不定积分典型题型
- 格式:docx
- 大小:142.73 KB
- 文档页数:8
不定积分常见题型
不定积分是高等数学中的重要概念,在数学学习和应用中具有重要作用。
不定积分的题型非常多,下面介绍一些常见的题型:
1. 基本初等函数的不定积分:包括多项式函数、三角函数、指数函数、对数函数等的不定积分,是不定积分的基本题型。
2. 分部积分法:将不定积分中的积分式子分解成两个函数相乘的形式,然后利用分部积分公式求解不定积分。
3. 三角函数的不定积分:特别需要注意的是正切函数的不定积分,这个题型需要采用换元法或分式代换法。
4. 有理函数的不定积分:将有理函数分解成部分分式的形式,然后逐项求不定积分。
5. 幂函数与指数函数的不定积分:需要采用换元法或分式代换法。
6. 函数的合成积分:将不定积分中的函数替换成其他函数的复合形式后进行求解。
总之,不定积分的题型繁多,需要学生在平时的学习中多加练习,掌握不同的求解方法和技巧。
- 1 -。
不定积分 (A)1、求下列不定积分1)⎰2xdx 2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+221 5)⎰⋅-⋅dxxxx32532 6)dxxxx⎰22sincos2cos7)dxxe x32(⎰+ 8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23( 2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos 6)⎰-+xx eedx7)dxxx)cos(2⎰ 8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx 12)dxx⎰3cos13)⎰xdxx3cos2sin 14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+211 2)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx 6)⎰+xdx217)⎰-+21xxdx 8)⎰-+211xdx4、求下列不定积分(分部积分法) 1)inxdxxs⎰ 2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan2 6)⎰xdxx cos27)⎰xdx2ln 8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dxxx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx (B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
三、典型例题解析例1 求下列不定积分.(1). (2)1)dx ⎰.分析 利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式. 解 (1)532251252121()3x dx x C x C --+-==+=-++-⎰. (2)35312222231221)(1)353dx x x x dx x x x x C =+--=+--+⎰⎰.例2求2(x dx ⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解12221((2)x dx x x dx x +=++⎰⎰12212x d x x d x d xx=++⎰⎰⎰ 32314ln 33x x x C =+++. 例3 求下列不定积分.(1)2523x x x e dx ⋅-⋅⎰. (2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解 (1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x xe e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰. 例4 求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x +⎰. (3)221(1)dx x x +⎰. 分析 根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰ 1a r c t a n x x Cx=--+.(2)4422(1)111x x dx dx x x -+=++⎰⎰222(1)(1)11x x dx x-++=+⎰ 221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰ 22111dx dx x x =-+⎰⎰1a r c t a n x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰.(4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4). (5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdxx x -+⎰. (8).(9). (10)2.(11)322(arctan )1x x dx x++⎰. 分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n n x ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -=-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(a r c t a n )(a r c t a n )21d x x d x x+=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x x f a a dx f a da a=⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数). (4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数). (5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰;适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数). (6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)(arcsin (arcsin )(arcsin )f x f x d x =⎰⎰;(9)(arccos (arccos )(arccos )f x f x d x =-⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰;(12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分:(1)3cos xdx ⎰. (2)4sin xdx ⎰. (3)sin 7cos(3)4x x dx π-⎰. (4)6csc xdx ⎰.(5)34sin cos x xdx ⎰. (6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解 (1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322cos cos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc(csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++.(6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注 利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8 求下列不定积分: (1)x x dx e e -+⎰. (2)x x dx e e --⎰. (3)11x dx e+⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解 (1)xx dx e e -+⎰221arctan ()1()1x x xx x e dx de e C e e ===+++⎰⎰. (2)解法1 xxdxe e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则 x x dxe e --⎰11ln 21x x e C e -=++.解法2 x xdx e e--⎰21111()()1211xx x x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e +⎰1(1)11x x x x xe e e dx dx e e +-==-++⎰⎰ 1(1)1x xdx d e e=-++⎰⎰ ln(1)x x e C =-++.解法2 11xdx e +⎰(1)ln(1)11x x x xx e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1x xxe C e C e -=+=-+++.注 在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9 求下列不定积分:(1)ln tan sin cos xdx x x ⎰. (2). 分析 在这类复杂的不定积分的求解过程中需要逐步凑微分.解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ ln tan (tan )ln tan (ln tan )tan xd x xd x x==⎰⎰ 21ln (tan )2x C =+. (2)2=22a r c (a n r c t a n )C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctan arctan arctan11()1111()1()x x x dx dx d x x x x x =⋅=-+++⎰⎰⎰11arctan (arctan )d x x=-⎰211(arctan )2C x=-+.例11 求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解 221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解 令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换. 