2016-2017学年度第二学期七年级数学期末试题 (1)
- 格式:doc
- 大小:172.50 KB
- 文档页数:3
2016-2017学年度北师大版七年级下册数学期末试卷及答案2016-2017学年度七年级下册数学期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cm;D.1cm,3cm,5cm;2.下面是一位同学做的四道题:①a+a=a;②(xy)=xy;③x•x=x;④(﹣a)÷a=﹣a.其中做对的一道题是()A①.3.下列乘法中,能运用完全平方公式进行运算的是()A.(x+a)(x-a)B.(b+m)(m-b)。
C.(-x-b)(x-b)。
D.(a+b)(-a-b)4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△XXX的是()A.∠A=∠CB.AD=CBCC.BE=DFD.AD∥BC5.如图,一只蚂蚁以均匀的速度沿台阶A1A2A3A4A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.tOB.tOC.tOD.t6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.计算(2)3=_______88.如图有4个冬季运动会的会标,其中不是轴对称图形的有2个9.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为16.10.已知:a b22,a b=11,则2a2b6311.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=90°.12.如图所示,∠XXX∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是1,2,3,4.13.XXX是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是∠2和∠3.14.如果 $a+b+2c+2ac-2bc=0$,求 $xxxxxxxa+b$ 的值。
2016~2017学年度第二学期期末考试七年级数学试卷一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.64的算术平方根是( ) A .8 B .-8 C .4 D .-4 2.在平面直角坐标系中,点P (-3,-4)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列调查中,适宜采用全面调查方式的是( )A .调查春节联欢晚会在武汉市的收视率B .调查某中学七年级三班学生视力情况C .调查某批次汽车的抗撞击能力D .了解一批手机电池的使用寿命 4.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A .x >2 B .x ≤4 C .2≤x <4 D .2<x ≤45.如图,若CD ∥AB ,则下列说法错误的是( ) A .∠3=∠A B .∠1=∠2 C .∠4=∠5 D .∠C +∠ABC =180°6.点A (﹣1,4)关于y 轴对称的点的坐标为( ) A .(1,4) B .(﹣1,﹣4) C .(1,﹣4) D .(4,﹣1) 7.若x >y ,则下列式子中错误的是( ) A .31+x >31+y B . x -3>y -3 C .3x >3yD .-3x >-3y 8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”若设有鸡x 只,有兔y 只,则可列方程组正确的是( ) A .⎩⎨⎧=+=+942235y x y xB .⎩⎨⎧=+=+942435y x y xC .⎩⎨⎧=+=+944235y x y xD .⎩⎨⎧=+=+94235y x y x9.下列说法:① 3.14159是无理数;② -3是-27的立方根;③ 10在两个连续整数a 和b 之间,那么a +b =7;④如果点P (3-2n ,1)到两坐标轴的距离相等,则n =1;其中正确说法的个数为( )A .1个B .2个C .3个D .4个 10.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则12+m的值为( )A .5或50B .49C .4或49D . 5二.填空题(共6小题,每小题3分,共18分) 11.若x +2有意义,则x 的取值范围是 .12.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°, 则∠DOE =__________13.如图,将王波某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .33%43%4%长途话费短信费本地话费月基本费14.一艘轮船从长江上游的A 地匀速驶到下游的B 地用了10h , 从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度vkm /h 不变,则v 满足的条件是 . 15.如图, AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F , ∠BEF <150°,点P 为直线EF 左侧平面上一点,且 ∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .16.在等式c bx ax y ++=2中,当x =-1时,y =0;当x =2时,y =3;当x =5时,y =60;则a +b +c 的值分别为_______.三.解答题(共8小题,共72分) 17.(本题10分)解方程组:(1)⎩⎨⎧=--=1376y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+312612174332y x y x18.(本题8分)解不等式332-x ≤153+-x ,并在数轴上表示其解集.19.(本题8分)某校为了调查学生书写汉字能力,从八年级400名学生中随机抽选50名学生参加测试,这50名学生同时听写50个常用汉字,每正确听写出一个汉字得1分.根据测试成绩绘制频数分布图表. 频数分布表 频数分布直方图请结合图表完成下列各题:(1)表中a 的值为 ;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为合格,请你估计该校八年级汉字书写合格的人数为 .Cx20.(本题7分)养牛场原有15头大牛和5头小牛,每天约用饲料325kg ;两周后,养牛场决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需多少饲料?21.(本题8分)如图,线段CD 是线段AB (1)若点A 与点C 、点B 与点D 是对应点. 在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示)(2)若点A 与点D 、点B 与点C 、是对应点,在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示) (3)连接BD ,AC ,直接写出四边形ABDC 的面积为22. (本题9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,经调查:购买一套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m 、n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,有哪几种购买方案?为了节约资金,请你为公司设计一种最省钱的购买方案.图2 x y M C B A 12345–1–2–3–4–512345–1o x y123456–1–2123456–1–2o 23.(本题10分)如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连AD 、BC (1) 填空:AB 与CD 的位置关系为__________,BC 与AD 的位置关系为__________; (2) 点G 、E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于F . ①如图2,若G 、E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G 、E 为射线CD 上的点,∠F AG =α,求∠C 的度数.24.(本题12分)如图,点A 的坐标为(4,3),点B 的坐标为(1,2),点M 的坐标为(m ,n ).三角形ABM 的面积为3.(1)三角形ABM 的面积为3.当m=4时,直接写出点M 的坐标 ; (2)若三角形ABM 的面积不超过3.当m=3时,求n 的取值范围;(3)三角形ABM 的面积为3.当1≤m ≤4时,直接写出m 与n 的数量关系 .图3 图1y 123456–1–2123456–1–2o 备用图硚口2016—2017学年度下学期期末考试七年级数学答案11.x ≥-2 12.55° 13.72° 14.v >33 15.100°或160° 16.-4. 17.(1)解:把①代入②得:6y -7-y =13 y =4 ……3分把y =4代入①得:x =17 ………………………………………4分 ∴原方程组的解是⎩⎨⎧==417y x ………………………………………5分(2)解:原方程组可化为: ⎩⎨⎧-=-=+231798y x y x ………7分∴原方程组的解是⎩⎨⎧==11y x ………10分18.解:去分母得: 5(2x -3)≤3(x -3)+15 ………………2分去括号得: 10x -15 ≤3x -9+15 ………………3分 移项得: 10x -3x ≤15-9+15 ………………4分 合并同类项得:7x ≤21 ………………5分 系数化为1得:x ≤ 3 ………………6分………………8分19.(1) a=12 …………………………………………………2分 (2)16,12 (图略)作出一个正确的条形给2分 ………………… 6分 (3)304人 …………… …… …………… ……………………8分 20.(1)解:设每头大牛1天需饲料x kg ,每头小牛1天需饲料y kg . ………1分 依题意得:⎩⎨⎧=+++=+550)515()1015(325515y x y x ……2分解方程组得:⎩⎨⎧==520y x …………3分答: 每头大牛1天需饲料20 kg ,每头小牛1天需饲料5 kg . …………4分(2) 解:设大牛购进a 头,小牛购进b 头. ………. . …………………………5分 根据题意可列方程: 20a +5b =110b =22-4a ………. . ………………………7分∵根据题意a 与 b 为非负整数,∴b ≥0 ∴22-4a ≤0 ∴a ≤5.5∴a 最大取5 ………. . …………………………8分 答: 大牛最多还能购进5头. ………. . …………………………9分 21.(1)(m -5,n -5);…2分 (2)(-m ,-n );……4分 (3)10 .………8分 22.(1)解:根据题意可列方程组:{nm n m =-=+6103,解方程组得:{71==m n ……………3分答:m 的值为7,n 的值为1. …………………………4分 (2) 解:设购买甲型设备x 套,购买乙型设备)10(x -套, ……………5分根据题意列不等式组:{26)10(71020)10(100120≤-+≥-+x x x x , ……………6分解不等式组得:381≤≤x∵x 为整数,∴x 为1或2 ……………7分所以购买方案有:方案1、甲型设备1套,乙型设备9套;方案2、甲型设备2套,乙型设备8套.……8分所需费用:方案1、7+9=16万元,方案2、14+8=22万元, 方案1最省钱.………………9分 23.(1)AB ∥ CD, BC ∥ AD ………………………………………………………2分 (2)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………3分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠EAF +∠GAE )=∠EAD +∠BAE =∠BAD ……………………5分 又∵∠F AG =30° ∴∠BAD =60°又∵BC ∥ AD ∴∠B+∠BAD =180° ∴∠B =120°………………6分 (3)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………7分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠GAE —∠EAF )=∠BAE —∠EAD =∠BAD又∵∠F AG =α ∴∠BAD =2α …………………………………9分 ∵BC ∥ AD ∴∠B+∠BAD =180° ∵AB ∥ CD ∴∠B+∠C =180° ∴ ∠C =∠BAD =2α …………10分24.(1) (4,5)或(4,1) ………………………………………………………2分(2)作AD ⊥x 轴于D ,作BC ⊥x 轴于C ,作ME ⊥x 轴于E 交AB 于F ,设F 点坐标为(3,a ) 则点E 为(3,0)、点D 为(4,0),∴BC =2, EF =a , AD =3,CE =2,DE =1,CD =3,又∵FEDA BCEF S S S 梯形梯形梯形+=ABCD ∴ )38,3(,38)32(321)3(121)2(221F a a a =+⨯⨯=+⨯++⨯……………6分作AP ⊥MF 于P ,作BQ ⊥MF 于Q ,23)(213≤≤+≤+=∆∆∆MF MF AP BQ S S S MFA MFB MAB …………7分∵点M 的坐标为(3,n ), 点F 的坐标为(3,38) ∴238≤-n , ∴n -38≤2且-(n -38)≤2,三点共线,(舍去),,时,当M B A 38=n∴当32≤n ≤314且n ≠38时,三角形ABM 的面积不超过3 ………………………………9分(3)当1≤m ≤4时,直接写出m 与n 的数量关系为:3n -m =11或3n -m =-1. …………12分。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2016—2017学年第二学期期末初中质量检测七年级 数学试题(考试时间:90 分钟;满分:100 分; 考试形式:闭卷考试) 友情提示:所有答案都必须填在答题卡相应的位置上,答在试卷上一律无效.一、选择题(每题3分,共10题,计30分) 1.下列实数中,属于无理数的是( ).A .3.141B .32C .3D .16 2.下列调查中,适合用全面调查方式的是 ( ). A .了解一批电视机的使用寿命B .了解我市居民家庭一周内丢弃塑料袋的数量C .了解我县中学生的近视率D .了解我班同学最喜爱的体育项目3.如图,在平面直角坐标系中,点P 的坐标为( ).A .(3,-2)B .(-2,3)C .(-3,2)D .(2,-3) 4. 将不等式3x <3的解集表示在数轴上,正确的是( )A . B. C.D.5.方程组⎩⎨⎧1012=-,=+y x y x 的解是( ).A .⎩⎨⎧x =10y =2B .⎩⎨⎧x =11y =1C .⎩⎨⎧x =9y =-1D .⎩⎨⎧x =1y =116. 如图,AB //CD ,EF 分别为交AB 、CD 于点E 、F ,∠1=50°,则∠2的度数为( ). A .50° B .120° C .130° D .150°7.下列运算中,正确的是( ).A .(-4)2= -4B .9=±3C .25= 5D .38=28.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( ).(第2题)(第6题)21EF C D AB(1) A . B . C . D .9.已知实数a >b ,则下列命题结论正确的是( ).① -a <-b ;② 2a >2b ;③ 3+a >3+b ;④ 8|a |>5|b |.A .②③B .①②③C .②③④D .①③④10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( ).A .2B .3C .4D .5 二、填空题(每题2分,共8题,计16分) 11.4= .12.一元一次不等式x +1 > 3的解集为: .13.已知二元一次方程2x +y =4,用含x 代数式表示y ,则y = . 14.命题“两直线平行,同位角相等”中,题设是 . 15.如图,晓岚同学统计了她家5月份的长途电话明细清单,按通话时间画出频数分布直方图,则从图中的信息可知,她家通话时间不足10分钟的有 次. 16.小强准备用自己节省的零花钱购买一台复读机来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少..有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为 . 17.已知点M 坐标为(2-a ,3a + 6),且M 点到两坐标轴的距离相等,则点的M 坐标是 .18.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数为s .按此规律推断,以s 、n 为未知数的二元一次方程为 .三、解答题(共8小题,共54分) 19.(每题3分,共6分)计算: (1)3( 3 + 13); (2)|3-2|+ 22.20.(4分)如图,直线AB 、CD 、EF 相交于点O ,且AB ⊥CD ,∠DOE =70°,求∠BOF 的度数.OC F BE A (第18题)n =2 n =3 n =4…()每组中只含最小分钟值,但不含最大分钟值(第15题)21.(6分)用合适的方法解方程组: ⎩⎨⎧x + y =3, ①3x -8y =20. ②22.(6分)解不等式组⎩⎪⎨⎪⎧x -12<x 3, ①x +4≤3(x +2).②,并在数轴上表示其解集.23.(6分)已知△ABC 中,点A (2,4),B (-1,2),C (2,-2). (1)在直角坐标系中,画出△ABC ;(2)画出△ABC 向左平移4个单位后的图形△A′B′C′;(3)填空:△ABC 的面积为_________.24.(5分)填空或填理由,完成下面的证明.已知:如图,CD 分别交AD 、AE 、BE 于点D 、F 、C ,连接AB 、AC ,AD ∥BE ,∠1=∠2,∠3=∠4.求证AB ∥CD .证明:∵AD ∥BE (已知) ∴∠3=∠CAD ( ) ∵∠3=∠4(已知)∴∠4= (等量代换)∵∠1=∠2(已知) ∴∠1+∠CAE =∠2+∠CAE (等式的基本性质) 即∠BAE =∴∠4= (等量代换)∴AB ∥CD ( )(第24题) 4 32D FE C 1B A25.(10分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下: 请你根据图中提供的信息,回答下列问题: (1)图1中,“电脑”部分所对应的圆心角为 度; (2)共抽查了 名学生;(3)在图2中,将“体育”部分的条形图补充完整;(4)爱好“音乐”的人数占被调查人数的百分比为 ;(5)根据此次调查,估计该中学现有学生中,有 人爱好“书画”.26.(11分)某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元. (1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?(第25题)12音乐体育电脑 35%书画 图1图2。
