随机事件的概率第一课时频率与概率
- 格式:doc
- 大小:132.50 KB
- 文档页数:8
随机事件的频率与概率概率论与数理统计就是研究随机现象的统计规律的数学学科,因随机现象具有普遍性特点,概率论和数理统计也因此具有广泛的应用环境。
而在研究概率之前,我们必须先要清楚随机试验中关于随机事件发生可能性大小的度量问题,这就涉及随机事件的概率和频率。
首先必须明确随机事件的概念,即,在条件一定时,测验或观察研究对象,每进行一次条件组称为一次性试验,得到的结果为事件,在一次试验中对无法准确判断发生结果的事件为随机事件。
接着我们来分别了解频率及概率:一、频率的概念及性质举例引入:一个盒子中有10个相同的球,但5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球。
在该实验中,未将球取出来前,我们无法对实验结果进行判断,即取出的球是黑是白是未知的,但是实践经验告诉我们,如果我们从盒子中反复多次取球,会获得这样一种结果:当实验次数足够多,即n足够大时,黑、白两球出现次数几乎是相等的,即,黑、白球出现次数的比值趋于1。
条件相同时,如试验次数为n,那么这n次试验中事件A共发生的次数为nA,nA为事件A的发生频数。
而事件A的发生频率用nA/n这一比值表示,记作fn(A),即,不同对象出现的次数和总次数间的比值。
当试验次数n不断增大时,频率逐渐趋向于稳定,并与某常数接近,这一常数就是所说的时间A的概率,而频率稳定性即为统计规律性(统计规律性是指在大量试验中呈现出的数量规律),但频率与概率并不相同,由伯努利大数理论可知,当n为无穷大时,在一定意义下频率fn(A)和概率P(A)较为接近。
其中频率的值即为频数与总体数量的比值。
在n次试验中随机事件发生m次的相对频率为m/n。
而在物理学中频率用于衡量每秒物体振动次数的多少是确定的。
二、概率的概念及性质概率用于衡量事件发生的可能性大小,而随机事件A发生概率表示为P(A),取值范围在0和1之间。
在一定条件下,当P (A)=1时表示事件A一定发生;当P(A)=0时,表示事件A 没有发生的可能。
随机事件的频率与概率1.随机事件的频率随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A).3.频率与概率的区别和联系(1) 频率本身是随机的,在试验前不能确定。
做同样次数的重复试验得到事件的频率会不同。
(2) 概率是一个确定的数,与每次试验无关。
是用来度量事件发生可能性大小的量。
(3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
例1.某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这名运动员射击一次,击中10环的概率是多少分析:(1)分清m ,n 的值,用公式nm 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动.解:(1)(2)从上表可以看出,这名运动员击中10环的频率在附近波动,且射击次数越多,频率越接近,故可以估计,这名运动员射击一次,击中10环的概率约为.点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm . 例2.为了估计水库中的鱼的尾数,可以使用以下方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数.分析:用样本估计总体.解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值记作nˆ. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈A P . 所以500402000≈n . 解得n≈25 000,即nˆ=25 000.故可以估计水库中约有鱼25000尾.点评:随着试验次数的变化,事件发生的频率也可能发生变化,但总体来看频率趋于一个稳定值,所以我们也可借助于频率来对一些实际问题作出估计. 例3.某校举办2021年元旦联欢晚会,为了吸引广大同学积极参加活动,特举办一次摸奖活动.凡是参加晚会者,进门时均可参加摸奖,摸奖的器具是黄、白两色的乒乓球,这些乒乓球的大小和质地完全相同.另有一只密封良好且不透光的立方体木箱(木箱的上方可容一只手伸入).拟按中奖率为101设大奖,其余109则为小奖,大奖奖品的价值为40元,小奖奖品的价值为2元.请你运用概率的有关知识设计一个摸奖方案以满足校方的要求. 分析:借助于现有的乒乓球,使一种情况产生的可能性为101即可,并将其定为大奖的条件.解:方案一:在箱子里放10个乒乓球,其中1个黄色的,9个白色的.摸到黄球时为大奖,摸到白球时为小奖.方案二:在箱子里放5个乒乓球,3个白色的,2个黄色的.每位参加者在箱子里摸两次,每次摸一个乒乓球,并且第一次摸出后不放回.当摸到2个黄色乒乓球时为大奖,其他情况视为小奖.点评:概率知识来源于生活、生产实残,由实际问题可以总结出发生某一事件的可能性的大小,在实际生活中设计某一活动的实施方案,一般可以以希望得到的统计数据为依据,还要注意与实际相结合.。