解法1 sin 22sin dx x x+⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰ 22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2 令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t=--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰ 12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3 令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则sin 22sin dxx x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14求分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一.解t ,即21x t =-,2dx tdt =,则212(1)11t dt dt t t==-++⎰⎰ 22ln 1t t C =-++2ln(1C =+例15求分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数. 解t ,34dx t dt =-,则2414(1)11tdt t dtt t-==--+++⎰⎰214(l n1)2t t t C=--+++ln(1)]C=-++.例16解t=,即3211xt=--,2326(1)tdx dtt=-,则233232164(1)(1)tdtt ttt==⋅-⋅-⎰132313131()2221xdt C Ct t x+==-⋅+=-+-⎰.例17求x⎰.分析2sinx t=消去根式.解2cos(0)2t tπ=<<,2cosdx tdt=,则224sin2cos2cos4sin2x t t tdt t dt=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin42t dt t t C=-=-+⎰222sin cos(12sin)t t t t C=--+212arcsin)22xx C=-+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18求221(1)dxx+⎰.分析 虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解设tanx t=,2secdx tdt=,()2241secx t+=,则222241seccos(1)sectdx dt tdtx t==+⎰⎰⎰111(1c o s 2)s i n 2224t d t t t C =+=++⎰ 21a r c t an 22(1)xx C x =+++. 例19求. 分析故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22tan sec tan tan (sec 1)sec a ta t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )aa C x=-+.例20求.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,2(2tan 2)2sec 2sec tan 2sec 2sec t t dt t tdt tdt t -⋅==-⎰⎰⎰12s e c 2l n s ec t a n t t t C =-++2ln(2x C ++.()12ln 2C C =+ 注由00a a ><可作适当的三角代换, 使其有理化.例21求.解322[3(1)]dx x =+-⎰,令1x t -,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰C +. 故C =+.例22 求421(1)dx x x +⎰.分析 当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注 有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23求. 解 设1x t=,2dtdx t =-,则4t =1222(1)a t t dt =--⎰.当0x >时,12222221(1)(1)2a t d a t a=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故322223()3a x C a x -=-+.注1 第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型:(1)(,f x dx t ⎰令(2)(,f x dx t =⎰令.(3)(f x dx ⎰,可令sin ax t b=或cos a x t b =.(4)(f x dx ⎰,可令tan a x t b =或ax sht b =.(5)(f x dx ⎰,可令sec a x t b =或ax cht b=.(6240)q pr -<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24 求下列不定积分:(1)3x xe dx -⎰. (2)2sin 4x xdx ⎰. (3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰. (6)sin ax e bxdx ⎰22(0)a b +≠. 分析 上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解 (1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰arcsin arcsin x x x x C =-=.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰arcsin x x C =+(5)解法1 a r c t a n x x d x ⎰222211arctan arctan 2221x x xdx x dx x==-+⎰⎰ 2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1 sin ax e bxdx ⎰11sin ()sin cos ax ax ax bbxd e e bx e bxdx a a a==-⎰⎰21s i n c o s ()a x a xbe b x b x d ea a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰. 解法21sin cos axaxebxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成.注 在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出.例25 求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰sin ln(cot )ln sec tan x x x x C =+++例26 求ln(x dx +⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解1ln(ln((12x dx x x x dx +=-+⎰⎰ln(x x =+-12221ln((1)(1)2x x x d x -=-++⎰ln(x x C =.例27 求x .分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法1x 2x xd ==⎰2⎡⎤=⎣⎦,令t ,则2ln(1)x t =+,221tdtdx t =+,则 21222(arctan )1t dtt t C t ==-++⎰,故x (2Cz =+2C =.解法2tz =,则x22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++2C =.注 求不定积分时,有时往往需要几种方法结合使用,才能得到结果.例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法1 2arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注 用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果.例30 求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解 (1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注 将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ s i n (l n )c o s (l n x x xd x =-⎰s i n (l n )c o s (l n )s i n (x x xx x d x =--⎰, 所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t t e tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型.解 11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33 求积分24411(21)(23)(25)x x dx x x x +--+-⎰. 分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分. 解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-,用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+, 两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式32322452()3()2(1)x x x x x x x x +++=+++++ 22(1)(32)(1)(2)x x x x x =+++=++ 设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35 求22(1)(1)dxx x x +++⎰.