南海区2016~2017学年度第二学期期末考试七 年 级 数 学 试 卷试卷说明:本试卷共6页,满分120分,考试时间100分钟.答题前,学生务必将自己的姓名等信息按要求填写在答题..卡.上;答案必须写在答题..卡.各题目指定区域内;考试结束后,只需将答题..卡.交回. 一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确) 1. 下列运算中,正确的是A. 2x x xB. 236x x x ⋅=C. 236()x x =D. 222()x y x y -=-2. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,它能较长时间悬浮于空气中,且在空气中含 量浓度越高,就代表空气污染越严重.其中2.5微米=0.0000025米,用科学记数法表示为 A. 0.25×10-5米 B. 2.5×10-5米 C. 2.5×10-6米D. 25×10-7米3. 下列四个图案中,不是轴对称图形的是A BC D4. 如图,能判断AB ∥CE 的条件是A. ∠B =∠ACEB. ∠B =∠ECDC. ∠A =∠ACDD. ∠A =∠ACB5. 通过计算几何图形面积可以表示一些整式乘法的式子,如图表示的式子是A. 22()()a b a b a b -=+- B.2222a b a ab b -=+()-C. 222))(2(b ab a b a b a -+=-+D.2222a b a ab b +=++() 6. 如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短7. “长为3cm ,5cm ,9cm 的线段首尾相接,能围成一个三角形”这一事件是 A. 必然事件 B. 不确定事件 C. 随机事件 D. 不可能事件8 . 在△ABC 中,画出边AC 上的高,下面4幅图中画法正确的是ADBC ABDC ABCD C ABD DC AB(第5题) (第6题)(第4题)9. 如图1,用正方形纸片剪出一副七巧板,并将其拼成如图2的“温暖小屋”,则阴影部分的面积是原 正方形面积的A. 18B.83 C.14D.3410. 如图,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,下列各图象中能正确表示y 与x 的关系的是A B C D二、填空题(本大题6小题,每小题4分,共24分) 11. 计算:23-= .12. 化简:(1)(1)x x x x +--= .13. 如图,已知AB =AE ,AC =AD ,若满足 (添加一个条件即可), 就可得△ABC ≌△AED .14. 一个角的补角比它的余角的3倍多20度,则这个角的度数为 . 15. 等腰△ABC 的两边长为2和5,则第三边长为 .16. 观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律, 第2017个单项式是 .三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 先化简,再求值:),3(])())(2[(2x y x y x y x ÷-+-+其中2,2015.x y(第9题) (第10题)(第13题)18. 如图所示, B、D、C、F四点在同一条直线上,BD=CF,AC//ED,AC=ED。
2016-2017学年七年级(下)期末数学试卷一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80° C.∠4=80°D.∠4=100°3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+46.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A .8B .10C .12D .147.关于x 的方程=有增根,则k 的值是( )A .2B .3C .0D .﹣3 8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是( )A .B .C .D . 9.已知a ﹣b=3,b ﹣c=﹣4,则代数式a 2﹣ac ﹣b (a ﹣c )的值为( ) A .4 B .﹣4 C .3 D .﹣310.已知关于x 、y 的方程组,给出下列结论:①是方程组的解;②无论a 取何值,x ,y 的值都不可能互为相反数;③当a=1时,方程组的解也是方程x +y=4﹣a 的解;④x ,y 的都为自然数的解有4对.其中正确的个数为( )A .1个B .2个C .3个D .4个二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= .12.分解因式:2x 3﹣8xy 2= .13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有件.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=度.15.已知﹣=3,则分式的值为.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共人.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)18.解方程或方程组:(1)(2)+=1.19.先化简代数式,再选择一个你喜欢的数代入求值.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=度.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.参考答案与试题解析一、选择题:本题有10小题,每小题3分,共30分.1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.C.x2+4x+4=(x+2)2D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【分析】利用因式分解的定义判断即可.【解答】解:列各式从左到右的变形中,是因式分解的为x2+4x+4=(x+2)2,故选C2.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80° C.∠4=80°D.∠4=100°【考点】平行线的判定.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)3.下列运算正确的是()A.a6÷a2=a3B.(a2b3)2=a4b6C.a3a2=a6D.a﹣2=﹣【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等知识点进行作答.【解答】解:A、底数不变指数相减,故A错误;B、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故B正确;C、底数不变指数相加,故C错误;D、负整指数幂与正整指数幂互为倒数,故D错误.故选:B.4.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是()A.男生在13岁时身高增长速度最快B.女生在10岁以后身高增长速度放慢C.11岁时男女生身高增长速度基本相同D.女生身高增长的速度总比男生慢【考点】函数的图象.【分析】根据图象即可确定男生在13岁时身高增长速度是否最快;女生在10岁以后身高增长速度是否放慢;11岁时男女生身高增长速度是否基本相同;女生身高增长的速度是否总比男生慢.【解答】解:A、依题意男生在13岁时身高增长速度最快,故选项正确;B、依题意女生在10岁以后身高增长速度放慢,故选项正确;C、依题意11岁时男女生身高增长速度基本相同,故选项正确;D、依题意女生身高增长的速度不是总比男生慢,有时快,故选项错误.故选D.5.计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+4【考点】整式的除法.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加;12x3÷(﹣4x)=﹣3x2,﹣8x2÷(﹣4x)=2x,16x÷(4x)=﹣4.【解答】解:(12x3﹣8x2+16x)÷(﹣4x)=﹣3x2+2x﹣4;故选A.6.如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故选:C7.关于x的方程=有增根,则k的值是()A.2 B.3 C.0 D.﹣3【考点】分式方程的增根.【分析】依据分式方程有增根可求得x=3,将x=3代入去分母后的整式方程从而可求得k的值.【解答】解:∵方程有增根,∴x﹣3=0.解得:x=3.方程=两边同时乘以(x﹣3)得:x﹣1=k,将x=3代入得:k=3﹣1=2.故选:A.8.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,列方程组即可.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选C.9.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值为()A.4 B.﹣4 C.3 D.﹣3【考点】因式分解的应用.【分析】先分解因式,再将已知的a﹣b=3,b﹣c=﹣4,两式相加得:a﹣c=﹣1,整体代入即可.【解答】解:a2﹣ac﹣b(a﹣c),=a(a﹣c)﹣b(a﹣c),=(a﹣c)(a﹣b),∵a﹣b=3,b﹣c=﹣4,∴a﹣c=﹣1,当a﹣b=3,a﹣c=﹣1时,原式=3×(﹣1)=﹣3,故选D.10.已知关于x、y的方程组,给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的都为自然数的解有4对.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】二元一次方程组的解.【分析】①将x=5,y=﹣1代入检验即可做出判断;②将x和y分别用a表示出来,然后求出x+y=3来判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④有x+y=3得到x、y都为自然数的解有4对.【解答】解:①将x=5,y=﹣1代入方程组得:,由①得a=2,由②得a=,故①不正确.②解方程①﹣②得:8y=4﹣4a解得:y=将y的值代入①得:x=,所以x+y=3,故无论a取何值,x、y的值都不可能互为相反数,故②正确.③将a=1代入方程组得:解此方程得:将x=3,y=0代入方程x+y=3,方程左边=3=右边,是方程的解,故③正确.④因为x+y=3,所以x、y都为自然数的解有,,,,.故④正确.则正确的选项有②③④,故选:C.二、填空题:本题有6个小题,每小题4分,共24分.11.用科学记数法表示:0.00000136= 1.36×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000136=1.36×10﹣6,故答案为:1.36×10﹣6.12.分解因式:2x3﹣8xy2=2x(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再根据平方差公式进行二次分解即可求得答案.【解答】解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).13.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有48件.【考点】频数(率)分布直方图;频数与频率.【分析】由各长方形的高的比得到各段的频率之比,即可得到第二组的频率,再由数据总和=某段的频数÷该段的频率计算作品总数.【解答】解:从左至右各长方形的高的比为2:3:4:6:1,即频率之比为2:3:4:6:1;第二组的频率为,第二组的频数为9;故则全班上交的作品有9÷=48.故答案为:48.14.如图,把一张矩形纸片ABCD沿EF折叠后,点C﹑D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=70度.【考点】翻折变换(折叠问题).【分析】由矩形的性质可知AD∥BC,可得∠CEF=∠EFG=55°,由折叠的性质可知∠GEF=∠CEF,再由邻补角的性质求∠BEG.【解答】解:∵AD∥BC,∴∠CEF=∠EFG=55°,由折叠的性质,得∠GEF=∠CEF=55°,∴∠BEG=180°﹣∠GEF﹣∠CEF=70°.故答案为:70.15.已知﹣=3,则分式的值为.【考点】分式的值.【分析】由已知条件可知xy≠0,根据分式的基本性质,先将分式的分子、分母同时除以xy,再把﹣=3代入即可.【解答】解:∵﹣=3,∴x≠0,y≠0,∴xy≠0.∴=====.故答案为:.16.若干人乘坐若干辆汽车,如果每辆汽车坐22人,有1人不能上车;如果有一辆车不坐人,那么所有旅客正好能平分乘到其他各车上,则旅客共45或529人.【考点】分式方程的应用.【分析】设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人,依题意有22m+1=n(m﹣1)然后确定m、n的值,进而可得答案.【解答】解:设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n 人.依题意有22m+1=n(m﹣1).所以n==22+,因为n为自然数,所以为整数,因此m﹣1=1,或m﹣1=23,即m=2或m=24.当m=2时,n=45,n(m﹣1)=45×1=45(人);当m=24时,n=23,n(m﹣1)=23×(24﹣1)=529(人).故答案为:45或529.三、解答题:本题有7个小题,共66分.17.计算:(1)(﹣)﹣2+()0+(﹣2)3(2)(2m﹣3)2﹣(4m+1)(m﹣2)【考点】多项式乘多项式;完全平方公式;零指数幂;负整数指数幂.【分析】(1)首先计算负整数指数幂、零次幂、乘方,然后再计算有理数的加减即可;(2)利用完全平方公式计算)(2m﹣3)2,利用多项式乘以多项式法则计算(4m+1)(m﹣2),然后再合并同类项即可.【解答】解:(1)原式=9+1﹣8=2;(2)原式=4m2﹣12m+9﹣(4m2﹣8m+m﹣2),=4m2﹣12m+9﹣4m2+8m﹣m+2,=﹣5m+11.18.解方程或方程组:(1)(2)+=1.【考点】解分式方程;解二元一次方程组.【分析】(1)根据等式的性质把原方程组变形,利用加减消元法解方程组即可;(2)方程两边同乘以(x﹣3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【解答】解:(1)原方程组变形为:,①﹣②得,﹣3n=6,解得,n=﹣2,把n=﹣2代入②得,m=,则方程组的解为:;(2)方程两边同乘以(x﹣3),得5﹣x﹣1=x﹣3,整理得,﹣2x=﹣7,解得,x=,检验:当x=时,(x﹣3)≠0,∴x=是原方程的解.19.先化简代数式,再选择一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的运算法则进行化简,再代入a的值求值即可.【解答】解:=÷(﹣)=÷=×=,取a=3,代入可得==2.20.农历每年的5月5日是端午节,端午节是中华民族的传统节日,已有上千年的历史,某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该商场今年端午节共销售粽子2400个;(2)请补全图1中的条形统计图;(3)写出A品牌粽子在图2中所对应的圆心角的度数;(4)按今年端午节期间销售统计情况,若该商场今年共售出粽子12万个,估计B品牌粽子售出多少个?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用C品牌粽子的个数除以C品牌粽子所占百分比可得商场今年端午节共销售粽子数;(2)首先利用粽子总数减去A、C品牌粽子数可算出B品牌粽子数,然后再画图即可;(3)利用A品牌粽子所占比例乘以360°即可;(4)利用样本估计总体的方法可得今年端午节期间销售B品牌粽子所占比例为,然后再乘以120000即可.【解答】解:(1)商场今年端午节共销售粽子数:1200÷50%=2400(个),故答案为:2400;(2)B品牌粽子数:2400﹣400﹣1200=800(个),如图所示;(3)A品牌粽子所对应的圆心角的度数:×360°=60°;(4)120000×=40000(个),答:估计B品牌粽子售出40000个.21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA 为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=80°,则∠1+∠2+∠4+∠6+∠8=170度.【考点】平行线的性质;多边形内角与外角.【分析】(1)如图1,根据平角定义表示∠ECB=180°﹣α,由角平分线定义得:∠DCB=90°﹣α,最后根据平行线性质得结论;(2)作平行线,根据平行线的性质得:∠BAE=∠ABH=90°和∠1+∠CBH=180°,所以∠1+∠2=∠1+∠CBH+∠ABH=270°;(3)作辅助线,根据外角定理和四边形的内角和360°列式后可得结论.【解答】解:(1)如图1,∵∠ACE=α,∴∠ECB=180°﹣α,∵CD平分∠ECB,∴∠DCB=∠ECB==90°﹣α,∵FG∥CD,∴∠GFB=∠DCB=90°﹣α;(2)如图2,过B作BH∥AE,∵BA⊥AE,∴∠BAE=∠ABH=90°,∵CD∥AE,∴BH∥CD,∴∠1+∠CBH=180°,∴∠1+∠2=∠1+∠CBH+∠ABH=180°+90°=270°;(3)延长图中线段,构建如图所示的三角形和四边形,由外角定理得:∠9=∠1+∠2,∠BAC=∠9+∠8=∠1+∠2+∠8,∵∠5=50°,∠7=80°,∴∠6+∠GDH=130°,∵∠3=40°,∴∠AFE=140°,∵∠BAC+∠4+180°﹣∠GDH+140°=360°,∴∠BAC+∠4﹣∠GDH=40°,∴∠1+∠2+∠4+∠8﹣130°+∠6=40°,∴∠1+∠2+∠4+∠6+∠8=170°,故答案为为:170.22.用四块完全相同的小长方形拼成的一个“回形”正方形.(1)用不同代数式表示图中的阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;(2)利用(1)中的结论计算:a+b=2,ab=,求a﹣b;(3)根据(1)中的结论,直接写出x+和x﹣之间的关系;若x2﹣3x+1=0,分别求出x+和(x﹣)2的值.【考点】完全平方公式的几何背景.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据完全平分公式解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,得到等式:4ab=(a+b)2﹣(a﹣b)2,说明:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.(2)(a﹣b)2=(a+b)2﹣4ab==4﹣3=1,∴a﹣b=±1.(3)根据(1)中的结论,可得:,∵x2﹣3x+1=0,方程两边都除以x得:,∴,∴.23.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n折售完剩余的书,结果第二次共盈利100m元(n、m为正整数),求相应n、m值.【考点】分式方程的应用;二元一次方程的应用.【分析】(1)设第一次购书的进价为x元/本,根据“第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本”列出方程,求出方程的解即可得到结果;(2)根据题意列出关于m与n的方程,由m与n为正整数,且n的范围确定出m与n的值即可.【解答】解:(1)设第一次购书的进价为x元/本,根据题意得: +100=,解得:x=5,经检验x=5是分式方程的解,且符合题意,∴15000÷(5×1.2)=2500(本),则第一次购书的进价为5元/本,且第二次买了2500本;(2)第二次购书的进价为5×1.2=6(元),根据题意得:2000×(7﹣6)+×(﹣6)=100m,整理得:7n=2m+20,即2m=7n﹣20,∴m=,∵m,n为正整数,且1≤n≤9,∴当n=4时,m=4;当n=6时,m=11;当n=8时,m=18.2017年4月18日。