31.2 随机事件的概率第1课时频数与频率、概率的概念教学设计冀教版九年级数学下册【知识与技能】1、通过实验了解随机事件发生的不确定性;2、理解频数与频率、概率的概念以及它们之间的联系和区别。
【过程与方法】1、创设情境,引出课题,激发学生的学习兴趣和求知欲;2、发现式教学,通过摸球实验,获取数据,归纳总结实验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;3、明确概率与频率的区别和联系.【情感态度】1、通过学生自己动手、动脑和亲身实验来理解知识,体会数学知识与现实世界的联系;2、培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学史实渗透,培育学生刻苦严谨的科学精神.【教学重点】了解频数与频率、概率的概念、明确概率其与频率的区别和联系。
【教学难点】利用频率估计概率,体会随机事件发生的随机性和规律性。
一.情境导入,初步认识教师提出问题:周末市体育场有一场精彩的足球比赛,老师手中只有一张球票,小强与小明都是班里的足球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.【教学说明】现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.教师讲课前,先让学生完成“课堂自主演练”。
第三章概率3.1 随机事件的概率第1课时一、教学目标1.核心素养通过随机事件概率的学习.初步形成数据分析能力与抽象概括的能力.2.学习目标(1)了解随机事件发生的不确定性.(2)理解随机事件的规律性.(3)进一步理解概率的意义.(4)利用概率的意义解释生活中的事例.3.学习重点频率与概率的关系,对概率含义正确理解.4.学习难点频率与概率的关系,对概率含义正确理解.二、教学设计(一)课前设计1.预习任务任务1阅读教材P108,思考:如何判定一个事件是必然事件、不可能事件还是随机事件?随机事件说法中“同样的条件下”能否去掉?请举例说明.任务2阅读教材P113—118. 明白概率的意义及其在生活中的指导性作用!2.预习自测1.指出下列事件哪些是必然事件.A.某地1月1日刮西北风;B.当x是实数时,x2≥0;C.手电筒的电池没电,灯泡发亮;D.一个电影院某天的上座率超过50%.解:B2.某种新药在使用的患者中进行调查的结果如下表:请填写表中有效频率一栏,则该药的有效概率是多少?A.84% B.87%C.88% D.90%解:C(二)课堂设计1.知识回顾(1)必然事件:有些事件我们事先能肯定其一定会发生;(2)不可能事件:有些事件我们事先能肯定其一定不会发生;(3)随机事件:有些事件我们事先无法肯定其会不会发生;(4)举出现实生活中随机事件,必然事件,不可能事件的案例.2.问题探究问题探究一创设情景,体会随机事件发生的不确定性(★▲)●活动一“麦蒂的35秒奇迹”在火箭队与马刺队的篮球比赛中,麦蒂在最后几十秒已经连续投进了三个三分球,并且在最后关头抢断成功,推进到前场,在距离比赛结束还有1.7秒时再次投出三分球! 为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进?●活动二“石头,剪刀,布”再看看我们身边的实例,两名同学想看同一本好书,于是采用“石头,剪刀,步”的方式来决定谁先看,那么能预测这两名同学认赢吗?问题探究二重复实验,体会随机事件的规律性.(★▲)●活动一抛掷硬币试验抛掷硬币试验结果表:当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动●活动二某批乒乓球产品质量检查试验:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动.●活动三某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,并在它附近摆动●活动四反思活动,感知随机事件的规律性.通过上述三个大量重复性实验,你能发现随机事件具有什么规律性吗?一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.问题探究三创设生活实例,深化概率意义的理解.(▲)●活动一彩票中奖问题若某种彩票准备发行1000万张,其中1万张可以中奖,则买一张这种彩票的中奖的概率是多少?