解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.例36 求2425454x x dx x x ++++⎰.解 设24222545414x x Ax B Cx Dx x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰.例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰ 219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰. 解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解. 解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法2 22100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40求.分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一. 解121)=112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41求. 解法1a ==+1222221()()2a a x d a x -=---⎰arcsin xa C a=.解法2 令t =余下的请读者自行完成. 例42 求154sin 2dx x+⎰.分析 被积函数是三角有理函数,可用万能公式将它化为有理函数. 解 令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰ 154arctan()333t C =++154arctan(tan )333x C =++. 注 虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43 求1sin cos dxx x++⎰.解法1 令tan2xu =,则 2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++. 解法21s i n c o s dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dxx x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类:第一类是三角有理函数的积分,即可用万能代换tan 2xu =将其化为u 的有理函数的积分.第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法. 例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩, 设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩, 其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注 对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰.解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x x x x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0x xxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰.错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使xe-的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系. 例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰. (2)3sin 2cos sin cos x x x x e dx x -⎰. (3)cot 1sin x dx x +⎰. (4)3sin cos dxx x⎰. 解 (1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x=-++⎰⎰t a n t a n l n (1c o s )22x xx dx x =--+⎰ 1tan2ln cos ln(1cos )22x xx x C =+-++ 21t a n 2l n c os l n (2c o s )222x xxx C =+-+1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21l n c s c 2c o t 22s i n x x Cx=--+. 注 将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰. 解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x ++=-+--. 例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解 因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰l n 5c o s 2s i n x x x C=+++. 例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以()F x =从而()()f x F x '==2=.。
求下列不定积分:知识点:直接积分法的练习——求不定积分的荃本方法。
思路分析:利用不定积分的运算性质和荃本积分公式,査接求出不定积分!★(1),旅思路:被积函敌|:,由积分表中的公式(2)可解。
K 77T 八★⑶思路:根裾不定积分的线性性质,将被积函数分为两项,分别积分。
解:j<2x +.K 2Wt = j2,rfA + f.rdv = -L.+lx i +C ★⑷J 仮(.丫-3皿 思酪:根拐不定积分的线性性质,将被积函薮分为两项,分别积分。
J7xU-3)rfv = |x-dv-3jA"dv = ^.v* -2.V-+C★★⑸『竺上竺旦厶息」廉:观察到3xJ3.E=w+ 1后,根拐不定积分的线性性质,将被积函数分项,分别积分。
丿 ~-V+ 1 ~~.C+ 1~"*A x 2+11 ,根据不定积分的线性性质,将被积函数分项,分别积分。
解:JI ' 心=j rfv-j ]:心=A -arctan .v+C.注.容島看出(5)(6)两題的解SI 思绝是一致的• 一般地,如果被积函数为一个有理的假分丈.谨常先将其分解为一个荃或加上或 减去一个真分丈的形丈.再分项积分.★(7) |(三二+W 心思路:分项积分。
4-~-r^ = J 'z£v -|-^<tv + 3|x 'rfv-4j.t u rfv★(8)上3 2 思路:分项积分。
■ J< ] 3 - F k£v = 3j J , dx-2jdr = 3arctan .v-2arcsinx + C.★★⑺j 后眾小思路:皿着看到皿頁=严—“直接积分。
解:J 厶斥曲Y = =加+ U息话:根据不定积分的线性性质,将被积函数分为两项,分别积分。
X ,.思路:注意到r_ JI + x* x l+x 2 l+.r 1+x 2 解: ★⑵ =x + arctan .v + C解:严小+认=★★(10) I忌路:裂项分项积分。
例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰ 解法3⎰⎰⎰+-=++=++≠22222421)1(11111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(21212111111222222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dxx x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx x x x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx x x x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx xx x x x x dx x x x x +-+=-'-+-=-+⎰⎰ 例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos 1)(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx xx x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx +-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 12222x xx d xx x dxxx x x xdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dxtx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11.arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt t ttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c x x x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
不定积分经典例题1. 计算不定积分:$\int \frac{1}{x^2} dx$解:该不定积分可以通过直接计算得到。
由于$\frac{1}{x^2}$ 的原函数是 $-\frac{1}{x}$,因此$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$其中 $C$ 是常数。
2. 计算不定积分:$\int (2x+3)dx$解:使用不定积分的线性性质,可以将被积函数分解成两个分别可求积的部分。
所以$$\int (2x+3)dx = \int 2x dx + \int 3 dx = x^2 + 3x + C$$其中 $C$ 是常数。
3. 计算不定积分:$\int e^x \sin(x) dx$解:可以通过分部积分法来计算该不定积分。
