现代控制理论
- 格式:docx
- 大小:12.74 KB
- 文档页数:3
第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。
通常把采样系统,数字控制系统统称为离散系统。
一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。
当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。
加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。
连续信号转变为脉冲信号的过程,成为采样或采样过程。
实现采样的装置成为采样器。
To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。
实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。
作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。
(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。
1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数.互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定.方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧.4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值=—1 =1 所以状态不是渐进稳点的,W(s)的极点S=—1,所以输出稳点。
5、什么是实现问题?什么是最小实现?说明实现存在的条件.答:(1)由系统的运动方程或传递函数建立SS表达式的问题叫做实现问题;(2)维数最小的实现方式时最小实现;(3)存在条件是m小于等于n.6、从反馈属性、功能和工程实现说明状态反馈和输出反馈的优缺点。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
学科内容现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。
按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
非线性系统理论非线性系统的分析和综合理论尚不完善。
研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。
现代控制理论及其在工程中的应用现代控制理论是指以数学和理论为基础的系统控制方法和技术,它通过对系统的建模、分析和设计,使得工程系统能够以最佳方式运行。
现代控制理论的应用广泛,可以涵盖从自动化工程到航空航天工程等各个领域。
本文将探讨现代控制理论的基本原理以及它在工程中的实际应用。
一、现代控制理论基本原理现代控制理论的基本原理包括控制系统原理、线性控制理论、非线性控制理论、自适应和鲁棒控制等。
在控制系统原理中,主要研究控制系统的基本概念和结构,包括反馈控制、前馈控制等。
线性控制理论主要用于研究线性控制系统的建模和设计方法,其中包括经典控制理论和现代控制理论。
非线性控制理论则是用于研究非线性系统的建模和分析方法,它考虑了系统中的非线性因素。
自适应和鲁棒控制则是用于处理控制系统中的不确定性和变化环境的方法。
二、现代控制理论在工程中的应用1. 自动化工程现代控制理论在自动化工程中得到了广泛的应用。
例如,在工业生产中,通过引入现代控制理论,可以提高生产效率和质量。
自适应和鲁棒控制方法可以应对系统参数变化和外部干扰,使得系统能够更加稳定地运行。
另外,在自动化系统中,控制器的设计对系统性能至关重要,通过利用现代控制理论的方法,可以设计出更优秀的控制器,提高系统的响应速度和稳定性。
2. 电力工程在电力工程中,现代控制理论被广泛应用于电力系统的运行和控制中。
例如,在电力系统的稳定性分析中,线性控制理论可以用于建立电力系统的传输方程,从而评估系统的稳定性。
另外,在电力系统的控制中,现代控制理论的方法可以用于设计和优化发电机、变压器等设备的控制系统,提高电力系统的响应能力和稳定性。
3. 交通工程现代控制理论在交通工程中的应用也非常广泛。
例如,在交通信号控制中,现代控制理论可以用于对交通流进行建模和预测,从而在不同的交通状况下,自动调整交通信号的控制策略,使得交通流能够更加顺畅地运行。
另外,在交通系统中,现代控制理论的方法也可以用于设计和优化交通系统的控制器,提高交通系统的效率和安全性。