天津市部分区2016~2017学年度第二学期期末试卷七年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、在,,,,,,,,中是无理数的个数有()A.2个B.3个C.4个D.5个【参考答案】B【考查内容】无理数【解析思路】无理数包括三方面的数:①化简之后含的式子;②开方开不尽的方根;③无限不循环小数2、如果a>b,那么下列结论一定正确的是()A. a-5<b-5B. 5-a<5-bC.>D.>【参考答案】B【考查内容】不等式的性质【解析思路】①不等式的两边同时加上或减去同一个数或同一个式子,不等号的方向不变;②不等式的两边同时乘以一个不为0的正数,不等号方向不变;③不等式的两边同时乘或除以一个不为0的负数,不等号的方向改变。
3、下列四个命题中是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线相互垂直【参考答案】C【考查内容】命题与定理【解析思路】利用学习过的有关性质、定义及定理进行判断后即可得到正确的结论。
4、如果P(m,1-3m)在第四象限,那么m的取值范围是()A.0<m<B.<<C.m<0D.>【参考答案】D【考查内容】坐标、不等式组【解析思路】根据点P在第四象限内横坐标为正,纵坐标为负,列出不等式组求解即可。
5.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班45名学生身高情况的调查D.对某批灯泡使用寿命的调查【参考答案】C【考查内容】全面调查与抽样调查【解析思路】由普查得带的调查结果比较准确,但所费人力、物力和时间比较多,而抽样调查的到的调查结果比较近似。
6.在扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的区域占总体区域的()A.10%B.20%C.30%D.50%【参考答案】B【考查内容】扇形统计图【解析思路】利用扇形的圆心角是72°,这个扇形所表示的占总体面积的百分比就是圆心角所占的百分比,即可求出答案。
2016-2017学年河北省石家庄市(shí jiā zhuānɡ shì)新华区七年级(下)期末数学试卷一.选择题(每题2分)1.(2分)计算(jì suàn):5﹣1的值为()A.5 B.﹣5 C.D.﹣2.(2分)如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足(mǎnzú)关系是()A.对顶角B.相等(xiāngděng)C.互补D.互余3.(2分)人体(réntǐ)中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m 4.(2分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.5.(2分)下列从左到右的变形是因式分解的是()A.ab﹣b=b(a﹣1)B.(m+n)(m﹣n)=m2﹣n2C.﹣10x﹣10=﹣10(x﹣1)D.x2﹣2x+1=x(x﹣2)+16.(2分)将一副(yī fù)三角板按如图的方式放置,则∠1的度数(dù shu)是()A.15°B.20°C.25°D.30°7.(2分)下列(xiàliè)运算正确的是()A.a2•a3=a6B.(2ab2)2=4a2b4C.(﹣a2)3=a6D.2a2÷a=28.(2分)下列(xiàliè)命题:①因为(yīn wèi)﹣>﹣1,所以﹣+1>﹣a+1;②平行于同一条直线的两条直线平行;③相等的角是对顶角;④三角形三条中线的交点是三角形的重心;⑤同位角相等,其中,真命题的个数是()A.1 B.2 C.3 D.49.(2分)如图为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(其中n为正整数)展开式的系数,例如:(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,那么(a+b)6展开式中前四项系数分别为()A.1,5,6,8 B.1,5,6,10 C.1,6,15,18 D.1,6,15,2010.(2分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.1411.(2分)m是常数(chángshù),若不等式组恰有两个(liǎnɡ ɡè)整数解,则m的值可能是()A.﹣3 B.﹣2 C.﹣1 D.012.(2分)如图是婴儿车的平面(píngmiàn)示意图,其中AB∥CD,∠1=120°,∠3=40°,那么(nà me)∠2的度数(dù shu)为()A.80°B.90°C.100°D.102°13.(2分)如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是()A.425cm2B.525cm2C.600cm2D.800cm214.(2分)如图,△ABC的两条中线AM、BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为()A.4 B.3 C.4.5 D.3.5二.填空题15.(3分)计算:()2×(﹣)3=.16.(3分)如图,在长方形纸片ABCD中,AB=10cm,BC=20cm,将长方形纸片ABCD折叠,使得(shǐ de)点C落在AD边上点C′处,点D的对应点为D′,折痕为EF,则CE最短是cm.17.(3分)如图,要使输出(shūchū)值y大于100,则输入的最小正整数x 是.18.(3分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC 和∠A20l6CD的平分线交于点A2017,则∠A2017=°.三.解答(jiědá)题19.(3分)解方程组:.20.(3分)解不等式组并把它的解集表示(biǎoshì)在数轴上.21.(3分)化简:(a3)2﹣2a•a5+(﹣a)7÷(﹣a)22.(3分)因式分解(yīn shì fēn jiě):am2﹣2a2m+a3.23.(8分)在图中,利用网格点和三角板画图(huà tú)或计算:(1)在给定(ɡěi dìnɡ)方格纸中画出平移后的△A′B′C′;(2)画出AB边上(biān shànɡ)的中线CD;(3)画出BC边上(biān shànɡ)的高线AE;(4)记网格的边长为1,则△A′B′C′的面积为.24.(4分)先化简,再求值,(a﹣b)2﹣(a+2b)(a﹣2b)+2a(1+b),其中a=,b=﹣1.25.(4分)已知x﹣y=﹣1,xy=3,求x3y﹣2x2y2+xy3的值.26.(8分)(1)①如图1,已知AB∥CD,∠ABC=60°,根据可得∠BCD=°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.27.(7分)某服装店销售每件进价为200元、170元的A、B两种品牌的上衣,下列是近两周的销售情况:销售时段销售数量销售收入A品牌B品牌第一周3件5件1800元第二周4件10件3100元(进价、售价均保持(bǎochí)不变,利润=销售收入﹣进货成本)(1)求A、B两种品牌(pǐn pái)上衣的销售单价;(2)若超市准备用不多余5400元的金额再采购(cǎigòu)这两种品牌的上衣共30件,则A品牌的上衣最多能采购多少件?28.(8分)(1)如图(1),已知,在△ABC中,AD,AE分别(fēnbié)是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数(dù shu);(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=(含x的代数式表示)②求∠F的度数.29.(9分)问题解决:边长为a的两个正方形(阴影部分)如图1所示摆放,则构成的大正方形面积可以表示为(a+a)2或4a2;边长为a,b的两个正方形(阴影部分)如图2所示摆放,大正方形面积可以表示为或;将边长为a、b的两个正方形如图所示叠放在一起,借助图3中的图形面积试写出(a﹣b)2,a2,b2,ab这四个代数式之间的等量关系:;探究应用:(1)实际上有许多代数恒等式可以用图形的面积来表示,如图4,它表示了2m2+3mn+n2=(2m+n)(2m﹣n),请在下面左边的方框中画出一个几何图形,使它的面积是a2+4ab+3b2,并利用这个图形将a2+4ab+3b2进行因式分解.提升应用:(2)阅读上面右边方框中的材料,根据(gēnjù)你的观察,探究下面的问题:①a2+b2﹣4a+4=0,则a=,b=;②已知三角形ABC的三边(sān biān)长a,b,c都是整数,且满足2a2+b2﹣4a﹣6b+11=0,求三角形ABC的周长(zhōu chánɡ).2016-2017学年(xuénián)河北省石家庄市新华区七年级(下)期末数学试卷参考答案与试题(shìtí)解析一.选择题(每题2分)1.(2分)计算(jì suàn):5﹣1的值为()A.5 B.﹣5 C.D.﹣【分析(fēnxī)】根据(gēnjù)负整数指数幂的运算法则进行计算即可.【解答】解:原式=.故选:C.2.(2分)如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是()A.对顶角B.相等C.互补D.互余【分析】由垂直的定义可知∠EOA=90°,从而可知∠1+∠AOC=90°,由对顶角的性质可知:∠2=∠AOC,从而可知∠1+∠2=90°.【解答】解;∵OE⊥AB,∴∠EOA=90°.∴∠1+∠AOC=90°.∵∠2=∠AOC,∴∠1+∠2=90°.∴∠1与∠2互为余角(yújiǎo).故选:D.3.(2分)人体中红细胞的直径约为0.0000077m,用科学记数法表示(biǎoshì)数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m 【分析(fēnxī)】绝对值小于1的正数也可以(kěyǐ)利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数(zhǐshù)幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 007 7=7.7×10﹣6m.故选:D.4.(2分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线的判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.5.(2分)下列从左到右的变形是因式分解的是()A.ab﹣b=b(a﹣1)B.(m+n)(m﹣n)=m2﹣n2C.﹣10x﹣10=﹣10(x﹣1)D.x2﹣2x+1=x(x﹣2)+1【分析(fēnxī)】根据因式分解的意义(yìyì)求解即可.【解答(jiědá)】解:A、把一个(yī ɡè)多项式转化成几个整式积的形式,故A符合题意;B、是整式的乘法,故B不符合(fúhé)题意;C、分解错误,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.6.(2分)将一副三角板按如图的方式放置,则∠1的度数是()A.15°B.20°C.25°D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠BAC=∠ACD﹣∠B=15°,∠1=∠BAC=15°,故选:A.7.(2分)下列运算正确的是()A.a2•a3=a6B.(2ab2)2=4a2b4C.(﹣a2)3=a6D.2a2÷a=2【分析】各项计算得到结果,即可作出判断.【解答(jiědá)】解:A、原式=a5,不符合(fúhé)题意;B、原式=4a2b4,符合(fúhé)题意;C、原式=﹣a6,不符合(fúhé)题意;D、原式=2a,不符合(fúhé)题意,故选:B.8.(2分)下列命题:①因为﹣>﹣1,所以﹣+1>﹣a+1;②平行于同一条直线的两条直线平行;③相等的角是对顶角;④三角形三条中线的交点是三角形的重心;⑤同位角相等,其中,真命题的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的性质对①进行判断;根据平行公理的推论对②进行判断;根据对顶角的定义对③进行判断;根据重心的定义对④进行判断;根据同位角定义对⑤进行判断.【解答】解:①因为﹣>﹣1,a>0,所以﹣+1>﹣a+1,故原命题是假命题;②平行于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,故原命题是假命题;④三角形三条中线的交点是三角形的重心,是真命题;⑤两直线平行,同位角相等,故原命题是假命题;其中真命题有2个.故选:B.9.(2分)如图为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(其中n为正整数)展开式的系数,例如:(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,那么(a+b)6展开式中前四项系数分别为()A.1,5,6,8 B.1,5,6,10 C.1,6,15,18 D.1,6,15,20【分析(fēnxī)】由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾(shǒuwěi)两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个(liǎnɡ ɡè)系数的和,由此可得(a+b)4的各项系数(xìshù)依次为1、4、6、4、1;(a+b)5的各项系数(xìshù)依次为1、5、10、10、5、1;因此(a+b)6的系数分别为1、6、15、20、15、6、1.【解答】解:可以发现:(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,则(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;则(a+b)6的系数分别为1、6、15、20、15、6、1.前四项系数分别为1、6、15、20.故选:D.10.(2分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.14【分析】根据三角形三边关系定理:三角形两边之和大于第三边解答.【解答】解:∵△ABC的周长为20,∴AB的长小于10,故选:A.11.(2分)m是常数(chángshù),若不等式组恰有两个(liǎnɡ ɡè)整数解,则m的值可能是()A.﹣3 B.﹣2 C.﹣1 D.0【分析(fēnxī)】根据(gēnjù)已知得出关于m的不等式组,求出解集,即可得出选项.【解答(jiědá)】解:∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0,即只有选项C符合题意,选项A、B、D都不符合题意.故选:C.12.(2分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°【分析】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解答】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.13.(2分)如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中(qízhōng)三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是()A.425cm2B.525cm2C.600cm2D.800cm2【分析(fēnxī)】设每块墙砖的长为xcm,宽为ycm,根据“三块横放(hénɡ fànɡ)的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得.【解答(jiědá)】解:设每块墙砖的长为xcm,宽为ycm,根据(gēnjù)题意得:,解得:,则每块墙砖的截面面积是35×15=525cm2,故选:B.14.(2分)如图,△ABC的两条中线AM、BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为()A.4 B.3 C.4.5 D.3.5【分析】先求出△NAB的面积=△MBA的面积,得出△AON的面积=△BOM 的面积=2,再求出△ABN的面积=△BCN的面积,即可求出四边形MCNO的面积.