设 $u = e^x$,$dv = \sin(x) dx$,则 $du = e^x dx$,$v = -\cos(x)$。
根据分部积分公式,$$\int e^x \sin(x) dx = -e^x \cos(x) - \int -e^x \cos(x) dx$$然后再次使用分部积分法,可得$$\int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x) - \int e^x \sin(x) dx$$将右侧的不定积分移到左侧,可以得到$$2 \int e^x \sin(x) dx = -e^x \cos(x) + e^x \sin(x)$$因此$$\int e^x \sin(x) dx = \frac{-e^x \cos(x) + e^x \sin(x)}{2} + C$$其中 $C$ 是常数。
这只是一些经典的不定积分例题,当然还有很多其他的例题。
希望这些例题能够帮助你理解不定积分的计算方法。
计算题(共 200 小题) 1、⎰⎰+=.d )( , sin d )()(x x f c x x x f n 求设 2、⎰'>+=.d )(),0()(2x x f x x x x f 试求设 3、.d x x ⎰求4、.)( .0,sin ,0)(2的不定积分求 设x f x x x x x f ⎩⎨⎧>≤= 5、已知,求它的原函数.f x x F x ()()=-1 6、.d x x ⎰求 7、⎰-233d x x 求 8、 .,d 2是常数其中求 a x x a ⎰9、.0,,d >⎰a a x e a x x 是常数其中求 10、.d tan csc 22x x x ⋅⎰求11、⎰⋅x x x d cot sec 22求 12、⎰+22d x x 求 13、⎰+82d 2x x求 14、⎰-9d 2x x 求 15、⎰-.63d 2x x 求 16、 ⎰+232d x x 求 17、.d 2432x xx x ⎰-求 18、x x x d ⎰⋅求 19、.d )1(23x x x ⎰+求 20、 .,,d )cosh sinh (均为常数其中求 b a x x b x a ⎰+ 21、⎰x x d cot 2求22、.d 11)(3x x x ⎰++求 23、.d x x x x ⎰求 24、⎰+.d )arccos (arcsin x x x 求 25、[].d )1(cos cos )1(sin sin x x x x x ⎰+++求 26、⎰⋅.d 2sin 22x x 求 27、⎰.d 2cos 22x x 求 28、.d sin 1sin 423x x x ⎰-求 29、⎰+.d )32(2x x x 求 30、.d 3273x x x ⎰--求 31、.d 22222x x x x ⎰-+-求 32、⎰---.d )31)(21)(1(x x x x 求 33、x x x x d )1(21222⎰++求 34、.d 323x xx e x x x ⎰+-求 35、.d )1()1(22x x x x ⎰++求 36、⎰+.d )sec (tan 22x x x 求 37、.d )csc (cot 22x x x +⎰求 38、.d sin sin 2222⎰+x xx x x 求 39、.d 122x xx ⎰+求40、⎰-.d 122x x x 求 41、.d 1322x x x ⎰-+求 42、.d 111422x x x x ⎰--++求 43、 .d 111422x x x x ⎰---+求44、 .d 2cos 1sin 12x xx ⎰-+求 45、.d 1cos sin 122x x x ⎰--求 46、.d cos sin d 22x xx x ⎰求 47、 ⎰++.d 2cos 1cos 12x xx 求 48、.d sin cos 2cos x xx x ⎰-求 49、 ).20(d 2sin 1π≤≤+⎰x x x 求 50、x xx x d sin cos 2cos 22⎰求 51、 ⎰+x x x 2sin 2cos d 求 52、求⎰++++x xx x x x d 13323。
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式. 例1、求 dx x x x ∫−)11(2解 原式= C x x dx x x ++=−∫−41474543474)(例2、求 dx e e x x ∫++113解 原式= C x e e dx e e x xx x ++−=+−∫2221)1( 例3、求 dx xx ∫22cos sin 1解 原式 ∫∫∫+=+=dx x dx x dx x x x x 222222sin 1cos 1cos sin cos sin C x x +−=cot tan 例4、 ∫dx x2cos 2 解 原式= C x x dx x ++=+∫2sin 2cos 1 例5、 dx xx ∫+221 解 原式∫∫+−=+−+=dx x dx x x )111(111222C x x +−=arctan 注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)C x G Cu G duu g dxx x g dx x f ux ++====∫∫∫=)]([)()()(')]([)()(ϕϕϕϕ还原求出令凑成在上述过程中,关键的一步是从被积函数)(x f 中选取适当的部分作为)('x ϕ,与dx 一起凑成 )(x ϕ的微分 du x d =)(ϕ且 ∫du u g )(易求.例1、求 ∫dx xxcos tan 解 原式= ∫∫−=x x xd dx x x x cos cos cos cos cos sin C xx d x +=−=−∫cos 2cos )(cos 23 例2、求 ∫−dx xx x 2arcsin解 原式)()(1arcsin 211arcsin 2x d x x dx xxx ∫∫−=⋅−=C x x d x +==∫2)(arcsin )(arcsin arcsin 2注)(21x d dx x= 例3、求 ∫−−dx xx 2491解 原式∫∫−−+−=−)49()49(81)2(3)2(21221222x d x x x dC x x x x x d +−+=−+−=∫222494132arcsin 214941)32(1)32(21例4、求 ∫+⋅+dx xx x 2211tan解 原式= C x x d x ++−=++∫|1cos |ln 11tan 222例5、求 dx x x x ∫−−12解 原式= ∫∫∫−+=−−−+dx x x dx x dx x x x x x 1)1()1(22222 C x x x d x x +−+=−−+=∫2323223)1(313)1(1213例6、求 ∫+dx xtan 11解 原式= ∫∫+−+=+dx xx xx dx x x x sin cos sin cos 1(21cos sin cos C x x x x x d x x x +++=⎥⎦⎤⎢⎣⎡+++=∫|)sin cos |ln (21)sin (cos sin cos 121 例7、求 ∫−+−dx xxx 11ln 112 解 原式=C xx x x d x x +−+=−+−+∫11ln 41)11(ln 11ln 212 例8、求 ∫+dx e x11解 原式= ∫∫∫+−=+−+dx e e dx dx e e e x x x xx 111 C e x e d edx xx x++−=++−=∫∫)1ln()1(11例9、求 ∫−+dx e e xx 1解 原式= C e e d e dx e e x x x x x +=+=+∫∫arctan )()(11122 例10、求 ∫+dx xxsin 1sin解 原式= ∫∫∫−−=+−dx xxdx dx x 2cos sin 1)sin 111( dx xxdx x x ∫∫+−=22cos sin cos 1C x x x ++−=sec tan 例11、求 ∫−xx dxln 32解 原式 )(ln )ln 32(21x d x −∫−=C x x d x +−+−⋅−=−−−=∫−2121)ln 32(121131)ln 32()31()ln 32( C x +−−=ln 3232例 12、求 ∫+dx xb x a 2222cos sin 1解 原式= ∫∫+=+)tan ()tan (111)(tan tan 12222x badx ba ab x d xa b C x baab +=)tan arctan(1 例13、求 ∫++dx x x 1164解 原式=∫∫∫+++−=+++−dx x x dx x x x dx x x x x 232322226224)(1)(1)(11 C x x dx x dx x ++=+++=∫∫33232arctan 31arctan )(113111 例14、求 ∫+dx x x )1(18解 原式=∫∫∫+−=+−+dx x x dx x dx x x x x 8788811)1(1C x x ++−=)1ln(81||ln 8例15、求 ∫+−−dx x x x 54232解 原式= dx x x x x x x d ∫∫+−++−+−541454)54(23222∫+−−++−=1)2()2(4|54|ln 2322x x d x x C x x x +−++−=)2arctan(4|54|ln 232 注 由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形如 ∫++dx cbx ax 21的积分(将分母配方,再凑微分). 例16、已知 2ln )1(222−=−x x x f ,且 x x f ln )]([=ϕ,求 ∫dx x )(ϕ.解 因为 1111ln )1(222−−+−=−x x x f ,故 11ln )(−+=x x x f ,又因为x x x x f ln 1)(1)(ln)]([=−+=ϕϕϕ,得x x x =−+1)(1)(ϕϕ,解出11)(−+=x x x ϕ,从而C x x dx x dx x x dx x +−+=−+=−+=∫∫∫|1|ln 2)121(11)(ϕ 例17、求 ∫dx x4cos 1解 原式C x x x d x x xd ++=+==∫∫322tan 31tan tan )tan 1(tan sec例18、求 ∫++dx x x x2)ln (2ln 1 解 原式=C x x x x x x d +=+∫)2ln arctan(21)ln (2)ln (2三、第二类换元法设 )(t x ϕ=单调可导,且0)('≠t ϕ,已知 C t F dt t t f +=∫)()(')]([ϕϕ,则C x F Ct F dt t t f dxx f x t t x ++==−===∫∫−)]([)()(')]([)(1)()(1ϕϕϕϕϕ还原令选取代换 )(t x ϕ=的关键是使无理式的积分化为有理式的积分(消去根号),同时使 dt t t f ∫)(')]([ϕϕ易于计算.