《斜拉桥与悬索桥》
- 格式:ppt
- 大小:2.46 MB
- 文档页数:13
中班悬索桥和斜拉桥课后反思
1. 悬索桥和斜拉桥是常见的桥梁类型,都采用了悬挂索的结构。
悬索桥可以支持更长的跨距,但斜拉桥更适合用于较短的跨距。
2. 建设悬索桥或斜拉桥需要进行大量的规划和计算工作,确保桥梁的结构稳定和安全。
3. 在使用悬索桥或斜拉桥时,需要注意以下事项:
- 遵循桥梁设计者的使用规定,不要超过桥梁的载荷限制。
- 注意遵守交通规则,按照交通标志和标线行驶。
- 如果是步行悬索桥或斜拉桥,需要注意行走的姿势和安全,
不要跳跃或晃动桥梁。
4. 悬索桥和斜拉桥都需要定期维护和检查,以确保结构稳定和安全。
维护和检查工作需要由专业人员进行,并遵循相关的标准和规定。
斜拉桥和悬索桥的区别斜拉桥和悬索桥的区别在于:斜拉桥的主缆横向布置,悬索桥的主缆竖直布置。
一般说来,斜拉桥跨度小、结构轻巧,而且它可以看作是“吊”起来的;悬索桥则比较笨重,但它形成的强大的横向刚度却使它能够承受巨大的垂直荷载。
另外,由于斜拉桥用的索塔和主梁都是像弹簧一样彼此独立地支撑在各自的基础上的,所以,斜拉桥不仅外观雄伟壮丽,而且内部空间开阔,便于布置管线等设施。
因为这些优点,所以斜拉桥被广泛应用于城市道路交通中。
不过,悬索桥也有它自己的特点。
从历史记录上看,公元前二世纪左右就出现了悬索桥。
当时修建悬索桥是为了军事目的,只要把桥的一端固定住,桥就会稳如泰山,而不必担心会断裂或垮塌。
后来,悬索桥的建造技术逐渐发展,到了19世纪末期,才正式出现了具有完整技术体系的悬索桥。
这种桥利用缆索起重机将桥面吊到高处,再把桥面的重量转移到锚锭上去。
这样做,虽然增加了施工难度,但却减少了许多不安全的因素。
随着科学技术的进步,悬索桥的技术性能已经达到了很高水平。
如今,人类的足迹几乎遍及世界每个角落,而越来越多的人喜欢在大江河流上架设悬索桥。
悬索桥是现代钢铁工业的产物。
第一座真正意义上的悬索桥是1937年建成的美国跨度为1178米的明尼苏达州圣保罗市的金门大桥。
此后不久,德国人首先采用了钢丝绳悬索桥,而后英国人又推出了钢箱形截面悬索桥,这两种桥型一直沿用至今。
日本是亚洲第一个掌握悬索桥制造技术的国家。
该国制造的预应力混凝土悬索桥长1153米,居世界第三位。
这里还需提醒读者注意的是,在悬索桥中有一种半悬索桥。
它实际上是悬索桥与斜拉桥相结合的产物,既有斜拉桥的刚度,又有悬索桥的柔韧性。
这种桥的跨径比单纯的悬索桥要大得多,其结构非常复杂,它既能充分利用悬索桥的柔韧性,又可以避免斜拉桥的笨重。
在我国的南方,也曾有过不少半悬索桥,例如著名的贵州省坝陵河大桥。
半悬索桥既有索桥的刚劲挺拔,又有拱桥的曲线玲珑,它同时兼备了两者的优势,堪称“桥梁新秀”。
第六章悬索桥及斜拉桥第一节悬索桥及斜拉桥的分类及构造一、悬索桥、斜拉桥的分类(一)悬索桥悬索桥也称吊桥,是指利用主缆和吊索作为加劲梁的悬挂体系,将桥跨所承受的荷载传递到桥塔、锚碇的桥梁。
其主要结构由主缆、索塔、锚碇、吊索、加劲梁组成。
悬索桥的类型可根据悬吊跨数、主缆锚固方式及悬吊方式等方面加以划分。
1.按悬吊跨数分类其结构形式如图6-1。
其中单跨悬索桥和三跨悬索桥最为常用。
图6-1 悬吊跨数不同的悬索桥a)单跨悬索桥;b)三跨悬索桥;c)四跨悬索桥;d)五跨悬索桥1)单跨悬索桥2)三跨悬索桥3)多跨悬索桥图6-2 联袂布置的悬索桥2.按主缆的锚固方式分类按主缆的锚固形式划分,可分为地锚式悬索桥和自锚式悬索桥。
3.根据悬吊方式分类1)采用竖直吊索并以钢桁架作加劲梁,如图6-4所示。
2)采用三角布置的斜吊索,并以扁平流线形钢箱梁作加劲梁,如图6-5所示。
3)混合式,即采用竖直吊索和斜吊索,流线形钢箱梁作加劲梁。
如图6-6所示。
图6-4 采用竖直吊索桁式加劲梁悬索桥图6-5 采用斜吊索钢箱加劲梁的悬索桥图6-6 带斜拉索的悬索桥4.按支承结构分类图6-7 按支承构造划分悬索桥形式a)单跨两铰加劲梁;b)三跨两铰加劲梁;c)三跨连续加劲梁(二)斜拉桥斜拉桥的主要组成部分为主梁、索塔及拉索。