买1000张的话是否会中奖?分析:中奖的概率为1/ 1000;不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖,买彩票中奖概率为1/1000是指试验次数相当大,即随着购买彩票的数量增加,大约有1/1000的彩票中奖.●活动二游戏的公平性问题某中学在高一年级的二、三班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面朝上的记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班,你认为这种方法公平吗?分析:不公平,记(x,y)中的x,y分别代表两枚硬币的点数,则有(1,1),(1,2),(2,1), (2,2)。
第一课时随机事件的概率一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;a ”;(4)“若a为实数,则0(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5X标签中任取一X,得到4号签”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示 5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。
随机事件与概率及其概率和频率的关系一、引言本文将探讨随机事件与概率之间的关系,以及概率和频率之间的关联。
我们将从随机事件的定义入手,逐步介绍概率的概念和计算方法,并分析概率和频率在实际应用中的联系和差异。
二、随机事件的定义随机事件是指在一定条件下可能发生也可能不发生的事件。
通俗来说,它是具有某种不确定性的事件,例如抛硬币、掷骰子等。
随机事件的发生是由各种因素相互作用的结果,无法事先准确预测。
三、概率的基本概念3.1概率的定义概率是描述随机事件发生可能性大小的数值。
用数学语言来表达,概率就是随机事件发生的频率与总试验次数之间的比值。
它的取值范围在0到1之间,其中0代表事件不可能发生,1代表事件一定会发生。
3.2概率的计算方法等可能性事件概率的计算方法可以分为两种常见的情况:和**不等可能性事件**。
对于等可能性事件,计算概率很简单,只需要用有利结果的个数除以所有可能结果的个数即可。
古典概型对于不等可能性事件,常用的计算概率方法有、**几何概型**和**统计概型**等。
四、概率和频率的关系4.1概率和频率的定义概率和频率都可以用来描述随机事件的发生情况,但它们是从不同的角度出发进行观察和分析的。
理论上的数值概率是通过总体试验次数与事件发生次数之间的比值来衡量事件的可能性大小,是一种。
实际观察到的数值频率是通过大量的试验实验所得的事件发生次数与实验总次数之间的比值来衡量事件的发生情况,是一种。
4.2概率和频率的关联系数频率到概率的收敛概率和频率之间存在一定的关联,可以通过大量试验的频率逼近概率值,这就是。
随着试验次数的增加,频率趋于概率,两者的差距逐渐减小。
数学上可以通过极限的概念来描述概率和频率的关联,即频率趋近于概率的极限值。
4.3概率和频率的差异概率和频率之间存在一定的差异,主要有以下几个方面:观察对象不同-:概率是基于推理和理论的观察,而频率是基于实际观察和统计的结果。
试验次数要求不同-:概率不需要进行大量试验,只需要考虑总体的因素;而频率需要进行大量的试验,以实际观察到的结果进行统计。
§3.1.1频率与概率(韦文月陕西师范大学 710062)【教材版本】北师大版【教材分析】本节课的教学内容是《数学必修3》第三章§1.1节互斥事件,教学课时为1课时.《标准》要求学生在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.本节课主要是通过具体实例,理解概率与频率的联系与区别,进一步辨别随机试验结果的随机性与规律性的关系.概率研究随机事件发生的可能性大小问题,这里既有随机性,又有随机中表现出的规律性,这是学生理解的难点.突破难点的最好办法是给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知.通过试验,观察随机事件发生的频率,可以发现随着试验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、归纳和总结的思想方法.对随机事件的概率教学可以分为下面几个层次:第一,由学生实际动手操作投掷硬币试验第二,计算机模拟,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动.第三,展示历史上一些掷硬币的试验,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动.