【解答】解:如图连接MN,∵AM、BN是△ABC的两条中线(zhōngxiàn),∴MN∥AB,∴△NAB的面积(miàn jī)=△MBA的面积(miàn jī),∴△AON的面积(miàn jī)=△BOM的面积(miàn jī)=2,∵△ABO的面积为4,∴△ABN的面积=4+2=6,∵N为中点,∴△BCN的面积=△ABN的面积=6,∴四边形MCNO的面积=△BCN的面积﹣△BOM的面积=6﹣2=4,故选:A.二.填空题15.(3分)计算:()2×(﹣)3=﹣.【分析】首先利用乘方的性质确定符号,然后逆用积的乘方法则求解.【解答】解:原式=﹣()2×()3=﹣(×)2×=﹣.故答案是:﹣.16.(3分)如图,在长方形纸片ABCD中,AB=10cm,BC=20cm,将长方形纸片ABCD折叠,使得点C落在AD边上点C′处,点D的对应点为D′,折痕为EF,则CE最短是10cm.【分析(fēnxī)】根据(gēnjù)垂线段最短,可得当C'E⊥AD时,C'E最短,再根据(gēnjù)矩形的性质,即可得到C'E=AB=10,最后由折叠可得,CE=C'E=10.【解答(jiědá)】解:如图所示,当C'E⊥AD时,C'E最短,此时(cǐ shí)C'E=AB=10cm,由折叠可得,CE=C'E,∴CE=10cm.故答案为:10.17.(3分)如图,要使输出值y大于100,则输入的最小正整数x是21.【分析】分x为奇数和偶数两种情况,分别求解,再比较作出判断即可.【解答】解:若x为偶数,根据题意,得:x×4+13>100,解之,得:x>,所以此时x的最小整数值为22;若x为奇数,根据题意,得:x×5>100,解之,得:x>20,所以此时x的最小整数值为21,综上,输入的最小正整数x是21.18.(3分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2016BC 和∠A20l6CD的平分线交于点A2017,则∠A2017=°.【分析(fēnxī)】利用(lìyòng)角平分线的性质、三角形外角性质,易证∠A1=∠A,进而(jìn ér)可求∠A1,由于(yóuyú)∠A1=∠A,∠A2=∠A1=∠A,…,以此类推(yǐ cǐ lèi tuī)可知∠A2017即可求得.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2017=∠A=()°,故答案为:.三.解答题19.(3分)解方程组:.【分析(fēnxī)】观察原方程(fāngchéng)组,两个方程的y系数互为相反数,可用加减消元法求解.【解答(jiědá)】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以(suǒyǐ)方程组的解是.20.(3分)解不等式组并把它的解集表示(biǎoshì)在数轴上.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x<2,由②得,x≥﹣1,故此不等式组的解集为:﹣1≤x<2.在数轴上表示为:.21.(3分)化简:(a3)2﹣2a•a5+(﹣a)7÷(﹣a)【分析】根据幂的乘方和同底数幂的乘方、合并同类项可以解答本题.【解答】解:(a3)2﹣2a•a5+(﹣a)7÷(﹣a)=a6﹣2a6+(﹣a)6=0.22.(3分)因式分解:am2﹣2a2m+a3.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(m2﹣2am+a2)=a(m﹣a)2.23.(8分)在图中,利用网格(wǎnɡ ɡé)点和三角板画图或计算:(1)在给定(ɡěi dìnɡ)方格纸中画出平移后的△A′B′C′;(2)画出AB边上(biān shànɡ)的中线CD;(3)画出BC边上(biān shànɡ)的高线AE;(4)记网格(wǎnɡ ɡé)的边长为1,则△A′B′C′的面积为8.【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)S△A′B′C′=4×4÷2=16÷2=8.故△A′B′C′的面积为8.故答案为:8.24.(4分)先化简,再求值,(a﹣b)2﹣(a+2b)(a﹣2b)+2a(1+b),其中(qízhōng)a=,b=﹣1.【分析(fēnxī)】先将原式化简,然后(ránhòu)将a与b的值代入即可求出答案.【解答(jiědá)】解:原式=a2﹣2ab+b2﹣(a2﹣4b2)+2a+2ab=5b2+2a当a=,b=﹣1时,∴原式=5+1=625.(4分)已知x﹣y=﹣1,xy=3,求x3y﹣2x2y2+xy3的值.【分析(fēnxī)】原式提取公因式,再利用完全平方公式分解,将已知等式代入计算即可求出值.【解答】解:原式=xy(x2﹣2xy+y2)=xy(x﹣y)2,把x﹣y=﹣1,xy=3代入得:原式=3.26.(8分)(1)①如图1,已知AB∥CD,∠ABC=60°,根据两直线平行,内错角相等可得∠BCD=60°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=30°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=60°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.【分析】(1)∠BCD与∠ABC是两平行直线AB、CD被BC所截得到的内错角,所以根据两直线平行,内错角相等即可求解;(2)根据角平分线的定义求解即可;(3)根据互余的两个角的和等于(děngyú)90°,计算即可;(4)先根据两直线(zhíxiàn)平行,同旁内角互补和角平分线的定义求出∠BCN 的度数,再利用互余的两个(liǎnɡ ɡè)角的和等于90°即可求出.【解答(jiědá)】解:(1)①两直线平行(píngxíng),内错角相等;60;②30;③60.(2)∵AB∥CD,∴∠B+∠BCE=180°,∵∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°.又∵CN是∠BCE的平分线,∴∠BCN=140°÷2=70°.∵CN⊥CM,∴∠BCM=90°﹣∠BCN=90°﹣70°=20°.27.(7分)某服装店销售每件进价为200元、170元的A、B两种品牌的上衣,下列是近两周的销售情况:销售时段销售数量销售收入A品牌B品牌第一周3件5件1800元第二周4件10件3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种品牌上衣的销售单价;(2)若超市准备用不多余5400元的金额再采购这两种品牌的上衣共30件,则A品牌的上衣最多能采购多少件?【分析】(1)设A、B两种品牌上衣的销售单价分别为x元、y元,根据3件A型号5件B型号的品牌上衣收入1800元,4件A型号10件B型号的品牌上衣收入3100元,列方程组求解;(2)设采购A种型号品牌上衣(shàngyī)a件,则采购B种型号品牌上衣(30﹣a)件,根据金额不多余5400元,列不等式求解.【解答(jiědá)】解:(1)设A、B两种品牌上衣的销售(xiāoshòu)单价分别为x 元、y元,依题意(tí yì)得:,解得.答:A、B两种品牌上衣(shàngyī)的销售单价分别为250元、210元(2)设采购A种品牌上衣a件,则采购B种品牌上衣(30﹣a)件,依题意得:200a+170(30﹣a)≤5400,解得a≤10.答:A品牌的上衣最多能采购10件.28.(8分)(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=72°﹣x°(含x的代数式表示)②求∠F的度数.【分析】(1)先根据三角形内角和得到∠CAB=180°﹣∠B﹣∠C=100°,再根据角平分线与高线的定义得到∠CAE=∠CAB=50°,∠ADC=90°,则∠CAD=90°﹣∠C=40°,然后利用∠DAE=∠CAE﹣∠CAD计算即可;(2)根据题意可知∠B=x°,∠C=(x+36)°,根据三角形的内角和定理可知∠ADC+∠DAC+∠C=180°,∠ADC=∠B+∠BAF,根据角平分线的性质,可知∠EAC=∠BAF,可得出∠ADC的度数,再根据FD⊥BC,可得出∠F的度数.【解答(jiědá)】解:(1)∵∠B=30°,∠C=50°,∴∠CAB=180°﹣∠B﹣∠C=100°,∵AD是△ABC角平分线,∴∠CAE=∠CAB=50°,∵AE分别(fēnbié)是△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=40°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)①∵∠B=x°,∠C=(x+36)°,AF平分(píngfēn)∠BAC,∴∠EAC=∠BAF,∴∠CAE=[180°﹣x°﹣(x+36)°]=72°﹣x°,②∠AEC=∠BAE+∠B=72°,∵FD⊥BC,∴∠F=18°.29.(9分)问题解决:边长为a的两个正方形(阴影部分)如图1所示摆放,则构成(gòuchéng)的大正方形面积可以表示为(a+a)2或4a2;边长为a,b 的两个正方形(阴影(yīnyǐng)部分)如图2所示摆放,大正方形面积可以表示为(a﹣b)2或a2﹣2ab+b2;将边长为a、b的两个正方形如图所示叠放在一起,借助图3中的图形面积试写出(a﹣b)2,a2,b2,ab这四个代数式之间的等量关系:(a﹣b)2=a2﹣2ab+b2;探究应用:(1)实际上有许多代数恒等式可以用图形的面积来表示,如图4,它表示了2m2+3mn+n2=(2m+n)(2m﹣n),请在下面左边的方框中画出一个几何图形,使它的面积是a2+4ab+3b2,并利用这个图形将a2+4ab+3b2进行因式分解.提升应用:(2)阅读上面右边方框(fānɡ kuànɡ)中的材料,根据你的观察,探究下面的问题:①a2+b2﹣4a+4=0,则a=2,b=0;②已知三角形ABC的三边长a,b,c都是整数(zhěngshù),且满足2a2+b2﹣4a ﹣6b+11=0,求三角形ABC的周长(zhōu chánɡ).【分析(fēnxī)】问题解决:根据同一图形(túxíng)面积的整体和部分两种方法计算可得;探究应用:(1)画一个长为(a+3b),宽为(a+b)的矩形即可,由面积的不同表示即可分解因式;提升应用:(2)①将原式变形为(a﹣2)2+b2=0,由非负数性质可得答案;②由原式可得2(a﹣1)2+(b﹣3)2=0,由非负数性质可得a、b的值,再根据三边关系得出c的值,从而求得周长.【解答】解:问题解决:如图2所示,大正方形面积可以表示为(a+b)2或a2+2ab+b2,图3中的图形面积为(a﹣b)2或a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2,故答案为:(a+b)2、a2+2ab+b2、(a﹣b)2=a2﹣2ab+b2;探究应用:(1)画图如下:a2+4ab+3b2=(a+b)(a+3b);提升(tíshēng)应用:(2)①∵a2+b2﹣4a+4=0,∴(a﹣2)2+b2=0,则a﹣2=0或b=0,解得:a=2、b=0,故答案(dá àn)为:2,0;②∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0且b﹣3=0,解得:a=1、b=3,∵3﹣1<c<3+1,且c是整数(zhěngshù),∴c=3,∴三角形ABC的周长(zhōu chánɡ)是1+3+3=7.内容总结(1)(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高。
2016—2017学年度第二学期期末考试七年级数学试题一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列各数:31,5,3.14159,-π,38,其中无理数有()A.4个B. 3个C. 2个D. 1个2.如图,直线AB∥CD,直线l分别与AB、CD相交,若∠1=120°,则∠2=()A.120°B. 60°C. 50°D. 30°3.在平面直角坐标系中,点P(21a--,12+a)所在的象限是()A.第一象限B. 第二象限C. 第三象限 D.第四象限4.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择全面调查;B.为了了解某班同学的身高情况,选择抽样调查;C.为了了解航天飞机各个零件是否安全,选择全面调查;D.为了了解生产的一批炮弹的杀伤半径,选择全面调查.5.已知⎩⎨⎧=+=+1034443baba,则a+b等于()A.5 B.4 C.3 D.26.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“判断结果是否大于190?”为一次操作,如果操作恰好进行三次才停止,那么x的取值范围是()A.B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.点P(3,-4)到x 轴的距离是.8.已知a,b为两个连续的整数,且a<13<b,则a+b= .9.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是° .10.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示。
则点A2017的坐标为 .11.已知实数x、y满足632=-yx,并且3-≥x,2<y,现有yxk2-=,则k的取值范围是 .12.如图,三角形ABC中∠BAC=70°,点D是射线BC上一点(不与点B、C重合),DE∥AB交直线AC于E,DF∥AC交直线AB于F,则∠FDE的度数为 .三、(本大题共5小题,每小题6分,共30分)13.计算:1623483+---.14.若方程组472+=+⎧⎨-=⎩x y kx y k的解x与y是互为相反数,求k的值.15.解不等式组⎪⎩⎪⎨⎧->+≥--13414)2(3xxxx,并把解集在数轴上表示出来.1228≤<x6422≤<x6222≤<x208≤<x16.如图,DE∥BC,∠1+∠2=180°,∠3=40°,求∠B的度数.17.如图,△ABC在平面直角坐标系中.A(0,4)(1)在图中画出△ABC关与y轴的对称△A′B′C′;(2)在图中画出△A′B′C′的平移图形,使A′的对应点A″的坐标为(-3,-2)并写出对应点B″,C″的坐标.四、(本大题共3小题,每小题8分,共24分)18.如图,已知OA∥BE,OB平分∠AOE,∠4=∠1,∠2与∠3互余,求证:(1)DE∥OB;(2)DE⊥CD. 19.如图,在平面直角坐标系中A(a,0), B(b,0),C(-1,2)且)42(122=-++++baba.(1)求a,b的值;(2)在y轴上是否存在一点M,使△COM的面积为△ABC面积的一半,求出点M的坐标.20.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出两幅不完整的统计图,请根据统计图回答问题.(1)这次活动一共调查了_____名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于_______度;(4)若该学校有3000人,请你估计该学校选择足球项目的学生人数约是________人.五、(本大题共2小题,每小题9分,共18分)21. (1)请你根据图1回答下列问题:①若∠DEC+∠ACB=180°,可以得到哪两条线段平行?②在①的结论下,如果∠1=∠2,又能得到哪两条线段平行?(2分)(2)请你在图2中按下面的要求画图(画图工具和方法不限):过点A画AD⊥BC于D,过点D画DE∥AB交AC于E,在线段AB上任取一点F,以F为顶点,FB为一边画∠BFG,使∠BFG =∠ADE,∠BFG的另一边FG与线段BC交于点G.(2分)(3)请你根据(2)中画图时给出的条件,猜想FG与BC的位置关系,并给予证明.(5分)22.某商场销售A,B两种品牌的多媒体教学设备,这两种多媒体教学设备的进价和售价如表所示.A B进价(万元/套) 2 1.6售价(万元/套) 2.6 2(1)若该商场计划购进两种多媒体教学设备若干套,共需124万元,全部销售后可获毛利润36万元.则该商场计划购进A,B两种品牌的多媒体教学设备各多少套?(2)通过市场调研,该商场决定在(1)中所购总数量不变的基础上,减少A种设备的购进数量,增加B种设备的购进数量.若用于购进这两种多媒体教学设备的总资金不超过120万元,且全部销售后可获毛利润不少于33.6万元.问有几种购买方案?并写出购买方案. 六、(本大题共1小题,共12分.)23.如乙图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).点X,Y分别在x,y的正半轴上.(1)请直接写出D点的坐标.(2)连接线段OB,OD,OD交BC于E,如甲图,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOE = n ,求∠OFE的度数(用n表示).(3)若长方形ABCD以每秒1个单位的速度向下运动,设运动的时间为t秒,问是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的32?若存在,请求出t的值;若不存在,请说明理由.2016-2017学年第二学期期末考试七年级数学试题参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.C 2.B 3.B 4.C 5.D 6.A 二、填空题(本大题共6小题,每小题3分,共18分) 7. 4 8. 7 9. 15 10 .(1008,1) 11 .52≤<k 12.70°;110° 三、(本大题共5小题,每小题6分,共30分)13解:原式24324=-+-+ …………… …4分 3= …………………………………6分14.解:472+=+⎧⎨-=⎩x y k x y k① + ②得:3(x+y )=2k +7 ………………………………2分∴372+<+k y x ……………………………3分 又∵x 与y 互为相反数 ∴ 0372=+k ………4分∴27-=k …………………………………6分15.解: 3(2)41413x x xx --≥⎧⎪⎨+>-⎪⎩①②解①得:x ≤1,…………………………………………1.5分解②得:x >-4;……………………………………… 3分 解集为:-4<x ≤1;……………………………………5分 不等式组解集在数轴表示如下图:(虚实点、长度单位,画图正确)…………6分16.解:∵∠1 +∠2 =180°,∠DFE +∠2=180° ;∴∠1=∠DFE ; …………………………2分 ∴AB ∥EF , ………………………………3分 ∴∠ADE =∠3 ;……………………………4分 又∵DE ∥BC ,∴∠ADE =∠B , ………… 5分 ∴∠B =∠3 =40°.