1.按索塔布置方式分1)单塔式斜拉桥采用图6-8-b)的单塔式斜拉桥。
2)双塔式斜拉桥桥下净空要求较大时,多采用图6-8 a)所示的双塔式斜拉桥。
图6-8 斜拉桥跨径布置3)多塔式斜拉桥在跨越宽阔水面时,由于桥梁长度大,可采用图6-8c)所示的多塔斜拉桥。
2.按主梁的支承条件分1)连续梁式斜拉桥如图6-9 a)。
2)单悬臂式斜拉桥如图6-9 b)。
3)T形刚架式斜拉桥如图6-9 c)。
图 6-9按主梁支承条件划分斜拉桥形式二、悬索桥、斜拉桥的构造(一)悬索桥上部结构的主要形式和构造特点现代悬索桥通常主要由主缆、主塔、锚碇与加劲梁等四大主体结构以及塔顶主索鞍、锚口散索鞍座或散索箍和悬吊系统等重要附属系统组成。
斜拉桥与悬索桥之比较令狐采学斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象。
首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
悬索桥,又名吊桥(suspension bridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。
其缆索几何形状由力的平衡条件决定,一般接近抛物线。
从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。
斜拉桥与悬索桥的结构简图如图a,b所示。
下面对一些现实现象进行定性分析。
1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力。
因此可以减少桥墩的数量,实现桥梁的大跨度。
2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因。
因此AC之间的距离不能太大,即斜拉桥的跨度不能太大。
而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力。
因此悬索桥的跨度可以比斜拉桥更大。
3.为什么斜拉桥比悬索桥稳定?由斜拉桥的结构简图可以看出绷紧的钢索与索塔及桥面根据三钢片原则构成了不变体系,而有悬索桥的结构简图不难看出悬索桥的主索、细钢索、索塔及桥面之间构成的是可变体系。
斜拉桥和悬索桥基本受力原理斜拉桥和悬索桥是现代桥梁工程学中最常见的桥梁类型之一。
与其他类型的桥梁相比,斜拉桥和悬索桥在结构构造、受力原理以及建造技术方面都具有独特的特点。
斜拉桥是一种由主体梁、斜拉索和塔组成的桥梁结构。
主体梁通常由桥面板、箱梁或钢桁架等构成。
斜拉索由高强度的钢丝绳或钢缆制成,用于固定主体梁。
塔是支撑斜拉索的主要悬挂结构。
斜拉桥的受力原理是利用斜拉索对主体梁进行牵拉,从而使主体梁能够承受大约90%的桥面荷载。
在斜拉桥的受力分析中,通过牵拉斜拉索,使力沿着斜拉索传递到塔的支撑墩上,然后再传递到地基。
因此,斜拉桥的塔和支撑墩必须足够坚固,以承受主体梁的重量和拉力。
在斜拉桥的结构设计中,斜拉索的数量、长度和位置是非常关键的。
斜拉索的正确设置可以增强桥梁的稳定性,减少对主体梁的振动和抖动。
同时,斜拉索的拉力方向也需要考虑,以确保它们不会相互冲突或互相干扰。
悬索桥的受力原理是靠索在两个或多个支撑点上承载主体梁和荷载。
索的支撑在塔顶,塔的重力传递到地面,自然就形成了一个悬挂状态。
此时,由于主体梁的承载能力有限,悬挂在索上的荷载必须分散到多个支撑位置上。
在悬索桥的结构设计中,索的支撑点的距离、索的长度和角度等都是非常关键的。
如果索的支撑点距离太远,索的结构就会变得不稳定。
如果角度太小,索的滞后效应就会变得越来越大。
这些因素都需要在悬索桥的设计阶段得到充分考虑。
3. 两种桥梁类型的比较尽管斜拉桥和悬索桥在受力原理方面存在差异,两种结构类型在一些方面都具有相似之处。
