电磁场与电磁波期末复习要点
- 格式:doc
- 大小:842.00 KB
- 文档页数:13
电磁场与电磁波知识点复习一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或变化的电场产生的。
电荷是产生电场的源,库仑定律描述了两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
电场强度是描述电场强弱和方向的物理量,其定义为单位正电荷在电场中所受到的力。
电流是产生磁场的源,安培定律描述了电流元之间的相互作用。
磁场强度则是描述磁场强弱和方向的物理量。
二、电磁波的产生电磁波是由时变的电场和时变的磁场相互激发而产生,并在空间中以一定的速度传播。
变化的电流和电荷分布都可以产生电磁波。
例如,一个振荡的电偶极子就是一种常见的电磁波源。
当电偶极子中的电荷来回振动时,周围的电场和磁场也随之发生周期性的变化,从而产生电磁波向空间传播。
三、电磁波的性质1、电磁波是横波电磁波中的电场强度和磁场强度都与电磁波的传播方向垂直,这是电磁波作为横波的重要特征。
2、电磁波的传播速度在真空中,电磁波的传播速度恒定,等于光速 c,约为 3×10^8 米/秒。
3、电磁波的频率和波长频率和波长是描述电磁波的两个重要参数,它们之间的关系为:波长=光速/频率。
电磁波的频率范围非常广泛,从低频的无线电波到高频的伽马射线。
4、电磁波的能量电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培麦克斯韦定律。
高斯定律描述了电场的通量与电荷量之间的关系;高斯磁定律表明磁场的通量总是为零;法拉第电磁感应定律说明了时变磁场可以产生电场;安培麦克斯韦定律则指出时变电场也可以产生磁场。
这组方程统一了电学和磁学现象,预言了电磁波的存在,并奠定了现代电磁学的基础。
五、电磁波的传播电磁波在不同介质中的传播特性不同。
在均匀介质中,电磁波遵循直线传播规律;当电磁波从一种介质进入另一种介质时,会发生折射和反射现象。
电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B⨯=ABe AB sin θ A ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ϕr sin θ d ϕ 矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθ三、矢量场的散度和旋度1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()zA A A zϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y zx y z A A A1z zz A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A21sin sin rr zr rA r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理(散度定理)与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度 标量函数u 的梯度是矢量,其方向为u 变化率最大的方向00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u uu zρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e ru u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A A 为无散场F 的矢量位 2. 无旋场 ()0∇⨯∇=u -u =∇F u 为无旋场F 的标量位六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) 0∇⋅=E ρε (高斯定理微分形式)d 0⋅=⎰lE l 0∇⨯=E (无旋场)场强计算:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E EE r χεεεε电介质中高斯定律的微分形式表明电介质内任一点电位移矢量的散度等于该点自由电荷体密度,即D 的通量源是自由电荷,电位移线始于正自由电荷终于负自由电荷。
