,B两种型号的健身器材共50套,且支出不超过18 000元,求A种型号健身器材至少要购买多少套.六、(本题10分)23.如图,在平面直角坐标系中,△AOB 的顶点O 为坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,1),点C 为边AB 的中点.正方形OBDE 的顶点E 在x 轴的正半轴上,连接CO,CD,CE.(1)线段OC 的长为 ; (2)求证:△CBD ≌△COE;(3)将正方形OBDE 沿x 轴正方向平移得到正方形O 1B 1D 1E 1,其中点O,B,D,E 的对应点分别为点O 1,B 1,D 1,E 1,连接CD 1,CE 1,设点E 1的坐标为(a,0),其中a ≠2,△CD 1E 1的面积为S. ①当1<a<2时,请直接··写出S 与a 之间的函数表达式;②在平移过程中,当S=14时,请直接··写出a 的值.七、(本题12分)24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;··(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线写出BE+CE的值.段DG与线段AE无公共点时,请直接··温馨提示:学生可以根据题意,在备用图中补充图形,以便作答.八、(本题12分)25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17.抛物线y=3x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,20与CD交于点K.(1)将矩形OCDE 沿AB 折叠,点O 恰好落在边CD 上的点F 处.①点B 的坐标为( , ),BK 的长是 ,CK 的长是 ; ②求点F 的坐标;③请直接··写出抛物线的函数表达式;(2)将矩形OCDE 沿着经过点E 的直线折叠,点O 恰好落在边CD 上的点G 处,连接OG,折痕与OG 交于点H,点M 是线段EH 上的一个动点(不与点H 重合),连接MG,MO,过点G 作GP ⊥OM 于点P,交EH 于点N,连接ON.点M 从点E 开始沿线段EH 向点H 运动,至与点N 重合时停止.△MOG 和△NOG 的面积分别表示为S 1和S 2,在点M 的运动过程中,S 1·S 2(即S 1与S 2的积)的值是否发生变化?若变化,请直接··写出变化范围;若不变,请直接··写出这个值.温馨提示:学生可以根据题意,在备用图中补充图形,以便作答.答案全解全析:一、选择题是有理数,√2是无理数.故选C.1.C0、-1、372.A由俯视图的定义可知选项A正确.3.C 5 400 000=5.4×106,故选C.4.A设点P的横坐标为x P,纵坐标为y P,由题意得OA=x P,OB=y P.由题意可知,四边形OAPB 为矩形,∵四边形OAPB的面积为3,∴OA·OB=x P·y P=3,又∵点P在反比例函数y=k(x>0)x的图象上,∴x P·y P=k=3,故选A.5.D不确定事件即随机事件,是指在一定条件下,可能发生也可能不发生的事件.显然,事件“射击运动员射击一次,命中靶心”是不确定事件,故选D.6.C A项:x4+x4=2x4,本选项错误;B项:x3·x2=x3+2=x5,本选项错误;C项:(x2y)3=(x2)3y3=x6y3,本选项正确;D项:(x-y)(y-x)=-(x-y)2,本选项错误.故选C.7.B数据8出现的次数最多,故众数为8,故选项A错误,B正确;将这组数据按从小到大的顺=6.5,故选项C,D错误.故选B.序排列后,最中间的两个数据为6,7,故中位数为6+72评析解此类题的关键是掌握中位数、众数的概念:中位数是将一组数据按从小到大或从大到小的顺序排列后,处于最中间的那个数据(或最中间两个数据的平均数);众数是一组数据中出现次数最多的那个数据.8.B原方程配方得x2-4x+4=16,即(x-2)2=16,故x-2=±4,∴x1=-2,x2=6,故选B.AB=4,由勾股定理得BC=√AB2-AC2=√82-42=4√3,故9.D∵∠C=90°,∠B=30°,∴AC=12选D.10.D二次函数y=x2+2x-3=(x+1)2-4图象的顶点坐标为(-1,-4).令x2+2x-3=0,解得x 1=-3,x 2=1,则二次函数y=x 2+2x-3的图象与x 轴的两个交点为(-3,0),(1,0).由-3≤x 1<x 2≤0及二次函数的图象可知,y 1,y 2的大小不能确定,∴选项A,B 错误;y min =-4,∴选项C 错误,故选D. 评析 本题考查了二次函数的图象和性质,难度适中. 二、填空题 11.答案 2(x-1)2解析 2x 2-4x+2=2(x 2-2x+1)=2(x-1)2. 12.答案 五解析 设这个多边形的边数为n,由题意得(n-2)·180°=540°,解得n=5. 13.答案 m解析 (1-1m+1)·(m+1)=m+1-1m+1·(m+1)=m+1-1=m. 14.答案 3n-3解析 三个连续整数中,n 是最大的一个,则前两个分别为n-1,n-2,所以这三个数的和为n+(n-1)+(n-2)=3n-3. 15.答案 32解析 由题图可知乙车是在甲车出发1小时后出发的,且A 、B 两地与C 地的距离都为240 km,即A 、B 两地的距离为480 km.