……………………………6分17. 解:(1)如图每个图各2分 ……………………4分(2) B ″(2,-4) ,C ″(-1,-5) ……………………6分四、(本大题共3小题,每小题8分,共24分)18.证明: (1)∵OA ∥BE ,∴∠AOB =∠4. …………………1分 又∵OB 平分∠AOE ,∴∠AOB =∠2, …………………2分 ∴∠4=∠2.又∵∠4=∠1, …………………3分∴∠2=∠1,∴DE ∥OB , …………………4分①② ① ②A ′B ′C ′A ″B ″C ″(2)∴∠EDF =∠BOF . …………………5分 又∵∠2+∠3=90°,∴∠EDF =∠BOF =90°,…………………7分 ∴DE ⊥CD . …………………8分19.解:(1)∵ 0)42(122=-++++b a b a∴⎩⎨⎧=-+=++042012b a b a ……………2分∴⎩⎨⎧=-=32b a ……………4分(2)∴ A (-2,0), B (3,0),∵C (-1,2)∴S △ABC =22⨯AB =5, ……………5分设M (0,y ) ∴S △COM =25210=⨯-y ……………6分∴25±=y …………………………7分 ∴ M (0,25), M (0,25-), ……………8分20. 解:(1) 250 …………………2分(2)…………………4分(3) 108 …………………………………6分(4) 960 …………………………………8分 五、(本大题共2小题,每小题9分,共18分).21. 解:(1)① DE ∥ BC , (2) DC ∥ FG . ····················· 2分(2) 画图正确,字母标注正确得2分 ······························· 4分 (3)FG ⊥BC . ···················· 5分 证明:∵ DE ∥AB , ∴ ∠1=∠3. ··························· 6分 又∵ ∠1=∠2, ∴ ∠2=∠3, ∴ AD ∥FG . ···················· 7分 ∵ AD ⊥BC 于D , ∴ ∠CAD=90°. ·························· 8分 ∵ AD ∥FG , ∴ ∠FGB =∠CDA=90°,∴ FG ⊥BC ······················ 9分22.解: (1)设商场计划购进A 种设备x 套,B 种设备y 套,由题意得 ⎩⎨⎧=-+-=+31)6.12()25.2(1246.12x y x ……………2分解得:⎩⎨⎧==4030y x答:商场计划购进A 种设备30套,B 种设备40套;……………4分(2)设商场购进A 种设备a 套,则B 种设备(70-a )套, 由题意得 ⎩⎨⎧≥--+-≤-+8.29)70)(6.12()25.2(120)70(6.12a a a a ……………6分解得:2018≤≤a ……………8分 答:有三种购买方案,分别是购买A 种设备18套,购买B 种设备52套;或购买A 种设备19套,购买B 种设备51套; 或购买A 种设备20套,购买B 种设备50套.…………………………………………9分六、(本大题共12分)23.解: (1)(7,8); ……………………………2分∵四边形ABCD 是长方形, ∴AB =DC ,AD =BC ,∵点A (1,8),B (1,6),C (7,6), ∴AB = DC = 2,AD =BC = 6 ∴D 点的坐标为:(7,8);(2)过F 作FG ∥OX ,如图1所示:∵∠BOY 的平分线和∠BEO 的平分线交于点F ,BOY FOY BOF ∠=∠=∠∴21,BEO OEF BEF ∠=∠=∠21, ∵BC ∥OX ,∴∠BEO =∠EOX , ……………………………3分 设∠BEO =2x ,则∠EOX =2x ,则∠FOX =21∠BOY +∠BOE +∠EOX =21∠BOY +n +2x , 又∵21∠BOY =21(90°-n -2x )=45°-21n -x ,∴∠FOX =45°-21n -x +n+2x =45°+21n +x , …………………4分∵BC ∥FG ∥OX ,∴∠EFG =∠BEF =x , ……………………………5分 ∴∠OFG =180°-∠FOX =135°-21n -x , ∴∠OFE =∠EFG +∠OFG =135°-21n ; ……………………6分 (3)存在某一时刻,使△OBD 的面积等于长方形ABCD 面积的32,t =2或 ;t =325………………………………………8分当长方形ABCD 在第一象限时,延长DA 交y 轴于M ,如图2所示, ∴AM ⊥OY ,∵S 矩形ABCD =2×6=12,S △OBD =S △ODM -S △ABD -S 梯形AMOB =12×32,∴21×(8-t )×7-21×12-21(2+8-t )×1=12×32, 解得:t =3. …………………………………10分当长方形ABCD 在第四象限时,延长DA 交y 轴于E ,延长CB 交y 轴于F ,如图3所示,∴AE ⊥OY ,∴BF ⊥OY ,∵S △OBD =S △ODE -S 梯形BFED -S △OBF =12×32, ∴21×(t -8)×7 + 21(1+7)×2-21×1×(t -8+2)=12×32, 解得:t =325. ………………………………………12分八年级数学试题参考答案一、选择题(本大题共6小题,每小题3分,共18分)1.A2. D3.D4. C5.C6.B二、填空题(本大题共6小题,每小题3分,共18分) 7、3≤x ; 8、7; 9、下, 3; 10、34 ;11、2.5 ;12、1或2;三、(本大题5小题,每小题6分,共30分) 13、(1)解:原式=33631631+- …………………………2分 =33 ………………………………3分(2)能选取(1,—2)和(—1,2)两点画线为最佳,其他合理即可…… ………………………………6分 14、(1) (2)(1)CD 即为线段AB 的垂直平分线; (3 (6分)=ab ab a a b a b a 2))((-+÷-+=2)())((b a aa b a b a -•-+ =b a b a -+当32+=a ,32-=b 时,原式=)32(32)32(32--+-++=324=33216. 解:能。
天津市部分区2016~2017学年度第二学期期末试卷七年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、在,,,,,,,,中是无理数的个数有()A.2个B.3个C.4个D.5个【参考答案】B【考查内容】无理数【解析思路】无理数包括三方面的数:①化简之后含的式子;②开方开不尽的方根;③无限不循环小数2、如果a>b,那么下列结论一定正确的是()A. a-5<b-5B. 5-a<5-bC.>D.>【参考答案】B【考查内容】不等式的性质【解析思路】①不等式的两边同时加上或减去同一个数或同一个式子,不等号的方向不变;②不等式的两边同时乘以一个不为0的正数,不等号方向不变;③不等式的两边同时乘或除以一个不为0的负数,不等号的方向改变。
3、下列四个命题中是真命题的是()A.内错角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线相互垂直【参考答案】C【考查内容】命题与定理【解析思路】利用学习过的有关性质、定义及定理进行判断后即可得到正确的结论。
4、如果P(m,1-3m)在第四象限,那么m的取值范围是()A.0<m<B.<<C.m<0D.>【参考答案】D【考查内容】坐标、不等式组【解析思路】根据点P在第四象限内横坐标为正,纵坐标为负,列出不等式组求解即可。
5.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班45名学生身高情况的调查D.对某批灯泡使用寿命的调查【参考答案】C【考查内容】全面调查与抽样调查【解析思路】由普查得带的调查结果比较准确,但所费人力、物力和时间比较多,而抽样调查的到的调查结果比较近似。
6.在扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的区域占总体区域的()A.10%B.20%C.30%D.50%【参考答案】B【考查内容】扇形统计图【解析思路】利用扇形的圆心角是72°,这个扇形所表示的占总体面积的百分比就是圆心角所占的百分比,即可求出答案。
平谷区2016---2017学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121< B .22a b -<- C .33->-b a D .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x xC .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8;③这个班同学一周参加体育锻炼时间的中位数是9;④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB.2nC. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:2218x -=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2016—2017学年七年级第二学期期末数学试卷出题人:刘佳侯继昌侯保军黄排芳一、选择题(本大题10小题,每小题3分,共36分.)1.下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x52.用科学记数法表示0.000043这个数的结果为()A.4.3×10﹣4B.4.3×10﹣5C.4.3×10﹣6D.43×10﹣53.以下各组线段为边不能组成三角形的是()A.4,3,3 B.1,5,6 C.2,5,4 D.5,8,44下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b) B.(x+1)(1+x)C.(x﹣2y)(x+2y) D.(﹣x﹣y)(x+y)5.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°6.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.7.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b28.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或179.星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路10.如图,属于内错角的是()A . ∠1和∠2B . ∠2和∠3C . ∠1和∠4D .∠3和∠411.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是()A . ∠ADB=∠ADCB . ∠B=∠C C .D B=DC D .AB=AC12.如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长为()A . 10cmB . 12cmC . 15cmD .20cm二、填空题 (本大题8小题,每小题3分,共24分.)13.若,23,83==n m 则=+-1323n m14.计算:(x+2y )(x ﹣2y )=15.已知x 2+mx+25是完全平方式,则m= .16.已知三角形的两边长分别为3和6,那么第三边长x 的取值范围是 .17.在一不透明的口袋中有4个为红球,3个篮球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为 .18.如图在中,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于D ,则∠DBC= 度.19.如图,直线a∥b,∠C=90°,则∠α=°.20.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)三、解答下列各题.(共60分)21.(8分)计算下列各题(1)(﹣2x2y)2•(2).22.(8分)先简化、再求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2÷2x,其中x=﹣2,y=.23.(10分)如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求:(1)指针指向4的概率;(2)指针指向数字是奇数的概率;(3)指针指向数字不小于5的概率.24.(10分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD°,交AB 与H,∠AGE=50°,求∠BHF的度数.25.(12分)一根长60厘米的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长1.5厘米.(1)正常情况下,当挂着x千克的物体时,弹簧的L长度是多少?(2)利用(1)的结果完成下表:(3)当弹簧挂上物体后弹簧的长度为78厘米时,弹簧上挂的物体重多少千克?26.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.2016-2017学年七年级下学期期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.(3分)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:A、原式=﹣8x6,故A错误;B、原式=9a2﹣6ab+b2,故B错误;C、原式=x5,故C正确;D、原式不能合并,故D错误,故选:C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.2.用科学记数法表示0.000043这个数的结果为()A.4.3×10﹣4B.4.3×10﹣5C.4.3×10﹣6D.43×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000043=4.3×10﹣5,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.以下各组线段为边不能组成三角形的是()A.4,3,3 B.1,5,6 C.2,5,4 D.5,8,4【考点】三角形三边关系.【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、∵3+3>4,∴能组成三角形,故本选项错误;B、∵1+5=6,∴不能组成三角形,故本选项正确;C、∵2+4>5,∴3,4,5能组成三角形,故本选项错误;D、∵5+5>8,∴能组成三角形,故本选项错误.故选B.【点评】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.4.(3分)下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b)B.(x+1)(1+x)C.(x﹣2y)(x+2y)D.(﹣x﹣y)(x+y)考点:平方差公式.分析:平方差公式是两个数的和乘以这两个数的差,即(a+b)(a﹣b).解答:A、这两个数不同,一个b,另一个是3b,故A错误;B、只有两个数的和,没有两个数的差,故B错误;C、x与2y的和乘以x与2y的差,符合平方差公式,故C正确;D、(﹣x﹣y)(x+y)=﹣(x+y)(x+y),不符合平方差公式,故D错误;故选:C.点评:本题考查了平方差公式,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.(3分)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°考点:平行线的判定与性质.分析:首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.解答:解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.点评:此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b2考点:完全平方公式.分析:根据两数的符号相同,所以利用完全平方和公式计算即可.解答:解:(﹣a﹣b)2=a2+2ab+b2.故选C.点评:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.8.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.9.(3分)星期天,小王去朋友家借书,下图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路考点:函数的图象.分析:根据图象上特殊点的坐标和实际意义即可求出答案.解答:解:小王去时的速度为:2÷20=0.1千米/分,回家的速度为:2÷(40﹣30)=0.2千米/分,所以A、C均错.小王在朋友家呆的时间为:30﹣20=10,所以B对.故选B.点评:应根据所给条件进行计算得到最佳答案,注意排除法的运用.10.(3分)如图,属于内错角的是()A.∠1和∠2 B.∠2和∠3 C.∠1和∠4 D.∠3和∠4考点:同位角、内错角、同旁内角.分析:两条直线被第三条直线所截,不在同一个顶点的两个角中,如果在这两条直线之间,并且在第三条直线的两旁,这两个角就叫内错角,根据以上定义判断即可.解答:解:A、∠1和∠2不是内错角,故本选项错误;B、∠2和∠3不是内错角,故本选项错误;C、∠1和∠4不是内错角,故本选项错误;D、∠3和∠4是内错角,故本选项正确;故选D.点评:本题考查了对内错角、同位角、同旁内角的定义的应用,注意:两条直线被第三条直线所截,不在同一个顶点的两个角中,如果在这两条直线之间,并且在第三条直线的两旁,这两个角就叫内错角.11.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.D B=DC D.AB=AC考点:全等三角形的判定.分析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.解答:解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD (ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选C.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.12.