“电磁场与电磁波“复习提纲根本定义、根本公式、根本概念、根本计算一、场的概念〔§1-1〕 1. 场的定义2. 标量场与矢量场:等值面、矢量线 二、矢量分析1. 矢量点积与叉积的定义:〔第一次习题〕2. 三种常用正交坐标系3.标量的梯度〔§1-3〕 a) 等值面:例1-1 b) 方向导数:例1-2c) 梯度定义与计算:例1-3 4. 矢量场的通量与散度〔§1-4〕a) 矢量线的定义:例1-4b) 矢量场的通量:()()S e r F S r F n SSd d⋅=⋅=⎰⎰ψc) 矢量场的散度定义与计算:例1-5d) 散度定理〔高斯定理〕:⎰⎰⋅=⋅∇SVS F V Fd d5. 矢量场的环量与旋度〔§1-5〕a) 矢量场的环流〔环量〕:⎰⋅=ll F d Γb) 矢量场的旋度定义与计算:例1-6 c) 旋度定理〔斯托克斯定理〕:()⎰⎰⋅=⋅⨯∇CSl F S Fd d6. 无源场与无散场a) 旋度的散度()0≡⨯∇⋅∇A ,散度处处为0的矢量场为无源场,有A F⨯∇=b) 梯度的旋度()0≡∇⨯∇ϕ,旋度处处为0的矢量场为无旋场,有u F -∇=;c) 矢量场的分类 7. 拉普拉斯算子8. 亥姆霍兹定理:概念与意义 根本概念:1. 矢量场的散度和旋度用于描述矢量场的不同性质a) 矢量场的旋度是矢量,矢量场的散度是标量;b) 旋度描述矢量场中场量与涡旋源的关系,散度描述矢量场中场量与通量源的关系; c) 无源场与无旋场的条件;d) 旋度描述场分量在与其垂直方向上的变化规律;散度描述场分量沿各自方向上的变化规律 2. 亥姆霍兹定理概括了矢量场的根本性质a) 矢量场由其散度、旋度和边界条件唯一确定;b) 由于矢量的散度和旋度分别对应矢量场的一种源,故分析矢量场总可以从研究其散度和旋度着手; c) 散度方程和旋度方程是矢量场的微分形式,故可以从矢量场沿闭合面的通量和沿闭合路径的环流着手,得到根本方程的积分形式。
电磁场期末复习知识点第一章1、熟悉三种坐标系。
基本题型:1)圆柱坐标系中单位矢量 , 。
2)对于矢量A ,若 ,则=+∙y x a y x a x )(2 ,=⨯x z a y a x 2 。
3) 习题1.2 1.32、直角坐标系中散度、旋度、方向导数、梯度的计算公式及求解。
基本题型:习题1.9 1.15 1.16 1.23 1.25第二章1、真空中和介质中的场方程。
2、介质极化的过程3、高斯定理的应用(求解对称性问题)基本题型:1)球面对称问题:计算空间任一点的电场强度、电通密度、极化强度、极化电荷等(例如:空心介质球、导体球)2)圆柱对称问题:同轴线单位长度的电容、电感、漏电的计算。
4、电场的边界条件I 要能判断出不同分界面的满足的边界条件是什么,准确写出来。
5、电动势和接地电阻的基本概念,减小接地电阻的方法。
5、课件上的例题、课堂练习。
第三章1、镜像法的概念、依据,四种情况下镜像电荷的大小和位置(要描述清楚);电荷运动时,其镜像电荷如何运动。
2、分离变量法:给定区域满足的方程、满足的边界条件(用数学表达式表示出来)第四章1、真空中、磁介质中磁场的基本方程(安排环路定理的应用,圆柱对称,参看教材和课件例题)2、磁化过程的描述=⋅ϕρρa z a =⨯ϕρa a z z y y x x A a A a A a ++=3、边界条件第五章1、麦克斯韦方程组及其物理含义(一定要记清楚)(含瞬时值和向量相量形式)2、时变电磁场的边界条件(两种特殊情况的边界面边界条件)3、坡印廷矢量的计算(含瞬时值和向量形式,平均坡印廷矢量)4、时谐电磁场瞬时值和向量形式的转换。
基本题型:1、“变化的电场可以产生磁场,变化的磁场可以产生电场”具体指麦克斯韦方程组的哪一个?2、例题5- 2 ;例题5-3 例题5-4 例题5-53、课后习题:5.6 5.7 5.8 5.9第六章1、无耗媒质中均匀平面波的特征。
2、相速、波长、传播常数、波阻抗等计算公式及相互关系(真空中的值)3、导电媒质中均匀平面波特征。
第一章矢量分析①A AA e =u r uu ru r②cos A BA Bθ⋅=⋅u r u ru r u r③A u r 在B u r 上的分量B AB A BA COS BA θ⋅==u r u ru r u r④e x y z x y z xyzA B e e AA A BBB⨯=u r u rr r r⑤A B A B⨯=-⨯u r u r u r u r ,()A B C A B A C⨯+=⨯+⨯u r u r u r u r u r u r u r ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯u r u r u r u r u r u r u r u r u r (标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅u r u r u r u r u r u r u r u r u r⑥ 标量函数的梯度xyzu u u uxyze e e ∂∂∂∇=++∂∂∂u u r u u r u u r⑦求矢量的散度=y x zA x y zA A A ∂∂∂∇⋅++∂∂∂u r 散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰u r u r u rÑ,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰u r r,x y CCE dl E dx E dy ⋅=+⎰⎰u r r积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅=u r 0A ∇⨯=u r,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅u r ≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯u r≠,则该矢量可以由一个矢量函数的旋度表示。
电磁场与波知识要点第一章和第二章公式:1.电荷密度:V S l dq dV dq dS dq dl ρρρ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩体电荷密度:面电荷密度:线电荷密度:2.电流密度:3.电流连续性方程:(S V dq d J dS dV dtdt d J dt ρρ⎧⋅=-=-⎪⎪⎨⎪∇⋅=-⎪⎩⎰⎰ 可由高斯定理得)(P37)(单位时间从闭合曲面内流出的电荷等于V 内减少的电荷)(对恒定电流,其电荷密度在空间上的分布是不随时间变化的,则0J ∇⋅=,故恒定电流场是无散场)4.库仑力:5.点电荷电场:(P40)6.电场的电势:'11(4nii iq r C C r r ϕπε==+-∑()根据定义的零电势点来确定)7.比奥—萨伐尔定理:()'03'(4Idl r r B Idl r rμπ⨯-=-⎰电流元)(P46)8.磁场的磁矢位:'4VViJ A dV C r r μπ=+-⎰9.高斯定理:01S V q E dS dV ρεε⋅==⎰⎰ 内自.特别地,对于静电荷:(P44)V n V S n S di J e dS di J e v dl ρρ⎧=⋅=⋅⎪⎪⎨⎪=⋅=⋅⎪⎩体电流密度:面电流密度:0(0E E E dl ρ∇⋅=∇⨯=⋅=⎰说明静电荷产生的场是保守场)()'3'14ni i i iq q F r r r r πε==--∑()'3'114n i i i iq E r r r r πε==--∑10.有介质的高斯定理:(P53)利用高斯定理求电场通常只用于对称分布的问题中,关键是选择高斯面:(1).所求电场的点应该在高斯面上;(2).高斯面必须为封闭曲面;(3).在整个或分段高斯面上,或是恒定的。
11.安培环路定理:0B dl I μ⋅=⎰ 内自0B Jμ∇⨯=⋅(P4812.修正后的安培环路定律:DH J t∂∇⨯=+∂传(全电流定律)(p68)13.电位移矢量:14.磁场强度:0r B H MB H μμμ=-=15.极化强度矢量:0limi V p P V∆→=∆∑(电偶极矩:(z z p e qde =+从-到),极化强度矢量表示单位体积中电偶极矩的矢量和,反映了物质在电场下被极化的强弱。
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随 A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域 V 的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分及闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分及路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,那么既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,那么该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,那么该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 〔1〕对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=〔2〕对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