甲车的速度为2404=60 km/h,乙车的速度为2404-1=80 km/h.设当甲车出发x h 时,两车相距350 km,则480-60x-80(x-1)=350,解得x=32.评析 本题考查函数的图象,求解时需要从抽象的函数图象中找出实际的量,然后根据实际情况列出方程计算出结果. 16.答案256或5013 解析 ∵∠A=90°,AB=AC,BC=20,∴AB=AC=10√2, ∵DE 是△ABC 的中位线,∴DE ∥BC,DE=1BC=10,BD=CE=5√2.①当DN ⊥BC 时,△OMN 为直角三角形(如图), 易知△BDN 为等腰直角三角形,∴BN=DN=5, ∵BM=3,∴MN=2,∵DE ∥BC,∴△ODE ∽△ONM, ∴OD ON =DENM ,即OD5-OD =102,解得OD=256.②当DN ⊥ME 时,△OMN 为直角三角形(如图),过点E 作EF ⊥BC,垂足为点F. 易知△CEF 为等腰直角三角形,∴EF=FC=5, ∵BM=3,∴MF=20-3-5=12,在Rt △MFE 中,ME=√EF 2+MF 2=√52+122=13, ∵DE ∥BC,∴∠DEO=∠EMF,∵∠DOE=∠EFM=90°,∴△ODE ∽△FEM, ∴OD FE =DEEM ,即OD 5=1013, 解得OD=5013.综上所述,DO 的长是256或5013.评析 对于几何探究型问题,分类讨论思想是重点考查内容.本题中,要对△OMN 分两种情况进行讨论,一是∠ONM 为直角时,二是∠MON 为直角时. 三、解答题17.解析 原式=1+3-√3-4+3√3=2√3. 18.解析 (1)1(2)列表得小亮小明AB C A (A,A) (A,B) (A,C) B (B,A) (B,B) (B,C) C(C,A) (C,B)(C,C)或画树状(形)图得由表格(或树状图/树形图)可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中小明和小亮诵读两个不同材料的结果有6种:(A,B),(A,C),(B,A),(B,C),(C,A),(C,B), 故P(小明和小亮诵读两个不同材料)=69=23.19.证明 (1)∵△ABC ≌△ABD,∴∠ABC=∠ABD. ∵CE ∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE. (2)∵△ABC ≌△ABD,∴BC=BD.由(1)得∠CEB=∠CBE,∴CE=CB,∴CE=BD, ∵CE ∥BD,∴四边形BCED 是平行四边形. ∵BC=BD,∴四边形BCED 是菱形.四、20.解析(1)200;80;30.(2)补全条形统计图如下.学生最喜欢的活动项目的人数条形统计图(3)2 000×40%=800(名).答:估计该校2 000名学生中约有800名学生最喜欢跳大绳.21.解析(1)证明:连接OD.∵DF是☉O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线.∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)∵∠CDF=30°,由(1)知∠ODF=90°,∴∠ODB=180°-∠CDF-∠ODF=60°.∵OB=OD,∴△OBD 是等边三角形,∴∠BOD=60°, ∴BD ⏜的长=n πR 180=60π×5180=53π.五、22.解析 (1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意,得 {x +y =50,310x +460y =20 000,解得{x =20,y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意,得 310z+460(50-z)≤18 000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34. 答:A 种型号健身器材至少要购买34套. 六、 23.解析 (1)√172. (2)证明:∵∠AOB=90°,点C 为AB 中点, ∴OC=12AB=BC,∴∠CBO=∠COB.∵四边形OBDE 是正方形,∴BD=OE,∠DBO=∠EOB=90°. ∴∠DBO-∠CBO=∠EOB-∠COB, 即∠CBD=∠COE,∴△CBD ≌△COE. (3)①S=-12a+1.②32或52. 七、24.解析 (1)①证明:∵△ABC 绕点A 按顺时针方向旋转60°得到△ADE, ∴AB=AD,∠BAD=60°, ∴△ABD 是等边三角形.②证明:由①得△ABD是等边三角形,∴AB=BD.∵△ABC绕点A按顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE.又∵AC=BC,∴EA=ED.∵点B,E在AD的中垂线上,∴BE是AD的中垂线.∵点F在BE的延长线上,∴BF⊥AD,AF=DF.③3√3-4.(2)13.评析本题以图形的旋转为背景,考查了旋转的性质、等边三角形的性质、垂直平分线的性质等知识,属难题.八、25.解析(1)①(10,0);8;10.②由折叠可得BF=OB=10,∵直线BK是抛物线的对称轴,∴BK⊥x轴,∴∠KBO=90°.∵四边形OCDE是矩形,∴CK∥OB,∴∠CKB+∠KBO=180°,∴∠CKB=90°.在Rt△FKB中,BK=8,由勾股定理得FK=√BF2-BK2=√102-82=6,∴CF=CK-FK=10-6=4,即点F的横坐标为4,又易知点F的纵坐标为8,∴点F的坐标为(4,8).x2-3x+5.③y=320(2)不变,289.。