第四,解释这个常数代表的意义:这个常数越接近1,表明事件发生的频率越大,也就是它发生的可能性越大;这个常数越接近0,表明事件发生的频率越小,也就是发生的可能性越小.所以可以用这个常数度量事件发生的可能性的大小.第五,引导学生对概率与频率的关系进行比较.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.频率是随机的,在试验前不能确定,但概率是一个确定的数,与每次试验无关.【学情分析】学生在义务教育阶段已经接触统计概率的一些基本知识.《义务教育课程标准》要求学生能够初步感受事件发生的不确定性和可能性.经历义务教育阶段的学习,学生已经初步体验有些事件的发生是确定的,有些则是不确定的;能够列出简单试验所有可能发生的结果并知道事件发生的可能性是有大小的;同时,能够对一些简单事件发生的可能性作出描述,并和同伴交换想法.在本书第一章统计部分,学生已经学会了频数、频率这个概念.同时学会制作频率统计图.但是,运用辩证思想去看待并解决数学问题仍然是学生的弱点.【教学目标】1.知识与技能(1)了解随机事件发生的不确定性和频率的稳定性;(2)理解概率的意义;(3)理解频率和概率的区别.2.过程与方法在具体情境中,让学生亲自动手操作,使学生在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知.通过试验,观察随机事件发生的频率,可以发现随着试验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、归纳和总结的思想方法.3.情感、态度与价值观加强概率的实际应用,可以使学生体会概率的重要性.【重点难点】本节课的教学重点是了解随机事件发生的不确定性和频率的稳定性;本节课的教学难点是:(1)概率与频率的联系和区别;(2)随机试验结果的随机性与规律性的关系.【教学环境】1.多媒体课件;2.多媒体教室;3.计算机.[教学设计]1.导入老师(以下简称师):今天,我们先来看看几个有趣的问题,下面的这些描述一定发生吗?(1)早晨,太阳必然从东方升起;(2)苹果,不抓住必然往下掉;(3)边长为a、b的矩形,其面积必为ab;(4)刘翔从西安跑到北京,花了20秒;(5)一岁的婴儿能扛50千克重的大人;(6)地球是一块平板;(7)下周三本地下雨;(8)抛骰子出现点数为1;(9)掷硬币正面朝上.学生(以下简称生):1、2、3一定发生,4、5、6不可能发生,7、8、9可能发生,也可能不发生.2.复习旧知识中的随机思想师:(1)这就是我们在初中时就已经学过的知识,一定发生的事件,我们称为必然事件;不可能发生的事件,我们称为可能事件;可能发生,也可能不发生的事件,我们称为随机事件.(2)随机事件在一次试验中是否发生是不确定的,但是试验中的频率我们是可以算出来.在必修3的统计这一章,我们也接触了频率这个概念,就是出现的次数比上总的次数,我们也学习了频率分布表、画频率分布直方图、频率折线图、茎叶图.(3)必然事件与不可能事件,统称为确定事件.确定事件和随机事件,统称为事件.事件一般用大写字母A、B、C……表示.设计意图:引导学生回顾统计知识,从而使接下来要做的动手探究有一个知识和心理上的准备.学会用大写字母表示事件.3.学生自主探究环节1:师:在相同条件下的大量重复试验中,为了探究频率的规律,来看下面的材料.为了研究这个问题,2003年北京市某学校高一(5)班的学生做了如下试验:在相同条件下大量重复掷一枚图钉,观察出现“钉尖朝上”的频率的变化情况:(1)每人手捏一枚图钉的钉尖,钉帽在下,从1.2米的高度让图钉自由下落.(2)重复20次,记录下“钉尖朝上”出现的次数.图1 汇总六位同学的数据后画出来的频率图观察图1,出现“钉尖朝上”的频率有什么样的变化趋势?生:投掷次数较少的时候,频率波动较大;随着投掷次数的增加,频率摆动的幅度变小,并在一个常数附近摆动.设计意图:引导学生从别人的试验结果中,找到频率变化的规律.为下面学生自己探究提供了方向.环节2:师:为了探究随机事件发生的规律,下面我们来做一个试验:在相同情况下大量重复掷图钉,观察出现“顶尖朝上”的频率的变化情况(1)每人手捏一枚图钉的钉尖,钉帽在下,从1米的高度让图钉自由下落,重复20次,记录下“正面朝上”出现的次数,同时计算出每次试验“正面朝上”出现的频率,列出频率表.(2)汇总每个同学的数据,并将他们的数据进行编号,分别得出前20次、前40次、前60次……试验出现“正面朝上”的频率.(3)把数据输入到Excel软件中,画出频率随着投掷次数增加的频率折线图.即在直角坐标系中,横轴表示掷图钉的次数,纵轴表示以上试验得到的频率,将上面算出的结果表示在坐标系中.(4)图上观察出现“钉尖朝上”的频率变化趋势,你会的得出什么结论?