现代控制理论pdf
1 现代控制理论
现代控制理论是一种控制策略,主要针对复杂系统而设计。
它将
传统的算法和最新的技术结合在一起,旨在实现平衡及对系统即时控制、自行调节。
简而言之,现代控制理论是一种使复杂系统更稳定更
健壮的以自适应为主的控制理论系统,该理论以创新的参数估计和变
化条件的识别而着称。
现代控制理论的基本原理是系统的全局预测,通过分析所有可能
的变化,对系统作出及时的反应和控制,以达到系统的最佳性能。
此外,现代控制理论更注重对系统的实时调节和迭代,以达到更高精度
的控制。
在系统变更和失效时,可以使用现代控制理论进行快速调节,以快速恢复系统性能。
数字控制系统是现代控制理论大部分应用于实践中的主要形式。
这种系统使用算法来跟踪系统状态,并使系统按照计划行动;同时,
它也允许实时调节以保持系统的预期性能。
实践中,该系统被广泛应
用于汽车、机器人和工业控制系统中。
另外,现代控制理论还使用多种优化算法,如模拟退火、遗传算
法等,以确定系统参数,使系统更自动化和准确。
现代控制理论也会
联合智能控制方法,有利于实现更复杂的控制效果,尽可能减少失常,从而实现系统的智能化运行。
综上所述,现代控制理论充分利用最新技术和自适应元素,为系统提供更可靠的稳定性,可以有效解决复杂系统的稳定性和可靠性等问题,是当前国际上先进的控制理论之一。
现代控制理论的主要内容介绍现代控制理论是控制工程领域的一门重要学科,它主要研究利用数学模型和计算机技术进行系统控制的方法和理论。
现代控制理论从20世纪50年代开始快速发展,并且在工业生产、航空航天、交通运输等领域有着广泛的应用。
本文将介绍现代控制理论的主要内容,包括控制理论的基本概念、常用的控制方法和现代控制系统的设计原则。
控制理论的基本概念系统在控制理论中,系统指的是需要被控制或调节的对象,可以是一个物理系统、一个工艺流程或是一个经济系统等。
系统可以被描述为由输入和输出组成的黑箱模型,通过对输入信号的调节,可以实现对输出信号的控制。
控制系统控制系统是由传感器、执行器、控制器和控制算法组成的一系列组件的集合。
控制系统的作用是通过对输入信号的调节,使得系统的输出达到预期的目标。
控制器根据传感器的反馈信息,通过控制算法计算出相应的控制信号,然后通过执行器对系统进行控制。
反馈控制反馈控制是控制系统中常用的一种控制方法。
它通过对系统输出的实时反馈信息进行测量和分析,然后根据反馈误差调节输入信号,使得输出信号逼近预期目标。
反馈控制能够提高系统的稳定性和鲁棒性,并且对系统参数变化有一定的适应性。
常用的控制方法比例积分微分控制(PID控制)PID控制是一种经典的控制方法,它根据误差的比例、积分和微分部分来计算控制信号。
比例部分根据当前误差与目标值之间的差异来计算控制信号,积分部分根据误差的累积值来计算控制信号,微分部分根据误差变化的速率来计算控制信号。
PID控制具有简单易实现、鲁棒性好的特点,在工业自动化控制中得到了广泛的应用。
线性二次调节(LQR)LQR是一种优化控制方法,它通过最小化系统状态变量和控制输入之间的二次代价函数来设计控制器。
LQR控制器的设计需要事先确定系统的数学模型,然后通过计算系统的状态反馈增益矩阵,将负反馈控制信号与系统状态进行线性组合。
LQR控制具有精确、快速、稳定的特点,在许多复杂系统中都有着广泛的应用。
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 控制理论的应用领域第二章:控制系统数学模型2.1 连续控制系统数学模型2.2 离散控制系统数学模型2.3 状态空间描述2.4 系统矩阵的性质与运算第三章:线性系统的时域分析3.1 系统的稳定性3.2 系统的瞬时性3.3 系统的稳态性能3.4 系统的动态性能第四章:线性系统的频域分析4.1 频率响应的概念4.2 频率响应的性质4.3 系统频率响应的求取方法4.4 系统频域性能指标第五章:线性系统的校正与设计5.1 系统校正的基本概念5.2 常用校正器及其特性5.3 系统校正的方法5.4 系统校正实例分析第六章:非线性控制系统分析6.1 非线性系统的基本概念6.2 非线性系统的数学模型6.3 非线性系统的稳定性分析6.4 非线性系统的控制策略第七章:状态反馈与观测器设计7.1 状态反馈控制的基本原理7.2 状态反馈控制器的设计方法7.3 观测器的设计与分析7.4 状态反馈控制系统应用实例第八章:先进控制策略8.1 鲁棒控制8.2 自适应控制8.3 最优控制8.4 智能控制第九章:最优控制理论9.1 最优控制的基本概念9.2 线性二次调节器(LQR)9.3 离散时间最优控制9.4 最优控制的应用第十章:现代控制理论在工程应用10.1 现代控制理论在自动化领域的应用10.2 