例如,它们都依靠主体梁承载荷载,并且都需要塔来支撑索或斜拉索。
此外,两种结构类型都需要进行静态和动态受力计算,以确保结构的稳定性和安全性。
但是,斜拉桥和悬索桥在实际应用中也有许多不同之处。
例如,由于斜拉索承担了大部分的荷载,斜拉桥的主体梁可以相对较轻,而悬索桥的主体梁需要更多的材料和设计。
另外,在建造过程中,斜拉桥需要更长时间的预构件制作和拼装,而悬索桥则需要更多的和更高的起重设备来安装长而重的索。
斜拉桥与悬索桥之比较斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象。
首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
悬索桥,又名吊桥(suspen sionbridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。
其缆索几何形状由力的平衡条件决定,一般接近抛物线。
从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。
斜拉桥与悬索桥的结构简图如图a,b所示。
下面对一些现实现象进行定性分析。
1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力。
因此可以减少桥墩的数量,实现桥梁的大跨度。
2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因。
因此AC之间的距离不能太大,即斜拉桥的跨度不能太大。
而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力。
斜拉桥与悬索桥的优缺点比较来源:道路瞭望如有侵权请联系删除概念与定义斜拉桥,又称斜张桥,是将桥面用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。
其可看作是拉索代替支墩的多跨弹性支承连续梁,拉索的存在可使梁体内弯矩减小,降低建筑高度,减轻结构重量,从而节省材料。
斜拉桥由索塔、主梁、斜拉索组成。
悬索桥,又称吊桥,是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索作为上部结构主要承重构件的桥梁。
从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。
由于主要承重构件是悬索,且主要承受拉力,一般用抗拉强度高的钢材(钢丝、钢绞线、钢缆等)制作。
悬索桥可以充分利用材料的强度,具有用料省、自重轻的特点,在各种体系桥梁中的跨越能力最大。
悬索桥由索塔、主缆(大缆)、吊杆、锚碇、加劲梁组成。
优缺点比较从结构构造来说:斜拉桥是超静定结构,其稳定性较静定结构的悬索桥要好;斜拉桥可以做成连续多跨,但悬索桥做成多跨在技术上还有难度(目前世界最大三塔双跨悬索桥是中国的泰州长江大桥,单跨1080m);悬索桥必须有锚碇,如果所在河流较宽,而单跨达不到一跨跨越的跨度,则锚碇就要放置在河中,会严重影响水流,威胁到航运,同时建设难度及成本也会增加(因此苏通大桥宁可选择斜拉桥)。
从结构受力来说:跨度越大时悬索桥的受力比斜拉桥更加合理,所以能做到更大跨度(规划的墨西拿海峡桥已经做到3300米);斜拉桥跨度过大时,为使拉索受力不至于过大,就必须加高桥塔高度,而桥塔高度又不可能无限加高;斜拉桥拉索会对主梁有水平方向的作用力,加大了主梁强度要求,悬索桥就没这一情况。
从经济方面说:在这方面,世界桥梁界没有一个统一的认识,传统观念认为跨径500m以上时,采用悬索桥较斜拉桥经济合理。
在2011年国际桥协第35届年会上,丹麦I.Hauge先生认为在1 200m 以下的跨度斜拉桥占优,超过1200m的跨度,斜拉桥将受到塔高和长索的限制,锚碇条件有利的悬索桥将会占优。