(3分)如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为()A.10cm B.12cm C.15cm D.20cm考点:翻折变换(折叠问题).专题:探究型.分析:根据图形反折变换的性质得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出结论.解答:解:∵△ADE由△BDE反折而成,AC=5cm,BC=10cm,∴AD=BD,∴△ACD的周长=AC+CD+AD=AC+BC=15cm.故选C.点评:本题考查的是翻折变换,熟知图形反折不变性的性质是解答此题的关键.二、填空题13.结果:2414.计算:(x+2y)(x﹣2y)=x2﹣4y2.【考点】平方差公式.【分析】符合平方差公式结构,直接利用平方差公式计算即可.【解答】解:(x+2y)(x﹣2y)=x2﹣4y2.故答案为:x2﹣4y2.【点评】本题重点考查了用平方差公式进行整式的乘法运算.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.15.已知x2+mx+25是完全平方式,则m=±10.【考点】完全平方式.【分析】根据a2±2ab+b2=(a±b)2,x2+mx+25=x2+mx+52,可得m=±2×5=±10,据此解答即可.【解答】解:∵x2+mx+25=x2+mx+52是完全平方式,∴m=±2×5=±10.故答案为:±10.【点评】此题主要考查了完全平方式,要熟练掌握,解答此题的关键是要明确计算口诀:首末两项算平方,首末项乘积的2倍中间放,符号随中央.(就是把两项的乘方分别算出来,再算出两项的乘积,再乘以2,然后把这个数放在两数的乘方的中间,这个数以前一个数间的符号随原式中间的符号,完全平方和公式就用+,完全平方差公式就用﹣,后边的符号都用+);解答此题还要注意m有两个值.16.已知三角形的两边长分别为3和6,那么第三边长x的取值范围是3<x<9.【考点】三角形三边关系.【分析】根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵此三角形的两边长分别为3和6,∴第三边长的取值范围是:6﹣3=3<第三边<6+3=9.即:3<x<9,故答案为:3<x<9.【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.17.在一不透明的口袋中有4个为红球,3个篮球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为4+3=7,而红球有4个,则从中任摸一球,恰为红球的概率为.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.【点评】本题主要考查等腰三角形的性质,线段垂直平分线的性质,角的计算,关键在于根据相关的性质定理推出∠ABC和∠ABD的度数.19.如图,直线a∥b,∠C=90°,则∠α=25°.【考点】平行线的性质.【分析】过点C作CE∥a,运用平行线的性质,证明∠ACE=65°,∠α=∠BCE,再运用垂直求∠α的度数.【解答】解:过点C作CE∥a,∵a∥b,∴CE∥a∥b,∴∠ACE=65°,∠α=∠BCE.∵∠C=90°,∴∠α=∠BCE=90°﹣∠ACE=25°.故答案为:25.【点评】本题考查的是平行线的性质以及垂直的定义,解题的关键是求得∠BCE的度数.20.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件AC=DF.(只要填一个)【考点】全等三角形的判定.【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS 来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.三、解答下列各题.21.计算下列各题(1)(﹣2x2y)2•(2).【考点】整式的混合运算;零指数幂;负整数指数幂.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算即可得到结果;(2)原式第一项利用乘方的意义计算,第二项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:(1)原式=4x4y2•xy2+x3y2=2x5y4+x3y2;(2)原式=﹣9﹣8+1=﹣16.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.先简化、再求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2÷2x,其中x=﹣2,y=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2÷2x=x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣=﹣2x2+2xy+5y2﹣,当x=﹣2,y=时,原式=﹣2×(﹣2)2+2×(﹣2)×+5×()2﹣=﹣8﹣2+ +=﹣8.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.23.如图所示,转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,求:(1)指针指向4的概率;(2)指针指向数字是奇数的概率;(3)指针指向数字不小于5的概率.【考点】概率公式.【分析】(1)用数字4的个数除以总数6即可;(2)用奇数的个数除以总数6即可;(3)用不小于5的数的个数除以总数6即可.【解答】解:(1)转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6,有1个扇形上是4,故若自由转动转盘,当它停止转动时,指针指向4的概率为;(2)转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6,有3个扇形上是奇数,故若自由转动转盘,当它停止转动时,指针指向数字是奇数的概率为=;(3)转盘被等分成六个扇形,并在上面一次写上数字1、2、3、4、5、6,指针指向数字不小于5的扇形有5、6,故若自由转动转盘,当它停止转动时,指针指向数字不小于5的概率为.【点评】本题主要考查了概率的求法,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD°,交AB与H,∠AGE=50°,求∠BHF的度数.【考点】平行线的性质.【分析】由AB∥CD得到∠AGE=∠CFG,再由FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又∵FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.【点评】本题考查的是平行线的性质,此题涉及到角平分线的性质等知识,在解答此类问题时要灵活应用.25.一根长60厘米的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长1.5厘米.(1)正常情况下,当挂着x千克的物体时,弹簧的L长度是多少?(2)利用(1)的结果完成下表:(3)当弹簧挂上物体后弹簧的长度为78厘米时,弹簧上挂的物体重多少千克?【考点】一次函数的应用.【分析】(1)根据题意可得L=60+1.5x,(2)把x=1,2,3,4代入函数式可求L的值.(3)把L=78代入函数式可求挂的物体重x的值.【解答】解:(1)L=60+1.5x;(2)(3)把L=78代入(1)得,78=60+1.5x,解得x=12.答:所挂物体重12千克.【点评】本题考查一次函数解决实际问题,根据题意列出函数式代入自变量可求函数值,代入函数值可求自变量.26.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.【解答】解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.。
2016-2017学年七年级(下)期末数学试卷一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4D.x5÷x=x53.下列命题中,是真命题的为()A.如果a>b,那么|a|>|b|B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余4.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.15.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)6.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<7.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE8.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多x,则正方形的面积与长方形的面积的差为()A.x2B. C. D.x2二、填空题9.人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为米.10.分解因式:x2﹣4x+4=.11.命题“锐角与钝角互为补角”的逆命题是.12.一个n边形的内角和是540°,那么n=.13.如果等腰三角形的两边长分别为4和7,则三角形的周长为.14.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.15.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.16.七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为元.三、解答题(本题共9题,共60分)17.计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)x3•x5﹣(2x4)2+x10÷x2.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.19.分解因式:(1)2a2﹣50(2)x4﹣8x2y2+16y4.20.解不等式组,并写出它的整数解.21.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD()∴∠AFE=∠ADC()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)22.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?23.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.24.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?25.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【考点】作图—基本作图;平行线的判定.【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.2.下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4D.x5÷x=x5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据同底数幂的乘法法则、幂的乘方与积的乘方法则对各选项进行逐一分析即可.【解答】解:A、x3•x3=x6≠2x6,故本选项错误;B、(x3)2=x6,故本选项正确;C、(﹣2x2)2=4x4≠﹣4x4,故本选项错误;D、x5÷x=x4≠x5,故本选项错误.故选B.【点评】本题考查的是同底数幂的除法,熟知同底数幂的除法法则是解答此题的关键.3.下列命题中,是真命题的为()A.如果a>b,那么|a|>|b|B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余【考点】命题与定理.【分析】利用反例对A、B进行判断;根据平方根的定义对C进行判断;根据三角形内角和和互余的定义对D进行判断.【解答】解:A、当a=0,b=﹣1,则|a|<|b|,所以A选项错误;B、90度的补角为90度,所以B选项错误;C、平方后等于4的数是±2,所以C选项错误;D、直角三角形的两个锐角互余,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.1【考点】合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.【解答】解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.【点评】本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.5.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.【点评】本题考查了因式分解的意义,解答本题的关键是掌握因式分解后右边是整式积的形式.6.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【考点】实数与数轴.【分析】先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断.【解答】解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.【点评】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.7.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE【考点】平移的性质.【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=70°,∠B=75°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,AB∥DE,∴A、B、D正确,C错误,故选C.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.8.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多x,则正方形的面积与长方形的面积的差为()A.x2B. C. D.x2【考点】整式的混合运算.【分析】设长方形的宽为a,则长为(x+a),则正方形的边长为(x+a+a)=(x+2a);求出二者面积表达式相减即可.【解答】解:设长方形的宽为acm,则长为(x+a),则正方形的边长为(x+a+a)=(x+2a);正方形的面积为[(x+2a)]2,长方形的面积为a(x+a),二者面积之差为[(x+2a)]2﹣a(x+a)=x2.故选:D.【点评】本题考查了整式的混合运算,设出长方形的宽,据此表示出正方形和长方形的面积表达式是解题的关键.二、填空题9.人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为7.7×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0077=7.7×10﹣6;故答案为:7.7×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.分解因式:x2﹣4x+4=(x﹣2)2.【考点】因式分解-运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.11.命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.【考点】命题与定理.【分析】交换原命题的题设与结论部分即可得到原命题的逆命题.【解答】解:命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.故答案为如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.一个n边形的内角和是540°,那么n=5.【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.13.如果等腰三角形的两边长分别为4和7,则三角形的周长为15或18.【考点】等腰三角形的性质;三角形三边关系.【分析】本题没有明确说明已知的边长哪个是腰长,则有两种情况:①腰长为4;②腰长为7.再根据三角形的性质:三角形的任意两边的和>第三边,任意两边之差<第三边判断是否满足,再将满足的代入周长公式即可得出周长的值.【解答】解:①腰长为4时,符合三角形三边关系,则其周长=4+4+7=15;②腰长为7时,符合三角形三边关系,则其周长=7+7+4=18.所以三角形的周长为15或18.故填15或18.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【考点】不等式的解集.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.15.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.【考点】二元一次方程组的解;因式分解-运用公式法.【专题】计算题.【分析】根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.【点评】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.16.七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为9元.【考点】二元一次方程组的应用.【分析】首先设5角的硬币x枚,1元硬币y枚,根据用尺量出它们的总厚度为22.6mm可得方程1.7x+1.8y=22.6,又用天平称出总质量为78.5g可得方程6x+6.1y=78.5,两立两个方程,解方程组即可.【解答】解:设5角的硬币x枚,1元硬币y枚,由题意得:,解得:,8×0.5+5×1=9(元),故答案为:9.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.三、解答题(本题共9题,共60分)17.