例1、求 ∫−+221)1(xx xdx解 令 tdt dx t x cos ,sin ==原式=∫∫−−=+t td t t tdt t 22cos 2cos cos )1(sin cos sin t d tt cos )cos 21cos 21(221∫++−−= C xx C t t +−−−+−=+−+−=221212ln 221cos 2cos 2ln 221例2、求 ∫+241xxdx解 令 tdt dx t x 2sec ,tan ==原式=t d t t t d ttt tdt t t tdt sin )sin (sin sin sin sin 1sin cos sec tan sec 24424342∫∫∫∫−−−=−==⋅ C xx x x C t t ++++−=++−=)1(3)1(sin 1sin 13123323 例3、求 dx x x ∫−229解 令 t x sec 3=,则 tdt t dx tan sec 3⋅=原式= ∫∫∫−==⋅⋅dt t t dt tttdt t t t )cos (sec sec tan tan sec 3sec 9tan 3221sin |tan sec |ln C t t t +−+=12222ln C xa x a a x a x +−−−+=C xa x a x x +−−−+=2222ln 例4、求 ∫+dx x x )2(17解 令 t x 1=,则dt tdx 21−=,原式∫∫∫++−=+−=−+=)21(21114121)1(21777627t d t dt t t dt t ttC x x C t +++−=++−=||ln 21|2|ln 141|21|ln 14177 注 设n m ,分别为被积函数的分子,分母关于x 的最高次数,当1>−m n 时,可用倒代换求积分.例5、求 dx x xx ∫−+1122解 令t x 1=,dt tdx 21−=原式 ∫∫−+−=−−+=dt t t dt t t t t 222211)1(11111∫∫−−+−−=22212)1(11t t d dt tC xx x C t t +−−=+−+−=1arcsin 11arcsin 22例6、求 dx xx x∫−432解 原式 ∫∫∫−⋅=−=⋅−===dt t t t dt t t dt t t t t tx dt t dx 11211212541051411386121211令∫∫−++=⋅−+−=5554510)111(51211112dt t t dt t t t C t t t +−++=|1|ln 51251210125510 C x x x +−++=1ln 5125125612512565例7、求 ∫+xedx 1解 令t e x =+1,12−=t e x ,dt t tdx 122−=原式= C t t dt t dt t t t ++−=−=−⋅∫∫11ln 11212122C e e x x +++−+=1111ln例8、求 ∫+dx xx xln 1ln解 令x t ln 1+=原式∫∫−=+=dt tt x d x x 1ln ln 1lnC x x C t t dt tt ++−=+−=−=∫ln 1)2(ln 32232)1(2123例9、求 dx x x ∫++−+1111 解 令 tdt dx t x t x 2,1,12=−==+因为原式dx xx x x dx x x x ∫∫+−+=+−+=12||ln 2122而 ∫∫∫−+=−=+dt t t dt t dx x x 111(2121222 C x x x C t t t +++−+++=++−+=1111ln 1211ln2原式=C x x x x x +++−+−+−+1111ln214||ln 2=C x x x +++++−11ln 414四、分部积分法分部积分公式为 ∫∫−=vdx u uv dx uv ''使用该公式的关键在于 ',v u 的选取,可参见本节答疑解惑4. 例1、求 ∫dx e x x 3解 原式=x x x x x x de x e x e x de x e x de x ∫∫∫+−=−=63323233 C e xe e x e x x x x x +−+−=66323 例2、求 ∫dx xx 2cos 22 解 原式∫∫+=+=xdx x x dx x x cos 2161)cos 1(21232 ∫∫−+=+=xdx x x x x x d x x sin sin 2161sin 21612323 ∫∫−++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323 C x x x x x x +−++=sin cos sin 216123 例3、求 ∫dx e x 3解 原式C e te e t det dt e t t t t tttx dtt dx ++−==∫∫==66333222332令C eex ex xxx++−=333663332例4、求 ∫dx x )cos(ln解 原式 ∫+=dx x x x )sin(ln )cos(ln∫−+=dx x x x x x )cos(ln )sin(ln )cos(ln移项,整理得原式C x x x++=)]sin(ln )[cos(ln 2注 应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:∫∫xdx e xdx e xx ββααsin cos 或例5、求 ∫++dx x x )1ln(2解 原式 dx x x x x x ∫+−++=221)1ln(C x x x x ++−++=221)1ln(例6、求 ∫dx xx23ln解 原式= ∫∫−−=−=1(ln 3ln )1(ln 233xxd x x x xdC x x x x x x x x xd xx x x +−−−−=⎥⎦⎤⎢⎣⎡+−−=∫6ln 6ln 3ln )1(ln 2ln 3ln 2323 例7、推导 ∫+dx a x n)(122的递推公式 解 令 ∫+=dx a x I nn )(122∫++−+++=dx a x a a x n a x x I n n n 12222222)(2)(∫++−++=dx a x na nI a x x n n n 122222)(122)(122222)(+−++=n n nI na nI a x x ⎥⎦⎤⎢⎣⎡−++=+n nn I n a x xna I )12()(212221 ⎥⎦⎤⎢⎣⎡−++−=−−11222)32()()1(21n n n I n a x xa n I 例8、推导 ∫=xdx I n n tan 的递推公式.解 ∫⋅=−xdx x I n n 22tan tan ∫−⋅=−dx x x n )1(sec tan 22∫∫−−−⋅=xdx xdx x n n 222tan sec tan 2122tan 11)(tan tan −−−−−−=−=∫n n n n I x n I x xd 注 应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式. 例9、已知)(x f 的一个原函数是 2x e −,求 ∫dx x xf )(' 解 原式C e x xf dx x f x xf x xdf x +−=−==−∫∫2)()()()( 例10、求 ∫+dx x x x )1ln(arctan 2解 因为 ∫+dx x x )1ln(2∫++=)1()1ln(2122x d x C x x x +−++=22221)1ln()1(21 所以 原式= ∫⎥⎦⎤⎢⎣⎡−++22221)1ln()1(21arctan x x x xd[]∫⎥⎦⎤⎢⎣⎡+−+−−++=2222221)1ln(21arctan )1ln()1(21x x x x x x x []C x x xx x x x +++−−−++=23)1ln(23)1ln()1(arctan 212222 注 本题是三类函数相乘的形式,这类问题大多采用本题的方法.例11、求 ∫+dx x xe x)1(2arctan 解 令 tdt dx t x 2sec ,tan ==原式dt e t t dt tte t t t ∫∫=⋅=cos sin sec sec tan 42 C t t e dt te t t+−==∫)2cos 2(sin 1012sin 21C x x x e x ++−+=)1(5)1(22arctan 例12、求 xdx x x arctan 122∫+ 解 原式= xdx x arctan )111(2∫+−∫∫+−=xdx x dx x arctan 11arctan 2 C x x x x +−+−=22)(arctan 21)1ln(21arctan例13、求 ∫−+⋅dx x x x x 22211arcsin 解 令 tdt dx t x t x cos ,arcsin ,sin ===,原式 ∫∫∫+=⋅+=tdt dt t ttdt tt t t 222sin cos cos sin )sin 1(2221cot cot 21)cot (t tdt t t t t td ∫∫++−=+−= C t t t t +++−=221|sin |ln cosC x x x x x +++−−=22)(arcsin 21||ln arcsin 1注 直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用. 五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分: (1) C a x A dx ax A+−=−∫||ln (2) )1()(11)(1≠+−−−=−−∫n C a x n A dx a x A n n (3) ∫=∫∫+⎥⎦⎤⎢⎣⎡−++=+++−n upx ap q nna u dup q p x dxdx q px x dx )(44)2()(2224422222=令=令 (4) ∫∫++−+++−−=+++−n n n q px x dxp a q px x n dx q px x dx a x )()2()(1)1(21)()(2122,其中 042<−q p .这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的. 