悬索桥和斜拉-悬索协作体系桥的比较悬索桥(suspension bridge)是利用主缆及吊索作为加劲梁的悬挂体系,将荷载作用经桥塔、锚碇传递到地基的桥梁。
悬索桥主要由缆索系统、塔墩、加劲梁及附属结构四大部分组成。
地锚式悬索桥中锚碇、桥塔和主缆是主要的承载结构,吊索与加劲梁则主要起传递直接作用其上的荷载的作用;自锚式悬索桥中锚碇、桥塔、主缆、加劲梁都是主要的承载结构。
斜拉-悬索协作体系桥(cable-stayed-suspension bridge)是在悬索桥上增加斜拉索,或者在斜拉桥上增加主缆,故斜拉-悬索协作体系桥也是主要由缆索系统、桥塔、加劲梁及附属结构四大部分组成。
其中锚碇、桥塔、主缆、斜拉索、主梁是主要的承载结构。
日本明石海峡桥纽约布鲁克林桥一、悬索桥和斜拉-悬索协作体系桥的优缺点悬索桥的优点:(1)受力非常合理:悬索桥的主要受力构件为缆索,缆索主要受拉,次弯矩非常小,应力在截面上分布比较均匀;桥塔以受压为主,弯矩也较小;加劲梁只作为桥面来传递荷载,不是主受力构件,就静力来说,梁高与跨度无关而只与吊索间距有关。
(2)跨越能力大:在大跨度悬索桥中,缆索的恒载拉力远大于活载值,因此一般疲劳的影响较小。
(3)桥型优美;悬索桥加劲梁的梁高比同跨度的梁桥的梁高小得多,所以建筑高度较小,具有优美的曲线,外形比较美观,在城市中采用此种桥式将为城市增加风景点。
如美国旧金山的金门大桥。
(4)抗震能力强:悬索桥是轻而柔的桥梁,刚度较小,在地震作用下,受地震惯性力较小,往往位移大而内力小,消能能力强,因此抗震能力强。
(5)施工方便:悬索桥施工时是先架设好桥塔,然后利用桥塔架设牵引索和施工猫道等,利用猫道来架设主缆,然后再架设加劲梁和桥面系,施工方便;在交通不便的山区,修建悬索桥较为有利;在交通方便的江河湖海和城市外,悬索桥除了开始架设先导索外,不会中断交通。
悬索桥的缺点:(1)荷载作用下变形较大:由于缆索是柔性结构,当活载作用时,会改变几何形状,会引起桥跨结构较大的变形。
悬索桥与斜拉桥的区别与应用当我们谈论桥梁时,很难忽视悬索桥和斜拉桥。
悬索桥和斜拉桥是两种常见的桥梁结构形式,它们之间有许多区别和应用。
本文将探讨悬索桥与斜拉桥的区别,以及它们在不同场景中的应用。
首先,让我们来了解悬索桥的特点和结构。
悬索桥以悬挂在悬索上的主桥墩为特征。
主横梁被悬挂在主桥墩上,主横梁的两端有多条悬索连接到另一个桥墩上。
悬索桥的结构类似于一根绳子,其中主横梁充当承受桥面荷载的主要支撑部分。
悬索桥可以跨越较大的距离,但主横梁的起伏有时会对车辆或行人的行驶产生影响。
与悬索桥相比,斜拉桥的结构形式稍有不同。
斜拉桥的特点是主横梁不是悬挂在桥墩上,而是通过斜拉索连接到桥墩上。
斜拉桥的斜拉索使得主梁能够承受荷载并稳定地悬挂在桥墩上。
斜拉桥的主梁通常呈倾斜角度,这有助于分散荷载并提高桥梁的稳定性。
相较于悬索桥,斜拉桥在较大跨度下具有更好的承载能力和稳定性。
悬索桥和斜拉桥在应用方面也各有优势。
悬索桥通常被用于跨越较长距离的河流或峡谷。
悬索桥的设计使得它能够以较少的支撑点来承担大量的重量。
这样的设计在大型交通枢纽或河流航道等场景中非常适用。
但需要注意的是,悬索桥的主横梁起伏可能会对桥上车辆或行人产生影响,因此在设计时需要充分考虑。
与此相反,斜拉桥通常适用于中跨度的桥梁,其结构可以提供更好的桥面稳定性。
斜拉桥的特点使得它更适合承载交通流量大且密集的场景。
在城市中心或大型公路上,斜拉桥具有更好的抗风能力和稳定性。
此外,斜拉桥的设计也更美观,常常成为城市地标的一部分。
值得一提的是,悬索桥和斜拉桥的设计和建造都需要严密的工程计算和材料选择。
这些桥梁结构须同时考虑荷载、抗风能力以及材料的耐久性。
在设计和建造过程中,工程师们需要根据特定的条件和环境,权衡各种因素以确保桥梁的安全性和可靠性。
总的来说,悬索桥和斜拉桥是两种常见的桥梁结构形式。
悬索桥以悬挂在悬索上的主横梁为特点,适用于跨越较长距离的河流或峡谷。
而斜拉桥则通过斜拉索连接主横梁和桥墩,适用于中跨度的桥梁,具有更好的稳定性和美观性。