2016年辽宁省沈阳市中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20分)1.下列各数是无理数的是()A.0 B.﹣1 C.D.【解析】0,﹣1,是有理数,是无理数,故选:C.2.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】这个几何体的俯视图为.故选A.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107 B.54×105 C.5.4×106 D.5.4×107【解析】5400000用科学记数法表示为5.4×106,故选:C.4.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C.D.﹣【解析】∵点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,∴矩形OAPB的面积S=|k|=3,解得k=±3.又∵反比例函数的图象在第一象限,∴k=3.故选A.5.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件【解析】“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.6.下列计算正确的是()A.x4+x4=2x8 B.x3•x2=x6 C.(x2y)3=x6y3 D.(x﹣y)(y﹣x)=x2﹣y2【解析】∵x4+x4=2x4,故选项A错误;∵x3•x2=x5,故选项B错误;∵(x2y)3=x6y3,故选项C正确;∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;故选C.7.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2 B.众数是8 C.中位数是6 D.中位数是7【解析】数据:3,4,6,7,8,8的众数为8,中为数为6.5.故选B.8.一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=6【解析】方程整理得:x2﹣4x﹣12=0,分解因式得:(x+2)(x﹣6)=0,解得:x1=﹣2,x2=6,故选B9.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A.B.4 C.8D.4【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,cosB=,即cos30°=,∴BC=8×=4;故选:D.10.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2 B.y1>y2 C.y的最小值是﹣3 D.y的最小值是﹣4【解析】y=x2+2x﹣3=(x+3)(x﹣1),则该抛物线与x轴的两交点横坐标分别是﹣3、1.又y=x2+2x﹣3=(x+1)2﹣4,∴该抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.A、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;C、y的最小值是﹣4,故本选项错误;D、y的最小值是﹣4,故本选项正确.故选:D.二、填空题(每小题3分,共18分)11.分解因式:2x2﹣4x+2=2(x﹣1)2.【解析】2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)212.若一个多边形的内角和是540°,则这个多边形是五边形.【解析】设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.13.化简:(1﹣)•(m+1)=m.【解析】原式=•(m+1)=m,故答案为:m14.三个连续整数中,n是最大的一个,这三个数的和为3n﹣3.【解析】这三个数的和为n﹣2+n﹣1+n=3n﹣3.故答案为3n﹣3.15.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发\frac{3}{2}h时,两车相距350km.【解析】由题意,得AC=BC=240km,甲的速度240÷4=60km/h,乙的速度240÷30=80km/h.设甲出发x小时甲乙相距350km,由题意,得60x+80(x﹣1)+350=240×2,解得x=,答:甲车出发h时,两车相距350km,故答案为:.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.【解析】如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=.