现代控制理论在控制中的应用10.3 现代控制理论在航空航天领域的应用10.4 现代控制理论在其他领域的应用第十一章:鲁棒控制理论11.1 鲁棒控制的基本概念11.2 鲁棒控制的设计方法11.3 鲁棒控制的应用实例11.4 鲁棒控制在实际系统中的性能评估第十二章:自适应控制理论12.1 自适应控制的基本概念12.2 自适应控制的设计方法12.3 自适应控制的应用实例12.4 自适应控制在复杂系统中的应用与挑战第十三章:数字控制系统设计13.1 数字控制系统的概述13.2 数字控制器的设计方法13.3 数字控制系统的仿真与实验13.4 数字控制系统在实际应用中的案例分析第十四章:控制系统中的计算机辅助设计14.1 计算机辅助设计的基本概念14.2 控制系统CAD工具与方法14.3 基于软件的控制系统设计与仿真14.4 控制系统CAD在现代工程中的应用案例第十五章:现代控制理论的前沿与发展15.1 现代控制理论的最新研究动态15.2 控制理论与其他领域的交叉融合15.3 未来控制理论的发展趋势15.4 控制理论在解决现实世界问题中的潜力与挑战重点和难点解析本《现代控制理论》教案大纲涵盖了现代控制理论的基本概念、方法与应用,分为十五个章节。
现代控制理论及其应用现代控制理论是指在现代科技发展的基础上,对控制系统的研究和应用的理论体系。
它广泛应用于工业生产、交通运输、航空航天、电力系统等各个领域,对提高自动化水平、优化控制过程,具有重要的意义和作用。
一、现代控制理论简介现代控制理论是以系统理论为基础的一种研究控制系统动态行为和优化控制问题的理论。
它以数学模型为基础,通过建立系统的数学描述,运用数学方法研究系统的特性,从而达到对系统行为进行预测和优化控制的目的。
现代控制理论主要包括控制系统的数学模型建立、系统的稳定性分析、系统的传递函数表示、系统响应特性研究等内容。
通过对系统的分析和综合,可以设计出各种不同类型的控制器,如比例控制器、积分控制器、微分控制器等,实现对系统的自动控制。
二、现代控制理论的应用1. 工业生产领域在工业生产中,现代控制理论被广泛应用于自动化生产线的控制和优化。
通过对生产过程进行实时监测和控制,可以提高工业生产的效率和质量,减少人力资源的浪费。
2. 交通运输领域现代交通运输系统中的交通灯控制、交通流量管理等问题,也是现代控制理论的应用范畴。
通过建立交通系统的数学模型,运用控制理论中的方法和算法,可以实现交通拥堵的缓解和交通流量的优化。
3. 航空航天领域现代控制理论在航空航天领域的应用十分重要。
在飞行器的自动驾驶系统中,通过设计合适的控制器,可以实现对飞行器的航向、高度、速度等参数的稳定控制,提升飞行安全性。
4. 电力系统领域电力系统的稳定运行对于社会经济的发展至关重要。
现代控制理论在电力系统的发电、输配电以及电力负荷调度等方面都有广泛应用。
通过合理控制和管理,可以确保电力系统的稳定供应和电能的高效利用。
三、现代控制理论的发展趋势随着科技的进步和应用领域的不断拓展,现代控制理论也在不断发展和创新。
以下是现代控制理论发展的几个趋势:1. 多元化控制方法:传统的PID控制器已经无法满足复杂系统的控制需求,因此需要开发出更多新颖有效的控制方法,如模糊控制、神经网络控制等。
现代控制理论心得现代控制理论是研究和设计控制系统的一门学科,它在控制系统的建模、分析和设计方面取得了重要进展。
在我学习现代控制理论的过程中,我深刻认识到它在工程和科学领域的重要性和应用广泛性。
以下是我对现代控制理论的心得总结,具体分为三个方面进行论述:一、现代控制理论的基本概念和原理现代控制理论的基本概念和原理是我理解和掌握这门学科的基石。
首先,控制系统的建模是现代控制理论的关键。
控制系统可以通过数学模型来描述,通常使用微分方程、差分方程或状态空间模型等。
这些模型能够准确地把握控制系统中的物理过程和变量之间的关系,为后续的分析和设计提供了基础。
其次,现代控制理论使用反馈原理来实现系统的稳定性和性能优化。
反馈控制系统可以根据系统输出和期望输出之间的误差,通过调整系统输入来实现对系统行为的控制。
这种反馈机制能够有效地抑制系统的干扰和不确定性,使系统具有鲁棒性和适应性。
另外,现代控制理论还研究了多变量控制系统和非线性控制系统。
多变量控制系统中有多个输入和多个输出变量,需要设计适当的控制器来实现对各个变量的独立或者相互关联的控制。
非线性控制系统考虑了系统中存在的非线性特性,需要使用非线性控制算法来处理。
二、现代控制理论的分析方法和工具现代控制理论提供了一系列分析方法和工具,帮助我们理解和评估控制系统的性能和稳定性。
其中之一是传递函数和频域分析。
通过将控制系统建模为传递函数,可以在频域中分析系统的频率响应特性,如增益、相位和频率特性。
这种方法对于系统设计和调试非常有用,可以帮助我们定位和解决系统中的问题。