例1、求 ∫+−322x x dx解 原式= C x x x d x dx +−=−+−=+−∫∫21arctan 21)1(2)1(2)1(22例2、求 ∫++++dx x x x x 4545242 解 原式= ∫∫++++++dx x x xdx x x x )4)(1(5)4)(1(422222 2222222)4111(65arctan )4)(1(251dx x x x x x dx x dx ∫∫∫+−++=++++= C x x x ++++=41ln 65arctan 22 本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,设 41454522242+++++=++++x DCx x B Ax x x x x ,通分后应有 )1)(()4)((45222+++++=++x D Cx x B Ax x x比较等式两端x 的同次幂的系数,得0=+C A ,0=+D B ,54=+C A ,44=+D B 由此, 1,35,1,35−=−===D C B A故原式= dx x x x x ∫⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−+++4135113522C x x x ++++=arctan 41ln 6522 例3、求 ∫−13x xdx解 设11123++++−=−x x C Bx x A x x ,通分后应有)1)(()1(2−++++=x C Bx x x A x 比较等式两端x 的同次幂的系数,得0 ,1 ,0=−=+−=+C A C B A B A ,由此,31,31,31=−==C B A故原式= dx x x x x ∫⎥⎦⎤⎢⎣⎡++−−−)1(31)1(312∫∫∫+++++++−−=43)21()21(211126113122x x d dx x x x x dx C x x x x +++++−=312arctan 311)1(ln 6122例4、求 ∫−)1(42x x dx解 原式= dx x x dx x x dx x x x x ∫∫∫+−−−=−−+)1)(1(1)1(1)1()1(22224222 dx x x dx x x ∫∫++−−−+=)1111(21)111(2222 ∫∫+−−+−=dx x dx x x 22112111211 C x x x x +−−++−=arctan 2111ln411 注:本题若用待定系数法,应当将被积函数分解为)1)(1)(1(1)1(12242x x x x x x ++−=−22111x F Ex x D x C x B x A +++++−++= 然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.例5、求 ∫++dx x x dxx 334811 解 令u x =4,则dx x du 34=,于是,原式∫∫+−++=++=du u u du u u u )24111(41234122 )|2|ln 4|1|ln (41C u u u ++−++=C x x x ++−++=)2ln()1ln(414444例6、求 ∫+dx x x 325)32( 解 令 dt xdx t x t x =−==+4,23,3222,从而, 原式= ∫∫+−=⋅−dt tt t dt t t 961(16144)3(3232 C t t t +−+=296||(ln 1612C x x x ++−+++=)32(29326|32|[ln 1612222 例7、求 ∫++dx x x x 45244解 45)45(145242244+++−+=++x x x x x x 设 4145)45(222211242+++++=+++−x B x A x B x A x x x ,通分后应有)1)(()4)(()45(2222112+++++=+−x B x A x B x A x由此, 316,0,31,02211−====B A B A ,故原式= dx x x ∫⎥⎦⎤⎢⎣⎡+−++)4(316)1(31122C xx x +−+=2arctan 38arctan 31例8、求 ∫+210)1(x x dx解 由于2109102101010210)1()1(1)1(1)1(1+−+=+−+=+x x x x x x x x x x 2109109)1()1(1+−+−=x x x x x 原式= dx x x x x x ∫⎥⎦⎤⎢⎣⎡+−+−2109109)1()1(1∫∫++−++−=210101010)1()1(1011)1(101||ln x x d x x d x C x x x ++++−=)1(101)1ln(101||ln 1010C x x x ++++=)1(1011ln 101101010注 对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分 ∫dx x x R )cos ,(sin 可通过万能代换2tan xt =化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,然后再求解. 例1、求 ∫xx dx4cos sin 解 原式= ∫∫∫+=+x x dxdx x x dx x x x x 24422cos sin cos sin cos sin cos sin ∫∫∫++−=x dx dx x x x d xsin cos sin )(cos cos 124 ∫+−=|2tan |ln cos )(cos cos 3123x x x d x C x x x +++=|2tan |ln cos 1cos 313例2、求 ∫+dx x sin 1解 原式= ∫++dx x x x x 2cos 2sin 22cos 2sin 22∫∫+=+=dx xx dx x x )2cos 2(sin )2cos 2(sin2 C x x ++−=2sin 22cos 2例3、求 ∫+−5cos sin 2x x dx解 令2tan x t =,则222212,11cos ,12sin tdtdx t t x t t x +=+−=+=,于是 原式=C x C t t t dt +⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+=+⎟⎠⎞⎜⎝⎛+=++∫512tan 3arctan 51513arctan 512232 例4、求 ∫+dx xxsin 1sin解 原式= ∫−dx x x x 2cos )sin 1(sin dx x xdx x x ∫∫−−=222cos cos 1cos sin C x x x++−=tan cos 1例5、求 ∫+dx xx xcos sin sin解 原式=dx x x x x dx x x x x x x ∫∫⎟⎠⎞⎜⎝⎛+−+=+−++cos sin cos sin 121cos sin cos sin cos sin 21 C x x x x x x x d x ++−=++−+=∫|)cos sin |ln (21cos sin )cos (sin 2121 例6、求 ∫xdx x cos 5sin解 原式=C x x dx x x +−−=+∫6cos 1214cos 81]6sin 4[sin 21 注 积化和差公式])cos()[cos(21cos cos ])cos()[cos(21sin sin ])sin()[sin(21cos sin x x x x x x x x x x x x βαβαβαβαβαβαβαβαβα−++=⋅+−−=⋅−++=⋅例7、求 ∫+xx dxcos )sin 2(2解 令 dt xdx t x ==cos ,sin于是原式= dt t t t t t t dt∫∫−+−++=−+)1)(2()1()2(31)1)(2(222222C tt t t dt t dt ++−+=++−=∫∫2arctan(23111ln 6123113122 C x x x ++−+=2sin arctan(231sin 1sin 1ln 61注 形如∫dx x x R )cos ,(sin 的有理函数的积分,一般可利用代换 t x=2tan 化为有理函数的积分.(i) 若 )cos ,(sin )cos ,sin (x x R x x R −=−或)cos ,(sin )cos ,(sin x x R x x R −=− 成立,最好利用代换 t x =cos 或对应的 t x =sin .(ii) 若等式 )cos ,(sin )cos ,sin (x x R x x R =−−成立,最好利用代换t x =tan .例8、求 ∫+dx xx x33cos sin sin21 解 令 t x =tan ,则 dt xdx =2sec ,于是原式= ∫∫∫∫+−+−+=+−++−−+=+t dt dt t t t dt t t t t t t dt t t 1311131)1)(1()1()1(31122223 = C t t t t ++−−++−|1|ln 31)312arctan(31)1ln(612 =C x x x x +−+++−31tan 2arctan(31)tan 1(1tan tan ln 6122。
例题1dx e x x ⎰+)12( ce e x dxe e x x d e e x de x x x xx x x x+-+=•-+=+-+=+=⎰⎰⎰2)12(2)12()12()12()12( 根据分部积分法⎰⎰-=vdu uv udv ,(2x+1)为u ,e x 为v 。
(确定u 和v 的口诀:对反幂三指;对——对数函数、反——反函数、幂——幂函数、三——三角函数、指——指数函数)2x+1为幂函数,e x 为指数函数。
例题2dx xe x ⎰-ce xe dxe e xe dx e xe xde x x x x x x x++-=•+-=--=-=-------⎰⎰⎰1)(x e -是一个复合函数,其导数应为1-•-x e例题3⎰xdx arctanc x x x xd xx x dx x x x x xxd x x ++-=++-=+-•=-•=⎰⎰⎰)1ln(21arctan 11121arctan 1arctan tan arctan 2222arctanx ’=1/1+x 2,在这里会用到反三角函数的导数公式。
其它的反三角导数是arcsinx ’=211x -、arccosx ’=211x --、arccotx ’=211x +-例题4dx x x ⎰2cos 2sin|cos |ln 2cos cos 12cos sin 2cos cos sin 22x x d xdx xx dx xx x -=-===⎰⎰⎰这里用到二倍角公式,如下:Sin2x=2sinxcosxCos2x=2cos 2x-1=1-sin 2x-1例题5dx x x ⎰++2cos 1sin 12c x x x xdx dx dx x dx xx +-=-=-=-=⎰⎰⎰⎰21tan 21sec 121cos 1cos 2cos 22222 这里除了用到二倍角公式,还会用到sin 、cos 、sec 、csc 间的相互转化,sinx 和cscx 互为倒数、cosx 和secx 互为倒数。