由斯托克斯定理,有11()d d S C ∇⨯=⎰⎰A S A l , 22()d d S C ∇⨯=⎰⎰A S A l1C 和2C 是方向相反的同一回路,那么有12d d C C =-⎰⎰A l A l所以得到1222()d d d d d 0C C C C ττ∇∇⨯=+=-+=⎰⎰⎰⎰⎰A A l A l A l A l 由于体积τ是任意的,故有 ()0∇∇⨯=A附:圆柱坐标系中:散度11()zF F F F zφρρρρρφ∂∂∂∇⋅=++∂∂∂;旋度()111()()[]zz z z ze e e F F F F F F F e e e z z z F F F ρφφρφρρφρφρρρρφρφρρρφρ∂∂∂∂∂∂∂∂∂∇⨯==-+-+-∂∂∂∂∂∂∂∂∂球坐标系中: 散度22111()(sin )sin sin r F F r F F r r r r φθθθθθφ∂∂∂∇⋅=++∂∂∂旋度2sin ()11111()[(sin )][][]sin sin sin sin rr r r r e re r e rF F F rF F F e F e e r rr r r r r F rF r F θφφθθφθφθφθθθθφθθφθφθθ∂∂∂∂∂∂∂∂∂∇⨯==-+-+-∂∂∂∂∂∂∂∂∂第二章 电磁场的根本规律① 电荷守恒定律〔电流连续性方程〕1题图积分形式:SVdJ d S dV dt ρ⋅=-⎰⎰ 微分形式:J tρ∂∇⋅=-∂ 对于恒定电流场0J∇⋅=〔恒定电流场是一个无散度的场〕② 电位移()()()0r r r D E P ε=+③ 麦克斯韦方程组积分形式:CSS DH dl J d S d S t∂⋅=⋅+⋅∂⎰⎰⎰CS BE dl d S t∂⋅=-⋅∂⎰⎰0SB d S ⋅=⎰SVD d S dV ρ⋅=⎰⎰微分形式:DH J t ∂∇⨯=+∂B E t∂∇⨯=-∂ 0B ∇⋅=D ρ∇⋅=④ 媒质的本构关系:D E ε= , B H μ= ,J E σ=⑤ 电磁场的边界条件情况一:边界条件的一般形式12()n S e H H J ⨯-= 12()0n e E E ⨯-= 12()0n e B B ⋅-= 12()n S e D D ρ⋅-=情况二:两种媒质都不是理想导体的边界条件12()0n e H H ⨯-= 12()0n e E E ⨯-= 12()0n e B B ⋅-= 12()0n e D D ⋅-=情况三:理想导体的边界条件1n S e H J ⨯= 10n e E ⨯= 10n e B ⨯= 1n S e D ρ⨯=第三章静态电磁场及其边值问题的解① 静电场的根本方程和边界条件根本方程积分形式 0SV CD d S dVE dl ρ⎧⋅=⎪⎨⋅=⎪⎩⎰⎰⎰微分形式 =0D DE E ρε⎧∇⋅=⎪⎨∇⋅=⎪⎩() ?静电场是有源无旋场?边界条件12()0n e E E ⨯-= 12()n S e D D ρ⋅-= ② 标量电位φ满足的边界条件 一般情况1212S n nϕϕεερ∂∂-=-∂∂ 分界面上不存在自由面电荷0Sρ= 1212n nϕϕεε∂∂=∂∂假设第二种媒质为导体,到达静电平衡后导体内部的电场为0,导体外表上电位的边界条件nS ϕϕερ=⎧⎪⎨∂=-⎪∂⎩常数'()3'4r q r r E r r πε-=⋅- ()()r E r ϕ=-∇ '()4q r C r rϕπε=+-③ 电场的能量2111222eV V VW E DdV E EdV E dV εε=⋅=⋅=⎰⎰⎰电场的能量密度21122e w D E E ε=⋅=④ 磁场的能量m 12VW H BdV =⋅⎰磁场的能量密度22m 111222B w B H H μμ=⋅== ⑤ 静态场的边值问题及解的唯一性定理:在场域V 的边界面S 上给定ϕ或nϕ∂∂的值,那么泊松方程或拉普拉斯方程在场域V 内具有唯一解.⑥ 镜像法:用位于场域边界外虚设的较为简单的镜像电荷来等效替代该边界上未知的较为复杂的电荷分布,在保持边界条件不变的情况下,将分界面移去,这样就把原来有分界面的非均匀媒质空间变换成无界的单一媒质空间来求解.镜像法的理论依据:静电场解的唯一性定理.应用镜像法的两个要点:〔1〕正确找出镜像电荷的个数、位置以及电荷量的大小和符号,以满足边界条件不变为其准那么;〔2〕注意保持待求解的场域〔称为有效区〕内的电荷分布不变,即镜像电荷必须置于有效区之外.