计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)x3•x5﹣(2x4)2+x10÷x2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算乘方、0指数幂与负指数幂,再算加减;(2)先算同底数的乘除与积的乘方,再算加减.【解答】解:(1)原式=﹣1+1+4=4;(2)原式=x8﹣4x8+x8=﹣2x8.【点评】此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.分解因式:(1)2a2﹣50(2)x4﹣8x2y2+16y4.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式2,进而利用平方差公式分解因式得出即可;(2)直接利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可.【解答】解:(1)原式=2(a2﹣25)=2(a+5)(a﹣5);(2)原式=(x2﹣4y2)2=[(x+2y)(x﹣2y)]2=(x+2y)2(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.20.解不等式组,并写出它的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别解不等式,然后找出不等式的解集,求出整数解.【解答】解:,解不等式①得:x<3,解不等式②得:x≥1,则不等式的解集为:1≤x<3,则整数解为:1,2.【点评】本题考查了解一元一次不等式组,注意要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AFE=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)【考点】平行线的判定与性质;垂线.【专题】推理填空题.【分析】首先证明∠2=∠DCA,然后根据∠1=∠2,可得∠DCA=∠1,再根据同位角相等,两直线平行可判定出EF∥DC,然后根据∠AFE=∠ADC,∠AEF=90°,得出∠ADC=90°.【解答】证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD (两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)故答案为同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;两直线平行,同位角相等;垂直定义.【点评】此题主要考查了平行线的判定与性质定理,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【考点】因式分解的应用.【专题】新定义.【分析】(1)根据“和谐数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算.【解答】解:(1)∵28=82﹣62,∴28是“和谐数”∵2016不能表示成两个连续偶数的平方差∴2016不是“和谐数”;(2)(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数.【点评】此题考查了因式分解的应用,它是一道新定义题目,主要是平方差公式的熟练运用.23.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.【考点】三角形内角和定理;平行线的性质;三角形的外角性质.【分析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【解答】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.【点评】此题考查三角形的内角和定理,平行线的性质,外角的性质,解题的关键是利用角的和与差与等量代换解决问题.24.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设彩色地砖的单价为x元/块,单色地砖的单价为y元/块,根据“购买彩色地砖40块和单色地砖60块则共需花费5600元”、“购买彩色地砖和单色地砖各50块,则需花费6000元”列出方程组;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据“购买地砖的费用不超过3400元”列出不等式并解答.【解答】解:(1)设彩色地砖的单价为x元/块,单色地砖的单价为y元/块,由题意,得,解得:,答:彩色地砖的单价为80元/块,单色地砖的单价为40元/块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3400,解得:a≤25.∴彩色地砖最多能采购25块.【点评】本题考查了二元一次不等式和一元二次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为∠1+∠2=90°+α;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质分三种情况讨论即可.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)如图,分三种情况:连接ED交BA的延长线于P点如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.【点评】本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练利用三角形外角的性质是解决问题的关键.。
2016-2017学年七年级(下)期末数学试卷一、选择题1.下列运算中,正确的是()A.m4÷m=m4B.(m5)2=m10C.m6÷m2=m3D.m3+m3=m62.计算(2a2b3)4的结果是()A.8a6b7B.8a8b12C.16a8b12D.16a6b73.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c﹣a<c﹣b C.a﹣c<b﹣c D.4.下列命题中的真命题是()A.相等的角是对顶角B.三角形的一个外角等于两个内角之和C.如果a3=b3,那么a=bD.内错角相等5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A.60°B.50°C.40°D.30°6.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定7.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )A .B .C .D .8.在四边形ABCD 中,∠A=∠B=∠C ,点E 在边AB 上,∠AED=60°,则一定有( ) A .∠ADE=20° B .∠ADE=30°C .∠ADE=∠ADCD .∠ADE=∠ADC二、填空题9.肥皂泡的泡壁厚度大约为0.0007mm ,用科学记数法表示0.0007= .10.多项式x 2﹣9因式分解的结果是 .11.等腰三角形的两边长分别为5和10,则它的周长为 .12.若a m =8,a n =,则a m ﹣n = .13.若x ﹣y=2,xy=3,则x 2y ﹣xy 2= .14.如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n= . 15.“同位角相等”的逆命题是 .16.已知关于x ,y 的二元一次方程组的解互为相反数,则k 的值是 . 17.小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A 、B 两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是 .18.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”,如果一个“梦想三角形”有一个角为132°,那么这个“梦想三角形”的最小内角的度数为.三.解答题(本大题共10题,满分84分)19.计算或化简:(1);(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)20.(1)因式分解:ax2﹣4axy+4ay2;(2)解方程组:.21.(1)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=﹣1,y=2(2)解不等式组:,并把它的解集在数轴上表示出来.22.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.23.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?24.如图,已知∠DAC是△ABC的一个外角,请在下列三个关系:①∠B=∠C;②AE平分∠DAC;③AE∥BC中,选出两个恰当的关系作为条件,另一个作为结论,组成一个命题.(1)请写出所有的真命题(用序号表示);(2)请选择其中的一个真命题加以证明.25.在如图所示的方格纸中,每个小正方形方格的边长都为1,△ABC的三个顶点在格点上.(1)画出△ABC的AC边上的高,垂足为D;(2)①画出将△ABC先向左平移2格,再向下平移2格得到的△A1B1C1;②平移后,求线段AC所扫过的部分所组成的封闭图形的面积.26.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若再次购买A、B两种花草共12棵(A、B两种花草价格不变),且A种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.27.对于三个数a,b,c,M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,如:M,min{﹣1,2,3}=﹣1;M,min{﹣1,2,a}=;解决下列问题:(1)填空:min{﹣22,2﹣2,20130}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)①若M{2,x+1,2x}=min{2,x+1,2x},那么x=;②根据①,你发现结论“若M{a,b,c}=min{a,b,c},则”(填a,b,c的大小关系);③运用②解决问题:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},求x+y的值.28.已知△ABC中,∠ABC=∠ACB,D为射线CB上一点(不与C、B重合),点E为射线CA 上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=40°,∠DAE=30°,则α=,β=.②写出α与β的数量关系,并说明理由;(2)如图(2),当D点在BC边上,E点在CA的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3)如图(3),D在CB的延长线上,根据已知补全图形,并直接写出α与β的关系式.2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列运算中,正确的是()A.m4÷m=m4B.(m5)2=m10C.m6÷m2=m3D.m3+m3=m6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算以及幂的乘方、合并同类项法则分别判断得出答案.【解答】解:A、m4÷m=m3,故此选项错误;B、(m5)2=m10,正确;C、m6÷m2=m4,故此选项错误;D、m3+m3=2m3,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的除法运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.2.计算(2a2b3)4的结果是()A.8a6b7B.8a8b12C.16a8b12D.16a6b7【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简求出即可.【解答】解:(2a2b3)4=16a8b12.故选:C.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c﹣a<c﹣b C.a﹣c<b﹣c D.【考点】不等式的性质.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a<b,c是有理数,∴当c=0时,ac2<bc2不成立,故本选项错误;B、∵a<b,∴﹣a>﹣b,∴c﹣a>c﹣b,故本选项错误;C、∵a<b,∴a﹣c<b﹣c,故本选项错误;D、∵a<b,c是有理数,∴当c=0时,不等式<不成立,故本选项错误.故选C.【点评】本题考查的是不等式的性质,熟知不等式的基本性质是解答此题的关键.4.下列命题中的真命题是()A.相等的角是对顶角B.三角形的一个外角等于两个内角之和C.如果a3=b3,那么a=bD.内错角相等【考点】命题与定理.【分析】根据对顶角的定义对A进行判断;根据三角形外角性质对B进行判断;根据立方根的定义对C进行判断;根据平行线的性质对D进行判断.【解答】解:A、相等的角不一定是对顶角,所以A选项错误;B、三角形的一个外角等于与之不相邻的两个内角之和,所以B选项错误;C、如果a3=b3,那么a=b,所以C选项正确;D、两直线平行,内错角相等,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A.60°B.50°C.40°D.30°【考点】平行线的性质;余角和补角.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:∵∠1=30°,∴∠3=180°﹣90°﹣30°=60°,∵直尺两边互相平行,∴∠2=∠3=60°.故选:A.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.6.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定【考点】整式的混合运算.【专题】应用题;压轴题.【分析】根据正方形的性质,可以把两块阴影部分合并后计算面积,然后,比较S1和S2的大小.【解答】解:设底面的正方形的边长为a,正方形卡片A,B,C的边长为b,由图1,得S1=(a﹣b)(a﹣b)=(a﹣b)2,由图2,得S2=(a﹣b)(a﹣b)=(a﹣b)2,∴S1=S2.故选C【点评】本题主要考查了正方形四条边相等的性质,分别得出S1和S2的面积是解题关键.7.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A. B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】两个定量为:加工天数,蔬菜吨数.等量关系为:精加工天数+粗加工天数=15;6×精加工天数+16×粗加工天数=140.【解答】解:设安排x天精加工,y天粗加工,列方程组:.故选D.【点评】要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.根据定量来找等量关系是常用的方法.8.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC【考点】多边形内角与外角;三角形内角和定理.【分析】利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得到∠ADE=∠EDC,因为∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,所以∠ADE=∠ADC,即可解答.【解答】解:如图,在△AED中,∠AED=60°,∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣∠EDC,∵∠A=∠B=∠C,∴120°﹣∠ADE=120°﹣∠EDC,∴∠ADE=∠EDC,∵∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,∴∠ADE=∠ADC,故选:D.【点评】本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C.二、填空题9.肥皂泡的泡壁厚度大约为0.0007mm,用科学记数法表示0.0007=7×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故答案为:7×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.多项式x2﹣9因式分解的结果是(x+3)(x﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:原式=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.11.等腰三角形的两边长分别为5和10,则它的周长为25.【考点】等腰三角形的性质;三角形三边关系.【分析】根据腰为5或10,分类求解,注意根据三角形的三边关系进行判断.【解答】解:当等腰三角形的腰为5时,三边为5,5,10,5+5=10,三边关系不成立,当等腰三角形的腰为10时,三边为5,10,10,三边关系成立,周长为5+10+10=25.故答案为:25.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.12.若a m=8,a n=,则a m﹣n=16.【考点】同底数幂的除法.【分析】直接利用整式除法运算法则求出答案.【解答】解:∵a m=8,a n=,∴a m﹣n=a m÷a n=8.故答案为:16.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.13.若x﹣y=2,xy=3,则x2y﹣xy2=6.【考点】因式分解的应用;代数式求值.【分析】首先运用提公因式法进行因式分解,再进一步整体代入.【解答】解:原式=xy(x﹣y),当x﹣y=2,xy=3时,则原式=3×2=6.故答案为:6.【点评】此题考查了因式分解再代数式求解的应用,要渗透整体代入的思想.14.如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=6.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,内角和等于外角和的2倍则内角和是720°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180°=720°,解得:n=6.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.15.“同位角相等”的逆命题是相等的角是同位角.