当∠MON=90°时,∵△DOE∽△EFM,∴=,∵EM==13,∴DO=,故答案为或.三、解答题17.计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.【解】原式=1+3﹣﹣4+3=2.18.为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.【解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,故答案为:;(2)列表得:小明小亮A BCA (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=.19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包20 10%打篮球60 p%跳大绳n 40%踢毽球40 20%根据图表中提供的信息,解答下列问题:(1)m=200,n=80,p=30;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.【解】(1)m=20÷10%=200;n=200×40%=80,60÷200=30%,p=30,故答案为:200,80,30;(2)如图,(3)2000×40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.21.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.22.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?【解】(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(2)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.23.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为\frac{\sqrt{17}}{2};(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.【解】(1)∵点A的坐标为(4,0),点B的坐标为(0,1),∴OA=4,OB=1,∵∠AOB=90°,∴AB==,∵点C为边AB的中点,∴OC=AB=;故答案为:.(2)证明:∵∠AOB=90°,点C是AB的中点,∴OC=BC=AB,∴∠CBO=∠COB,∵四边形OBDE是正方形,∴BD=OE,∠DBO=∠EOB=90°,∴∠CBD=∠COE,在△CBD和△COE中,,∴△CBD≌△COE(SAS);(3)①解:过点C作CH⊥D1E1于点H,∵C是AB边的中点,∴点C的坐标为:(2,)∵点E的坐标为(a,0),1<a<2,∴CH=2﹣a,∴S=D1E1•CH=×1×(2﹣a)=﹣a+1;②当1<a<2时,S=﹣a+1=,解得:a=;当a>2时,同理:CH=a﹣2,∴S=D1E1•CH=×1×(a﹣2)=a﹣1,∴S=a﹣1=,解得:a=,综上可得:当S=时,a=或.24.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【解】(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.25.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(10、0),BK的长是8,CK的长是10;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG 的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【解】(1)如图1中,①∵抛物线y=x2﹣3x+m的对称轴x=﹣=10,∴点B坐标(10,0),沪科版数学沪科版数学 ∵四边形OBKC 是矩形,∴CK=OB=10,KB=OC=8,故答案分别为10,0,8,10.②在R T △FBK 中,∵∠FKB=90°,BF=OB=10,BK=OC=8, ∴FK==6,∴CF=CK ﹣FK=4,∴点F 坐标(4,8). ③设OA=AF=x ,在RT △ACF 中,∵AC 2+CF 2=AF 2,∴(8﹣x )2+42=x 2,∴x=5,∴点A 坐标(0,5),代入抛物线y=x 2﹣3x+m 得m=5,∴抛物线为y=x 2﹣3x+5. (2)不变.S 1•S 2=189.理由:如图2中,在RT △EDG 中,∵GE=EO=17,ED=8, ∴DG ===15,∴CG=CD ﹣DG=2,∴OG===2,∵CP ⊥OM ,MH ⊥OG ,∴∠NPN=∠NHG=90°,∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM ,∴∠HGN=∠NMP , ∵∠NMP=∠HMG ,∠GHN=∠GHM ,∴△GHN ∽△MHG ,∴=,∴GH 2=HN •HM , ∵GH=OH=,∴HN •HM=17, ∵S 1•S 2=•OG •HN ••OG•HM=(•2)2•17=289.。