不定积分59例1、⎰⎰+-=++-==+--C x C x dx x x dx 11)2(11)2(222、⎰⎰+=++-==+--C x C x dx x xdx 21)21(11)21(213、⎰+-=⎪⎪⎭⎫⎝⎛+--C x x dx x x arctan 3arcsin 5131522 4、()()()C x e e x dx dx e dx x e xxx x +-=-=⎪⎭⎫ ⎝⎛-⎰⎰⎰ln 21ln 2121ππππ5、()⎰⎰⎰++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 26、⎰⎰⎰⎰++-=+=+=C x x xdx xdx dx xx x x x x dx tan cot sec csc cos sin cos sin cos sin 222222227、()⎰⎰+--=-=C x x dx x dx x cot 1csc cot 228、⎰⎰⎰++-=⎪⎭⎫ ⎝⎛++-=++-=+C x x x dx x x dx x x dx x x arctan 3111111113222424 9、()C x udu u x x xd xdx +-===⎰⎰⎰)5cos(51sin 51555sin 515sin 10、()()()()⎰⎰+--=+-+⋅-=---=-+C x C x x d x dx x 81777211612117121)21(212121 11、()C a x a a x a x d a x a dx +⎪⎭⎫ ⎝⎛=+=+⎰⎰arctan 11122212、()()Ca x a x a x d xa dx +⎪⎭⎫⎝⎛=-=-⎰⎰arcsin 1222()()⎰⎰=-n n n n dx x f ndx x x f 11 13、()()()()C x C x x d x dx x x +--=+-+⋅-=---=-+⎰⎰3211212122131111211121114、()C e x d e dx e x x x x +-=--=---⎰⎰333323131 15、⎰⎰⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=x d dx x C x x d x dx x x 111sin 11cos 1cos 12216、⎰⎰⎪⎪⎭⎫ ⎝⎛=+==x d dx x Cx x d x dx xx 21sin 2cos 2cos 17、⎰⎰⎰+=+-=-==C x C x x xd dx x x xdx sec ln cos ln cos cos cos sin tan 18、⎰⎰⎰+-=+===C x C x x xd dx x x xdx cos ln sin ln sin sin sin cos cot 19、()()()⎰⎰⎰++=++=++=C x x x x x x d dx x x x x x xdx tan sec ln tan sec tan sec tan sec tan sec sec sec 20、()()()⎰⎰⎰+-=--=--=C x x xx x x d dx x x x x x xdx cot csc ln cot csc cot csc cot csc cot csc csc csc21、()⎰⎰+==C x xxd dx x x ln ln ln ln ln 1 22、()()()⎰⎰++=++=+C x x x d x x dx 1tan ln 1tan 1tan tan 1cos 2 23、()()⎰⎰++=++=+C e ee d dx e e xx x x x 1ln 111 24、()()⎰⎰++-=+-+=+C e x ee e e dx x x x x x 1ln 111 25、()⎰⎰+=+=+C e e de dx e e x x xxx arctan 112226、()C e x d e dx e xx x x x +-=+--=++-+-+-⎰⎰212212121127、⎰⎰⎰⎰⎪⎭⎫⎝⎛++---=⎪⎭⎫ ⎝⎛+--=-a x a x d a x a x d a dx a x a x a ax dx )()(21112122 C ax a x a ++-=ln 2128、dx x x dx x x x dx x x x ⎰⎰⎰⎪⎭⎫ ⎝⎛++-=+--+=+--2222213113112 ()()C x x x xdx x x d x +-+-=+-++-=⎰⎰arctan 31ln 211311212222 29、()()⎰⎰⎰⎰+--+-+-=+---=+--413525221526222152422222x dxx x x x d dx x x x dx x x x ()C x x x +--+-=21arctan 2352ln 21230、()C x x x xd x dx x xdx +-=⋅-=-=⎰⎰⎰2sin 412122cos 21212122cos 1sin 2 31、()⎰⎰+--=+=C x x dx x x xdx x 2cos 418cos 1612sin 8sin 213cos 5sin32、⎰⎰⎰⎰+====C x x xd x x x d x xdx dx x x sin ln ln sin ln sin ln sin ln sin sin sin ln sin cos sin ln cot 33、C x x xx d xdx dx x x x dx +-=+=-=+⎰⎰⎰⎰cos 1tan cos cos sec cos sin 1sin 1222 34、()⎰⎰⎰⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+44csc 214sin 2sin cos πππx d x x dx x x dx C x x +⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=4cot 4csc ln 21ππ 35、dx x a ⎰-22解法一:令)cos (sin t a t a x 或=,则tdt a dx t a x a cos ,cos 22==-原式=()⎰⎰⎰⎰⎪⎭⎫⎝⎛+=+=⋅t td dt a dt t a tdt a t a 22cos 21222cos 1cos cos 22C ax a a x a a x a C t a t a +-⋅⋅⋅+=++=22222224arcsin 22sin 42 C x a x a x a +-+=22221arcsin 21解法二:三角形上面是圆顶的面积很容易求,地下的三角形加上上面的扇形。
不定积分100题(附答案)容易题1—60,中等题61—105,难题106—122. 1.设⎰-=1tan cos 2x x dxI , 则=I ( ). (C).;)1(tan 221C x +-2.设⎰-=12x xdx I ,则=I ( )。
(D).C x+-1arcsin. 3.设⎰=x dxI sin ,则=I ( ). (B).C x c x +-tan csc ln4.设⎰=axdx I 2 ,则=I ( )。
(A).C ax+2; 5.设⎰++=dx e e I xx 113,则=I ( ). (B).C x e e x x ++-2216.设⎰=xdx I tan ,则( ). (D).C x +-sin ln . 7.设⎰=xdx I ln 则( )。
(D).C x x x I +-=ln 8.设⎰=xdx I arctan , 则=I ( ). (B).C x x x ++-1ln arctan 29.设 ⎰=xdx x I cos sin ,则( ). (A).C x I +-=2cos 4110.设⎰+=21x dx I , 则=I ( ). (B)C x x +++21ln11.设211)(xx f -=,则的一个原函数=)(x F ( )。
(A).x x -+11ln 21 12.设)(x f 为可导函数,则( )。
(C).⎰=')())((x f dx x f13.设⎰=xdx I arcsin ,则( ). (C).C x x x +-+21arcsin14.=+⎰x x dx sin 2)2sin(( ) (B )c x x ++|2tan |ln 412tan 812 15.=-⎰)4(x x dx ( ) (C )c x+2arcsin2 16.=-⎰dx x x 21ln ( ) (B )c xx+-ln17.设x xsin 为)(x f 的一个原函数,且0≠a ,则⎰dx a ax f )(=( ) (A )xa ax 3sin19.欲使⎰⎰=dx x f dx x f )()(λλ,对常数λ有何限制?( ) 0≠λ。
不定积分练习题
1. 求解以下不定积分:
(1)∫(3x^2 + 4x - 2)dx
(2)∫(2cosx - 3sinx)dx
(3)∫(5/x^2)dx
2. 解答:
(1)∫(3x^2 + 4x - 2)dx
对于多项式函数,可以使用基本积分公式进行求解。
按照幂次递减的顺序,对每一项分别积分:
∫(3x^2)dx = x^3 + C1 (其中C1为常数)
∫(4x)dx = 2x^2 + C2 (其中C2为常数)
∫(-2)dx = -2x + C3 (其中C3为常数)
将上述结果相加得:
∫(3x^2 + 4x - 2)dx = x^3 + 2x^2 - 2x + C (其中C为常数)
因此,不定积分为x^3 + 2x^2 - 2x + C。
(2)∫(2cosx - 3sinx)dx
对于三角函数的积分,可以利用三角函数的积分公式进行求解:∫(2cosx)dx = 2sinx + C1 (其中C1为常数)
∫(-3sinx)dx = 3cosx + C2 (其中C2为常数)
将上述结果相加得:
∫(2cosx - 3sinx)dx = 2sinx + 3cosx + C (其中C为常数)
因此,不定积分为2sinx + 3cosx + C。
(3)∫(5/x^2)dx
对于含有倒数的函数,可以使用倒数的积分公式进行求解:
∫(5/x^2)dx = -5/x + C (其中C为常数)
因此,不定积分为-5/x + C。
注意事项:以上解答仅供参考,具体的求解步骤和结果可能因题目表达不清等因素而有所不同。
在实际做题中,应根据具体题目表达和积分公式的使用条件来进行求解。
不定积分典型题型1. 原函数2.积分公式3.第一类换元积分法(也称凑微分法)4.第二类换元积分法5. 分部积分法原函数1. 若F’(x)=f(x), G’(x)=f(x), 则⎰=dx x f )(( )A. G (x )B. F (x )C. F (x )+C分析:此题考查不定积分和原函数之间的关系。