对于非垂直相交的两导体平面构成的边界,假设夹角为=nπθ,那么所有镜像电荷的数目为21n -个⑦ 矢量磁位A :根据恒定磁场的无散度特征〔0B ∇⋅=〕可以用一矢量的旋度A ∇⨯来计算磁感应强度B ,BA =∇⨯,A 即为矢量磁位标量磁位:在没有传导电流的区域〔J 〕由于0H∇⨯=,可引入标量磁位m ϕ使得m H ϕ=-∇在恒定磁场分析中引入A 和m ϕ的优点:在均匀、线性和各向同性的磁介质中,矢量磁位满足泊松方程2A J μ∇=-或拉普拉斯方程〔0J =时〕20A ∇=;在均匀、线性和各向同性的磁介质中,标量磁位m ϕ满足拉普拉斯方程20m ϕ∇=⑧ 镜像法例题:如题4.24〔a 〕图所示,在0<z 的下半空间是介电常数为ε的介质,上半空间为空气,距离介质平面距为h 处有一点电荷q ,求:〔1〕0>z 和0<z 的两个半空间内的电位;〔2〕介质外表上的极化电荷密度,并证明外表上极化电荷总电量等于镜像电荷q '。
解 〔1〕在点电荷q 的电场作用下,介质分界面上出现极化电荷,利用镜像电荷替代介质分界面上的极化电荷。
根据镜像法可知,镜像电荷分布为〔如题4.24图〔b 〕、〔c 〕所示〕0q q εεεε-'=-+,位于 h z -=0q q εεεε-''=+, 位于 h z =上半空间内的电位由点电荷q 和镜像电荷q '共同产生,即101044q q R R ϕπεπε'=+='04q πε⎧⎫ 下半空间内的电位由点电荷q 和镜像电荷q ''共同产生,即224q q R ϕπε''+==〔2〕由于分界面上无自由电荷分布,故极化电荷面密度为()1200120()p z z z z E E n P P σε===⋅-=-=0210022320()()2()()z hq z z r h εεϕϕεπεε=-∂∂-=-∂∂++极化电荷总电量为d 2d P P P S q S r r σσπ∞===⎰⎰0223200()d ()hq rr r h εεεε∞--=++⎰00()q q εεεε-'-=+第四章 时变电磁场① 时谐电磁场{}()()()(,)(,)(,)(,)Re ()()()y x z j r j r j r j tr t x x y z x xm y ym z zm r t y r t z r t F e F e F e F e F r e e F r e e F r e e φφφω⎡⎤=++=++⎣⎦=Re ()j t m F r e ω•⎡⎤⎢⎥⎣⎦〔★〕例题:〔1〕将下面的场矢量的瞬时值形式写为复数形式 (,)cos()sin()z t x xm x y ym y E e E t kz e E t kz ωφωφ=-++-+解:由于(,)cos()cos()2z t x xm x y ym y E e E t kz e E t kz πωφωφ=-++-+-=()()2Re y x j t kz j t kz x xm y ym e E e e E e πωφωφ-+--+⎡⎤+⎢⎥⎣⎦根据式子★,可知电场强度的复矢量为()()2()()y y x x j kz j j kz j jkz m x xm y ym x xm y ym E z e E e e E ee E e e jE e e πφφφφ•-+--+-=+=-〔2〕电场强度复矢量()=e cos()m x xm z E z jE k z •,其中xm E 和z k 为实常数。
写出电场强度的瞬时矢量。
解:根据式★,可得电场强度的瞬时矢量()2(,)Re cos()Re cos()j t j tx xm z x xm z E z t e jE k z ee E k z e πωω+⎡⎤⎡⎤==⎢⎥⎣⎦⎣⎦=cos()cos()2x xm z e Ek z t πω+② 坡印廷矢量:它表示单位时间内通过垂直于能量传输方向的单位面积的电磁能量,其方向就是就是电磁能量传输的方向S E H=⨯单位瓦特每平方米〔描述电磁能量传输的物理量〕题图〔b 〕题图〔a 〕题图〔c 〕③ 平均坡印廷矢量:在时谐电磁场中,一个周期T 内的平均能量密度矢量av S 〔即平均坡印廷矢量〕为20012T av S SdT SdT T πωωπ==⎰⎰,用复矢量来计算那么为1Re 2av S E H *⎡⎤=⨯⎢⎥⎣⎦④ 关于坡印廷矢量的例题第五章 均匀平面波在无界空间中的传播① 理想介质中的均匀平面波的传播特点: 〔1〕是一个横电磁波〔TEM 波〕电场E 和磁场H 都在垂直于传播方向的横向平面内,且存在以下关系式1n H e E η=⨯或n E H e η=⨯〔2〕在传播过程中,电场E 和磁场H 的振幅无衰减,波形不变化。