通过上面的试验,我们可以看出:出现“钉尖朝上”的频率是一个变化的量,但是在大量重复试验是,它又具有“稳定性”——在一个“常数”附近摆动.师生一起总结以上两个环节,得出以下结论:(1)在大量重复试验的情况下,出现“钉尖朝上”的频率会呈现稳定性,即频率在一个“常数”附近摆动.随着试验次数的增加,摆动的幅度具有越来越小的趋势.(2)有时候试验也可能出现频率偏离“常数”较大的情形,但是随着试验次数的增大,频率偏离“常数”的可能性会减小.设计意图:让学生亲身经历,随着试验次数增加,频率的变化规律.4.阅读理解材料一:历史上曾有人做过掷硬币的试验,试验结果如表1:表1重复抛掷硬币,出现“正面朝上”的频率是事先无法确定.但是,在大量重复抛掷硬币时,出现“正面朝上”的频率具有稳定性——它在0.5附近摆动.材料二:考察新生婴儿的性别:可能是男孩,也可能是女孩.对大量新生婴儿的统计显示,出现“新生婴儿是男孩”的频率具有稳定性.著名数学家拉普拉斯对男婴和女婴的出生规律作了详细的研究,他对伦敦、彼得堡、柏林和法国的情形进行了分析,得到了庞大的统计资料.这些资料显示,10年间,男孩出生的频率在2243附近摆动.表(2)是上个世纪波兰的一些统计结果.表2材料三:表3是我国历次人口普查总人口性别构成情况,它们与拉普拉斯得到的结果非常地接近.表3 我国历次普查总人口性别构成情况(单位:万人)师:在以上三个材料中,我们在每一轮试验之前,能否知道频率的值呢?生:不能.师:既然一个试验前,频率的值我们是无法确定的,那么说明频率是随机的,但是大量试验中,频率是有规律的.从以上这三个材料我们能看到随机事件的频率有什么共同特征呢?生:在大量重复试验中,随机事件的频率总是在某一个“常数”附近摆动.设计意图:通过呈现材料,让学生意识到频率是有规律的,在大量重复试验中,它会在某个“常数”附近摆动.5.学生动手实践师:在前面统计内容的学习中,我们已经了解了随机数表.下面我们用随机数表来模拟硬币的试验.用0,1,……,9这10个数字中的任意5个表示“正面朝上”,其余5个表示“反面朝上”,每产生一个随机数就完成一次模拟.下面我们用0,1,2,3,4表示“正面朝上”,用5,6,7,8,9表示“反面朝上”.具体过程如下:(1)制作一个如下形式的表格,在随机数表中随机选择一个开始点,完成100次模拟,并将结果记录在表4中.表4(2)根据表(4)的记录,得出100次模拟试验中出现“正面朝上”的频率. (3)汇总全班同学的结果,给出出现“正面朝上”的频率.总结试验结果:出现“正面朝上”的频率是一个变化的量,但是当试验次数比较大时,出现“正面朝上”的频率在0.5附近摆动.这与历史上抛掷硬币的试验结果是一致的.设计意图:学生亲自动手实践,能体会到试验前,频率是无法确定的,它是一个变化的量,或者可以说是一个随机量,但是大量的试验表明,频率是有规律的.6.抽象概括以上的试验,都揭示了,大量重复试验,随机事件的频率会在某一个常数附近摆动,这个常数越接近1,表明事件发生的频率越大,也就是它发生的可能性越大;这个常数越接近0,表明事件发生的频率越小,也就是发生的可能性越小.所以可以用这个常数度量事件发生的可能性的大小.(1)概率的概念在相同条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数附近摆动,即随机事件A 发生的频率具有稳定性.这时,我们把这个常数叫做随机事件A 的概率,记做P(A).(2)概率的含义概率表示随机事件A 发生的可能性.概率的值越大,事件发生的可能性越大. 必然事件的概率为1,不可能事件的概率为0,随机事件的概率在0到1之间. (3)频率的含义在相同条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中随机事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()An n f A n为事件A 出现的频率.频率反映了一个随机事件出现的频繁程度.(4)频率和概率的区别与联系①频率是随机的,在试验前事无法确定的,而概率是一个确定的值,与每次试验无关.因此,人们用概率来反映随机事件发生的可能性的大小.②频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.③在实际问题中,某种随机事件的概率往往难以确切得到,因此,我们常常通过大量的重复试验,用随机事件发生的频率作为它的概率的估计值.7.布置作业1.请举出身边的一些随机事件的例子.2.在上面掷图钉的活动中,根据已有的数据,计算出现“顶尖朝上”的概率大约是多少?3.课后调查:气象台常常用概率的语言来刻画未来天气的变化情况,比如“今天的降水概率是60%.你对这句话是如何理解的?对你身边的人进行调查,看看他们是如何理解的.【专家点评】本教学设计的突出特点有:(1)复习旧知,引入新知;(2)教学素材丰富。