【考点】命题与定理.【分析】“同位角相等”的题设为两个角为同位角,结论为这两个角相等,然后交换题设与结论即可得到原命题的逆命题.【解答】解:“同位角相等”的逆命题为:相等的两个角为同位角.故答案为:相等的角是同位角.【点评】本题考查了逆命题,关键找出题设和结论部分,然后交换题设和结论即为逆命题.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k 的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.17.小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B 两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是BABBA.【考点】推理与论证.【专题】规律型.【分析】根据得分可得小聪和小玲都是只有一个错,小红有2个错误,首先从三人答案相同的入手分析,然后从小聪和小玲不同的题目入手即可分析.【解答】解:根据得分可得小聪和小玲都是只有一个错,小红有2个错误.第5题,三人选项相同,若不是选A,则小聪和小玲的其它题目的答案一定相同,与已知矛盾,则第5题的答案是A;第3个第4题小聪和小玲都不同,则一定在这两题上其中一人有错误,则第1,2正确,则1的答案是:B,2的答案是:A;则小红的错题是1和2,则3和4正确,则3的答案是:B,4的答案是:B.总之,正确答案(按1~5题的顺序排列)是BABBA.故答案是:BABBA.【点评】本题考查了命题的推理与论证,正确确定问题的入手点,理解题目中每个题目只有A和B 两个答案是关键.18.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”,如果一个“梦想三角形”有一个角为132°,那么这个“梦想三角形”的最小内角的度数为4°.【考点】三角形内角和定理.【专题】新定义.【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为132°,可得另两个角的和为48°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣132°﹣132÷3°=4°,48°÷(1+3)=12°,由此比较得出答案即可.【解答】解:当132°的角是另一个内角的3倍时,最小角为180°﹣132°﹣132÷3°=4°,当180°﹣132°=48°的角是另一个内角的3倍时,最小角为48°÷(1+3)=12°,因此,这个“梦想三角形”的最小内角的度数为4°.故答案为:4°.【点评】此题考查三角形的内角和定理,掌握三角形的内角和180°是解决问题的关键.三.解答题(本大题共10题,满分84分)19.计算或化简:(1);(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)【考点】整式的混合运算;零指数幂;负整数指数幂.【专题】计算题.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,最后一项表示3个﹣2的乘积,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并即可得到结果.【解答】解:(1)原式=1+2﹣8=﹣5;(2)原式=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2.【点评】此题考查了整式的混合运算,零指数、负指数幂,熟练掌握运算法则是解本题的关键.20.(1)因式分解:ax2﹣4axy+4ay2;(2)解方程组:.【考点】提公因式法与公式法的综合运用;解二元一次方程组.【专题】计算题;因式分解.【分析】(1)原式提取a,再利用完全平方公式分解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=a(x2﹣4xy+4y2)=a(x﹣2y)2;(2),①×3,得3x+9y=﹣3③,③﹣②,得11y=﹣11,解得:y=﹣1,将y=﹣1代入①,得x=2,则方程组的解为.【点评】此题考查了提公因式法与公式法的综合运用,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.(1)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=﹣1,y=2(2)解不等式组:,并把它的解集在数轴上表示出来.【考点】整式的混合运算—化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=x2﹣y2﹣x2﹣xy+2xy=﹣y2+xy,当x=﹣1,y=2时,原式=﹣4﹣2=﹣6;(2)∵解不等式①,得x≤2,解不等式②,得x>﹣1,∴原不等式组的解集为﹣1<x≤2,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,整式的化简求值的应用,解(1)的关键是能正确化简,解(2)的关键是能求出不等式组的解集.22.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.【解答】解:∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.23.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【考点】二元一次方程组的应用;一元一次方程的应用.【专题】工程问题.【分析】本题需先根据题意设出未知数,再根据题目中的等量关系列出方程组,求出结果即可.【解答】解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:,解得:,答:A饮料生产了30瓶,B饮料生产了70瓶.【点评】本题主要考查了二元一次方程组的应用,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.24.如图,已知∠DAC是△ABC的一个外角,请在下列三个关系:①∠B=∠C;②AE平分∠DAC;③AE∥BC中,选出两个恰当的关系作为条件,另一个作为结论,组成一个命题.(1)请写出所有的真命题(用序号表示);(2)请选择其中的一个真命题加以证明.【考点】等腰三角形的判定与性质;命题与定理.【分析】(1)根据命题与定理的定义即可得到结论;(2)根据平行线的性质得到∠DAE=∠B,∠EAC=∠C,根据角平分线的定义得到∠DAE=∠EAC,等量代换即可得到结论.【解答】解:(1)①②⇒③或①③⇒②或②③⇒①;(2)选②③⇒①,证明如下:∵AE∥BC,∴∠DAE=∠B,∠EAC=∠C,∵AE平分∠DAC,∴∠DAE=∠EAC,∴∠B=∠C.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,命题与定理,熟练掌握等腰三角形的判定和性质,熟练掌握等腰三角形的判定和性质是解题的关键.25.在如图所示的方格纸中,每个小正方形方格的边长都为1,△ABC的三个顶点在格点上.(1)画出△ABC的AC边上的高,垂足为D;(2)①画出将△ABC先向左平移2格,再向下平移2格得到的△A1B1C1;②平移后,求线段AC所扫过的部分所组成的封闭图形的面积.【考点】作图-平移变换.【专题】作图题.【分析】(1)如图,过B点作BD⊥AC于D即可;(2)①根据网格特点和平移的性质画出点A、B、C的对应点A1、B1、C1即可得到△A1B1C1为所作;②线段AC所扫过的部分所组成的封闭图形为平行四边形,然后S=2S△AA1C进行计平行四边形A1C1CA算.【解答】解:(1)如图,BD为所作;(2)①如图,△A1B1C1为所作;②线段AC所扫过的部分所组成的封闭图形的面积=S=2S△AA1C=2××2×2=4.平行四边形A1C1CA【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若再次购买A、B两种花草共12棵(A、B两种花草价格不变),且A种花草的数量不少于B 种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据第一次分别购进A、B 两种花草30棵和15棵,共花费940元;第二次分别购进A、B两种花草12棵和5棵,两次共花费675元;列出方程组,即可解答.(2)设A种花草的数量为m株,则B种花草的数量为(12﹣m)株,根据A种花草的数量不少于B种花草的数量的4倍,得出m的范围,设总费用为W元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论.【解答】解:(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据题意得:,解得.∴A种花草每棵的价格是20元,B种花草每棵的价格是5元;(2)设A种花草的数量为m株,则B种花草的数量为(12﹣m)株,∵A种花草的数量不少于B种花草的数量的4倍,∴m≥4(12﹣m),解得:m≥9.6,∴9.6≤m≤12,设购买树苗总费用为W=20m+5(12﹣m)=15m+60,当m=10时,最省费用为:15×10+60=210(元),答:购进A种花草的数量为10株、B种2株,费用最省;最省费用是210元.【点评】本题考查了列二元一次方程组,一元一次不等式解实际问题的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种花草的费用之和建立函数关系式是关键.27.对于三个数a,b,c,M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,如:M,min{﹣1,2,3}=﹣1;M,min{﹣1,2,a}=;解决下列问题:(1)填空:min{﹣22,2﹣2,20130}=﹣4;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)①若M{2,x+1,2x}=min{2,x+1,2x},那么x=1;②根据①,你发现结论“若M{a,b,c}=min{a,b,c},则a=b=c”(填a,b,c的大小关系);③运用②解决问题:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},求x+y的值.【考点】一元一次不等式组的应用.【专题】新定义.【分析】(1)先求出﹣22,2﹣2,20130这些数的值,再根据运算规则即可得出答案;(2)先根据运算规则列出不等式组,再进行求解即可得出答案;(3)根据题中规定的M{a、b、c}表示这三个数的平均数,min{a、b、c}表示a、b、c这三个数中的最小数,列出方程组即可求解.【解答】解:(1)∵﹣22,=﹣4,2﹣2=,20130=1,∴min{﹣22,2﹣2,20130}=﹣4;故答案为:﹣4;(2)由题意得:,解得:0≤x≤1,则x的取值范围是0≤x≤1;(3)①M{2,x+1,2x}==x+1=min{2,x+1,2x},∴,∴,∴x=1.②若M{a,b,c}=min{a,b,c},则a=b=c;③根据②得:2x+y+2=x+2y=2x﹣y,解得:x=﹣3,y=﹣1,则x+y=﹣4.故答案为:1,a=b=c.【点评】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,根据题意结合方程和不等式去求解,考查综合应用能力.28.已知△ABC中,∠ABC=∠ACB,D为射线CB上一点(不与C、B重合),点E为射线CA 上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=40°,∠DAE=30°,则α=10°,β=5°.②写出α与β的数量关系,并说明理由;(2)如图(2),当D点在BC边上,E点在CA的延长线上时,其它条件不变,写出α与β的数量关系,并说明理由.(3)如图(3),D在CB的延长线上,根据已知补全图形,并直接写出α与β的关系式.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)①根据等腰三角形的性质,利用三角形内角和定理和三角形外角的性质,利用等量代换即可求解;②根据等腰三角形的性质,利用三角形内角和定理和三角形外角的性质,利用等量代换即可得到结论;(2)设∠BAC=x°,∠DAE=y°,则∠CAD=180°﹣y°,根据三角形的内角和和外角的性质得到α=x°﹣(180°﹣y°)=x°﹣180°+y°,由三角形的内角和得到,通过整理化简结论得到结论.(3)方法同(2).【解答】解:(1)①α=10°,β=5°;故答案为:10°,5°;②α=2β,设∠BAC=x°,∠DAE=y°,则α=x°﹣y°∵∠ABC=∠ACB∴∵∠ADE=∠AED∴∴∴α=2β;(2),设∠BAC=x°,∠DAE=y°,则∠CAD=180°﹣y°∴α=x°﹣(180°﹣y°)=x°﹣180°+y°∵∠ABC=∠ACB∴∵∠ADE=∠AED∴∴∴;(3)如图,,设∠BAC=x°,∠DAE=y°,则∠CAD=180°﹣y°∴α=180°﹣y°﹣x°=180°﹣y°﹣x°,∵∠ABC=∠ACB∴∵∠ADE=∠AED∴,∴∴∴.故答案为:.【点评】本题考查了三角形的内角和与三角形外角的性质,关键是结合图形灵活利用这两个性质定理列出角的关系进行推理.。
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
2016——2017学年度第二学期
七年级数学科期末考试卷
(考试时间:100分钟满分:120分)
一、选择题:(每小题3分,共42分)
下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把认
为正确的答案前面的字母编号写在相应的题号下。
1.下列长度的3条线段,能首尾依次相接组成三角形的是
A.1,3,5 B.3,4,6 C.5,6,11 D.8,5,2
2.已知方程3x+a=2的解是5,则a的值是
A.—13 B.—17 C.13 D.17
3.下面有4个汽车标志图案,其中是轴对称图形的为
①②③④
A.①②③
B.①②④
C.①③④
D.②③④
4.下列四种正多边形中,用同一种图形不能铺满平面的是
A.正三角形
B.正方形
C.正五边形
D.正六边形
5.等腰三角形的腰长是4cm,则它的底边长不可能是
A.1 cm
B.3 cm
C.6 cm
D.9 cm
6.△ABC中,∠C=80°,∠A-∠B=20°,则∠A的度数是
A.60°
B.40°
C.30°
D.20°
7. 一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于
M、N,那么∠CME+∠BNF是
A.135° B.180° C.150° D.不能确定
8. 已知x y
>,则-3x+5( )-3y+5,那么括号里应填入
A.= B.> C.< D.不能确定
9.一个十边形的每个内角都相等,则每个内角的度数为
A.18° B.36° C.90° D.144°
10.如图,∠A=32°,∠B=45°,∠C=38°,则∠DFE等于
A.120° B.110° C.115°D.105°
11. 某商店有2个进价不同的计算器都卖了80元,其中一个
盈利60%,另一个亏本20%,在这笔买卖中,这家商店
A.赚了8元 B.赚了10元 C.不赚不赔 D.赔了10
12.不等式2(2)1
x
x-≤-的非负整数解的个数为
A.1个 B.2个 C.3个 D.4个
13.方程组
⎩
⎨
⎧
=
+
+
=
+
3
2
,
1
2
y
x
m
y
x
中,若未知数x、y满足x+y>0,则m的取值范围是
A.m≥-4 B.m>-4 C.m≤-4 D.m<-4
14.如图,将正方形ABCD的一角折叠,折痕为AE,∠B′AD比∠B′AE大48°,
设∠B′AE和∠B′AD的度数分别为x、y,那么x、y所适合的一个方程组是
A.
48
90
y x
y x
-=
⎧
⎨
+=
⎩
B.
48
2
y x
y x
-=
⎧
⎨
=
⎩
C.
48
290
y x
y x
-=
⎧
⎨
+=
⎩
D.
48
290
x y
y x
-=
⎧
⎨
+=
⎩
二、填空题:(每小题4分,共16分)
15.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数为,
则电子表的实际时刻是。
16.如果一个多边形的内角和是其外角和的5倍,则这个多边形是边形
17.如图,平面上两个正方形与正五边形都有一条公共边,则∠α=____度.
18.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,
若∆PMN的周长为8厘米,则CD长为厘米。
学
校
:
班
别
:
姓
名
:
座
号
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
装
…
…
…
…
…
…
订
…
…
…
…
…
…
线
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
得分
E
第14题图
A
C
D
B
E
F
第10题图
第17题图
α
三、解答题:(共62分)
19.(每小题5分,共10分) 解下列方程: (1)5(5)24x x -+=- (2)16
1
242=--+y y
20.(8分)解这个不等式组,并将解集在数轴上表示出来:⎪⎩⎪
⎨⎧≥+-+<-②
041
5
2①322x x x
x
21.(12分)如图,在正方形网格中,△ABC
顶点都在格点上,按要求解答下列问题: (1)将△ABC 向右平移5个单位长度,画出平移后 的△A 1B 1C 1
;
(2)画出△ABC 关于直线EF 对称的△A 2B 2C 2; (3)画出△ABC 关于点O 成中心对称的△A 3B 3C 3;(4)在△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3中,
△________与△________成轴对称;△________与△________成中心对称.
22.(10分)定安县服装厂第二车间的人数比第一车间的人数的2倍少10人。
如果从第二车间调5人到第一车间后,两个车间的人数一样多。
问这两个车间各有多少人?
23.(10分)如图,在△ABC 中,∠B =∠C ,AD 平分∠BAC ,∠CAD =26°,∠AED = ∠ADE ,求∠BDE 的度数。
24.(12分)如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC . (1)若∠B =72°,∠C =30°,
求:①∠BAE 的度数;②∠DAE 的度数;
(2)探究:如果只知道∠B =∠C +42°,也能求出∠DAE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.。