另外,现代控制理论还使用了时域分析方法,如状态空间和拉普拉斯变换等。
状态空间方法将控制系统表示为状态变量的方程组,通过对系统状态变量的时间响应和稳定性进行分析。
拉普拉斯变换则将控制系统以传递函数的形式表示,可以通过求解拉普拉斯变换的逆变换得到系统的时域响应。
除此之外,现代控制理论还应用了线性矩阵不等式和优化方法。
《现代控制理论》课程教案第一章:绪论1.1 课程简介介绍《现代控制理论》的课程背景、意义和目的。
解释控制理论在工程、科学和工业领域中的应用。
1.2 控制系统的基本概念定义控制系统的基本术语,如系统、输入、输出、反馈等。
解释开环系统和闭环系统的区别。
1.3 控制理论的发展历程概述控制理论的发展历程,包括经典控制理论和现代控制理论。
介绍一些重要的控制理论家和他们的贡献。
第二章:数学基础2.1 线性代数基础复习向量、矩阵和行列式的基本运算。
介绍矩阵的特殊类型,如单位矩阵、对角矩阵和反对称矩阵。
2.2 微积分基础复习微积分的基本概念,如极限、导数和积分。
介绍微分方程和微分方程的解法。
2.3 复数基础介绍复数的基本概念,如复数代数表示、几何表示和复数运算。
解释复数的极坐标表示和欧拉公式。
第三章:控制系统的基本性质3.1 系统的稳定性定义系统的稳定性,并介绍判断稳定性的方法。
解释李雅普诺夫理论在判断系统稳定性中的应用。
3.2 系统的可控性定义系统的可控性,并介绍判断可控性的方法。
解释可达集和可观集的概念。
3.3 系统的可观性定义系统的可观性,并介绍判断可观性的方法。
解释观测器和状态估计的概念。
第四章:线性系统的控制设计4.1 状态反馈控制介绍状态反馈控制的基本概念和设计方法。
解释状态观测器和状态估计在控制中的应用。
4.2 输出反馈控制介绍输出反馈控制的基本概念和设计方法。
解释输出反馈控制对系统稳定性和性能的影响。
4.3 比例积分微分控制介绍比例积分微分控制的基本概念和设计方法。
解释PID控制在工业控制系统中的应用。
第五章:非线性控制理论简介5.1 非线性系统的特点解释非线性系统的定义和特点。
介绍非线性系统的常见类型和特点。
5.2 非线性控制理论的方法介绍非线性控制理论的基本方法,如反馈线性化和滑模控制。
解释非线性控制理论在实际应用中的挑战和限制。
5.3 案例研究:倒立摆控制介绍倒立摆控制系统的特点和挑战。
解释如何应用非线性控制理论设计倒立摆控制策略。
《现代控制理论》课程教案一、教学目标1. 了解自动控制的基本概念、原理和方法。
2. 掌握线性系统的状态空间分析、传递函数分析和频率响应分析。
3. 熟悉现代控制理论的主要内容,包括最优控制、鲁棒控制和自适应控制等。
4. 学会运用现代控制理论解决实际工程问题。
二、教学内容1. 自动控制的基本概念:开环控制与闭环控制、稳定性、稳态误差、性能指标等。
2. 线性系统的数学模型:差分方程、微分方程、状态空间方程。
3. 状态空间分析:系统的可控性、可观测性、稳定性和性能分析。
4. 传递函数分析:劳斯-赫尔维茨准则、奈奎斯特准则、频率响应分析。
5. 最优控制:线性二次调节器、庞特里亚金最小原理、动态规划。
三、教学方法1. 讲授:讲解基本概念、原理和方法,结合实际案例进行分析。
2. 互动:提问、回答问题,引导学生思考和讨论。
3. 练习:课后作业、小测验,巩固所学知识。
4. 项目:分组完成控制系统设计项目,提高实际应用能力。
四、教学资源1. 教材:《现代控制理论》,作者:宋志坚。
2. 课件:PowerPoint演示文稿。
3. 辅助软件:MATLAB,用于分析和设计控制系统。
五、教学评价1. 平时成绩:课堂表现、作业、小测验(30%)。
2. 项目成绩:分组完成的项目(30%)。
3. 期末考试成绩:闭卷考试(40%)。
六、教学安排1. 课时:总共32课时,每课时45分钟。
2. 授课方式:课堂讲授与实践相结合。
3. 授课进度安排:自动控制的基本概念(2课时)线性系统的数学模型(3课时)状态空间分析(5课时)传递函数分析(4课时)最优控制(5课时)鲁棒控制与自适应控制(5课时)控制系统应用案例分析(2课时)七、教学案例1. 案例一:温度控制系统描述:某实验室需要保持恒定的温度,当温度超过设定值时,启动空调降温;当温度低于设定值时,启动暖气升温。
教学目的:分析系统的稳定性、可控性和可观测性,设计合适的控制器。
2. 案例二:无人驾驶汽车控制系统描述:无人驾驶汽车需要实现路径跟踪、速度控制和避障等功能。
1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。
互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。