2. 下列函数中,是同一个函数的原函数的为( ) A.lnx,ln(x+2) B.arcsinx,arccosx C.lnx,ln2x分析:验证两个函数的差是否为常数。
运用对数函数的运算。
Ln2x=ln2+lnx积分公式 1.=⎰dx e x x 3分析:运用公式⎰a x dx=aln 1a x +C , 把3e 看做一个整体,化为xe )3(。
答:C e xx ++3ln 132.=+⎰dx xx 2213 分析:对函数进行“加一项减一项”处理,则C x x dx x x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan (3)111(3111313222223.=⎰dx x 2tan分析:运用三角恒等式,1sec tan 22-=x x 则C x x dx x ec s dx x +-=-=⎰⎰tan )1(tan 224.=⎰dx x x 22sin cos 1分析:运用三角恒等式sin 2x+cos 2x=1,则C x x dx x x dx x x x x dx x x +-=+=+=⎰⎰⎰cot tan )csc (sec sin cos cos sin sin cos 122222222.5.=++⎰dx xx2cos 1cos 12 分析:运用三角恒等式1+cos2x=2cos 2x 答:C x x ++)(tan 216.=⎰dx x2sin22分析:运用三角恒等式x xcos 12sin22-= 答:x -sinx+C第一换元积分法(凑微分法)利用凑微分法求不定积分,往往要作多次试探,总结一些规律性的东西,如果题目不复杂,可以省去写中间变量而直接写出积分结果。
不定积分典型题型1. 原函数2.积分公式3.第一类换元积分法(也称凑微分法)4.第二类换元积分法5. 分部积分法原函数1. 若F’(x)=f(x), G’(x)=f(x), 则⎰=dx x f )(( )A. G (x )B. F (x )C. F (x )+C分析:此题考查不定积分和原函数之间的关系。
2. 下列函数中,是同一个函数的原函数的为( ) A.lnx,ln(x+2) B.arcsinx,arccosx C.lnx,ln2x分析:验证两个函数的差是否为常数。
运用对数函数的运算。
Ln2x=ln2+lnx积分公式 1.=⎰dx e x x 3分析:运用公式⎰a x dx=aln 1a x +C , 把3e 看做一个整体,化为xe )3(。
答:C e xx ++3ln 132.=+⎰dx xx 2213 分析:对函数进行“加一项减一项”处理,则C x x dx x x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan (3)111(3111313222223.=⎰dx x 2tan分析:运用三角恒等式,1sec tan 22-=x x 则C x x dx x ec s dx x +-=-=⎰⎰tan )1(tan 224.=⎰dx x x 22sin cos 1分析:运用三角恒等式sin 2x+cos 2x=1,则C x x dx x x dx x x x x dx x x +-=+=+=⎰⎰⎰cot tan )csc (sec sin cos cos sin sin cos 122222222.5.=++⎰dx xx2cos 1cos 12 分析:运用三角恒等式1+cos2x=2cos 2x 答:C x x ++)(tan 216.=⎰dx x2sin22分析:运用三角恒等式x xcos 12sin22-= 答:x -sinx+C第一换元积分法(凑微分法)利用凑微分法求不定积分,往往要作多次试探,总结一些规律性的东西,如果题目不复杂,可以省去写中间变量而直接写出积分结果。
对于稍复杂的题目,有时候不能直接想到如何凑成微分形式,可以写出中间变量,最后一定要换回原来的积分变量。
1.求=-⎰dx x3231分析:运用)(1b ax d adx +=进行凑微分,令u=3-2x. 答:C x +--32)23(432.求=+⎰dx x 2291分析:转化为形式:C x dx x +=+⎰arctan 112答:C x +32arctan2313.求=-⎰dx x x 21 分析:运用xdx=221dx 答:C x +--232)1(314.求=+⎰dx x x )1(1分析:运用x d dx x21=和 ⎰C x dx +=+arctan x 112答: ⎰C x +arctan 25. dx e e xx ⎰-+1求分析:运用)(xxe d dx e =和⎰C x dx +=+arctan x 112答:Ce x +arctan6.求⎰+x xdx2cos 3cos分析:运用cosxdx=d(sinx)和xx 2sin 212cos -=和⎰C x dx x+=-arcsin 112答:Cx +)sin 22arcsin(227.求dx x x ⎰+22cos 2sin 1分析:运用x d x dxtan cos 2=和 ⎰C x dx +=+arctan x 112 答:C x +)tan 22arctan(228.求dx x x ⎰++4212分析:运用完全平方公式和⎰C a xa dx a +=+arctan 1x 122答:Cx ++31arctan 339.求dxxx x ⎰-++2235分析:注意分子为x 的一次式,可以凑出分母中所含二次式的导函数2-2x,可分化。
答:C x x x +-+-+-21arcsin623210.求dx x ⎰csc解:C x x x x d xx dx x x xx x dx x x x x x dx x +-=--=--=--=⎰⎰⎰⎰cot csc ln )cot (csc cot csc 1cot csc cot csc csc cot csc )cot (csc csc csc 211.求dx x x⎰+sin 1sin解:⎰⎰⎰⎰⎰++-=-=-=--=+Cx x x xdx dx x x dx x xx dx x x x dx x x tan cos 1tan cos sin cos sin sin sin 1)sin 1(sin sin 1sin 2222212. 已知()x )(ln ,)()(⎰⎰=+=dx x f C x F dx x f 则分析:运用凑微分法。
答:F(lnx)+C13.设f(x)=e 3x ,求=⎰dx x x f 3)(ln '分析:方法一,运用直接代入求解法。
方法二,运用换元积分法,令u=lnx答:C x +33114.求⎰xdx 2cos 2解:被积函数中,cos2x 是一个由cos2x=cosu,u=2x 复合而成的复合函数,常数因子恰好是中间变量u 的导数。
因此变换u=2x,便有C u d x xd xdx +===⎰⎰⎰sin u u cos )2(2cos 2cos 2再以u=2x 代入,即得C x xdx +=⎰2sin 2cos 215.求⎰+32)2(x x解:令u=x+2,则x=u -2,dx=du.于是C x x x C u u u du u u u du u u u du u u x x ++-+++=+-+=+-=+-=-=+------⎰⎰⎰⎰221321323232)2(2242ln 24ln )44()44()2()2(第二换元积分法(去根号)(1)被积函数为 f(n m x x ,),令mnt x =。
(2)被积函数为 f(,n b ax +),令n b ax t +=。
(3)被积函数为 f(22x a -),令t a x sin =。
运用1cos sin 22=+x x 。
x22x a -(4)被积函数为 f(22x a +),令t a x tan =。
运用t t 22sec tan 1=+。
(5)被积函数为 f(22a x -),令t a x sec =。
运用t t 22tan 1sec =-。
1.求dx x x ⎰-+-1221分析:被积函数含有根号,运用换元法去掉根号。
令xt -=1.答:Cx x +-----11211ln 22.求dxxx ⎰+41分析:被积函数含有根号,运用换元法去掉根号。
令4xt =.答:Cx x x +++-)1ln(442443.求dxx a ⎰-22分析:用三角代换去根号,运用换元法去掉根号。
令.arcsin ,sin a xt t a x ==. 答:Cx a x a x a +-+22221arcsin 24.求dxa x ⎰+2322)(1分析:用三角代换去根号,运用换元法去掉根号。
令ta x tan =答:Cxa a x++222分部积分法当函数u(x),v(x)可微时,根据微分的乘法法则,我们有d(uv)=udv+vdu,等式两端关于x 求不定积分,可得,⎰⎰⎰+=vdu udv duv ,从而有⎰⎰-=vdu uv udv .称为分部积分公式,当我们面对一个难于处理的积分时们我们可以用这个公式谋求一个更容易求出的积分来代替它。
解题口诀:反 对 幂 三 指,谁在前面谁不动。
1.求⎰xdx ln分析:被积函数为对数函数,运用分部积分法。
答:xlnx -x+C 2.求⎰+dx x x )1ln(2分析:先凑微分,被积函数为幂函数与对数函数的乘积,可分部积分。
答:Cx x x +-++22221)1ln()1(213.求⎰-dxe x x23分析:被积函数为多项式和指数函数的乘积。
分部积分答:Ce e x x x +----22212124.求⎰xdxx 2sin 2分析:被积函数为幂函数与三角函数的乘积,运用分部积分法答:Cx x x x x +++-2cos 412sin 212cos 2125.求xdxe xsin ⎰解:xdxe x e inxde s xdx e xx x x cos sin sin ⎰⎰⎰-==等式右端的积分和等式左端的积分是同一类型的,对右端的积分再用一次分部积分法,得 xdx e x e x e osxde c x e x x x x x sin cos sin sin ⎰⎰--=-由于上式右端的第三项就是所求积分,把它移到等号左端去,等式两端再同除以2,便得C x x e xdx e x x+-=⎰)cos (sin 21sin因上式右端已不包括积分项,所以必须加上任意常数C 。
简单有理函数积分有理函数的一般形式为F(x)=)()(x Q x p m n ,其中P n (x),Q m (x)分别为n,m 次多项式。
1.求⎰-+)13)(12(1x x解:先将被积分式恒等变形再积分C x x dx x x dxx x x x x x ++--=+--=-+--+=-+⎰⎰⎰)12ln 13(ln 51)122133(51)13)(12()13(2)12(351)13)(12(1。