方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。
4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:
A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。
5、什么是实现问题?什么是最小实现?说明实现存在的条件。
答:(1)由系统的运动方程或传递函数建立SS表达式的问题叫做实现问题;(2)维数最小的实现方式时最小实现;(3)存在条件是m小于等于n。
6、从反馈属性、功能和工程实现说明状态反馈和输出反馈的优缺点。
答:(1)状态反馈为全属性反馈,输出反馈为部分信息反馈;(2)状态反馈在功能上优于输出反馈;(3)从工程上讲输出反馈优于状态反馈。
7、说明李氏第一法判断稳定性的基本思想和局限性。
答:(1)基本思想:将状态方程在平衡状态附近进行小偏差线性化,由系统矩阵的特征值判断系统稳定性。
(2)局限性:对非线性系统,只能得出局部稳定性;系统虚轴上有特征值时不能判断稳定性。
8、简述线性时不变系统能控性定义,并说出两种判断能控性的方法。
答:(1)定义:如果存在一个分段连续的输入U(t),能在有限时间区间{t0,tf}内,使系统由某一初始化状态x(t0),转移到指定的任一终端状态x(tf),则此状态是能控的。
若系统所有状态都是能控的,则完全能控,否则不完全能控。
(2)方法:约旦标准型判据,秩判据。
9、说明系统传递函数零、极点对消与系统能控能观性关系。
答:(1)系统状态完全能控=Wxu(s)没有零极点重合现象;(2)系统状态完全能观
=Wyx(s)没有零极点重合现象;(3)系统状态完全能控且能观=W(s)没有零极点重合现象。
10、能观性定义。
答:对任意给定输入U(t)根据在{t0,tf}期间的输出y(t)能唯一地确定系统在初始化时刻的状态x(t0),则此状态x(t0)是能观的。
若所有状态都能观则完全能观,否则不完全能观。
名词解释。
1、状态空间:以状态变量X1,X2...Xn位坐标轴所构成的n维欧式空间称为状态空间。
2、对偶系统:若两个函数满足关系:A2=A1T,B2=C1T,C2=B1T,则这两个函数是互为对偶的。
3、实现问题:由描述系统输入-输出关系的运动方程或传递函数建立系统的状态空间表达式,这种问题叫实现问题。
4、系统镇定:系统镇定是对受控系统。
通过线性反馈使其极点全部具有负实部,以保证系统为渐近稳定。
5、BI-BO稳定:如果系统对有界输入u所引起的输出y是有界的,则称系统为BI-BO 稳定。
6、状态变量:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量为系统的状态变量。
7、对偶原理:两个函数互为对偶,则一个函数的能控性等价于另一个函数的能观性,一个函数的能观性等价于另一个函数的能控性。
8、状态观测器:以E0的输入u和输出y为其输入量,构造一个动态系统^E,使其产生一组输出^x渐近于x,则成为^E为E0的一个状态观测器。
9、系统解耦:系统的传递函数矩阵为Wo(s),若有Wij=0(当i不等于j时),则成为系统是解耦的。
1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
2、什么是状态观测器?简述构造状态观测器的原则。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
4、举例说明系统状态稳定和输出稳定的关系。
5、什么是实现问题?什么是最小实现?说明实现存在的条件。
6、从反馈属性、功能和工程实现说明状态反馈和输出反馈的优缺点。
7、说明李氏第一法判断稳定性的基本思想和局限性。
8、简述线性时不变系统能控性定义,并说出两种判断能控性的方法。
9、说明系统传递函数零、极点对消与系统能控能观性关系。
10、能观性定义
填空题
1、现代控制理论,建立系统数学模型的方法:由方框图建立状态空间表达式由分析系统的运
动机理建立SS表达式由传递函数建立SS表达式。
2、根据线性控制系统满足的迭加定理,线性时不变系统状态方程的解可表示为系统的零输入响
应和零初值响应迭加。
3、一般来讲,控制系统的线性反馈包括状态、输出、输出到X的反馈。
4、在经典控制理论中,描述系统运动的数学模型为系统的传递函数,现代控制理论中,模型是
状态空间表达式是系统的完全描述。
5、互为对偶∑1 ∑2 传递函数矩阵互为转置,特征多项式相同,∑1能控性全等于∑2能控性,
单不保证系统能观性不变,输出反馈不改变系统的能控和能观性。
6、状态反馈不改变系统能控性,不保证能观性不改变。
7、一般讲利用输出反馈不能达到任意配置极点的目的。
8、状态反馈能稳定的充要条件是:系统的不能控子系统是渐渐稳定的。