第2章 常用数据结构及其运算3(查找和排序)
- 格式:ppt
- 大小:813.00 KB
- 文档页数:66
第1章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。
详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5.二分查找法6.冒泡排序法1.1算法考点1 算法的基本概念考试链接:考点1在笔试考试中考核的几率为30%,主要是以填空题的形式出现,分值为2分,此考点为识记内容,读者还应该了解算法中对数据的基本运算。
计算机解题的过程实际上是在实施某种算法,这种算法称为计算机算法。
1.算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。
2.算法的基本要素:(1)算法中对数据的运算和操作一个算法由两种基本要素组成:一是对数据对象的运算和操作;二是算法的控制结构。
在一般的计算机系统中,基本的运算和操作有以下4类:算术运算、逻辑运算、关系运算和数据传输。
(2)算法的控制结构:算法中各操作之间的执行顺序称为算法的控制结构。
描述算法的工具通常有传统流程图、N-S结构化流程图、算法描述语言等。
一个算法一般都可以用顺序、选择、循环3种基本控制结构组合而成。
考点2 算法复杂度考试链接:考点2在笔试考试中,是一个经常考查的内容,在笔试考试中出现的几率为70%,主要是以选择的形式出现,分值为2分,此考点为重点识记内容,读者还应该识记算法时间复杂度及空间复杂度的概念。
1.算法的时间复杂度算法的时间复杂度是指执行算法所需要的计算工作量。
同一个算法用不同的语言实现,或者用不同的编译程序进行编译,或者在不同的计算机上运行,效率均不同。
这表明使用绝对的时间单位衡量算法的效率是不合适的。
撇开这些与计算机硬件、软件有关的因素,可以认为一个特定算法"运行工作量"的大小,只依赖于问题的规模(通常用整数n表示),它是问题规模的函数。
C常用数据结构与算法1.数据结构1.1 数组- 定义- 常用操作:访问元素、添加元素、删除元素、查找元素 - 应用场景1.2 链表- 定义- 常用操作:插入节点、删除节点、查找节点- 单链表、双链表、循环链表的区别- 应用场景1.3 栈- 定义- 常用操作:入栈、出栈、查看栈顶元素、判断栈是否为空 - 可使用数组或链表实现- 应用场景1.4 队列- 定义- 常用操作:入队、出队、查看队首元素、查看队尾元素、判断队列是否为空- 可使用数组或链表实现- 应用场景1.5 哈希表- 定义- 常用操作:插入键值对、删除键值对、根据键查找值、计算哈希值- 冲突解决方法:开放寻址法、链地质法- 应用场景2.常用算法2.1 排序算法- 冒泡排序- 插入排序- 选择排序- 快速排序- 归并排序- 堆排序2.2 查找算法- 线性查找- 二分查找- 插值查找- 哈希查找- 树查找(二叉搜索树、平衡二叉树、红黑树)2.3 图算法- 广度优先搜索- 深度优先搜索- 最短路径算法(Dijkstra算法、Floyd-Warshall算法) - 最小树算法(Prim算法、Kruskal算法)2.4 动态规划- 背包问题- 最长公共子序列- 最大子数组和3.附件:无4.法律名词及注释:- C: C是一种通用的、面向对象的编程语言,由微软公司开发。
- 数据结构:数据结构是计算机中组织和存储数据的方式。
- 算法:算法是解决问题的一系列步骤或过程。
- 数组:数组是一种线性数据结构,由一系列元素组成,每个元素都有唯一的索引值。
- 链表:链表是一种线性数据结构,由一系列节点组成,每个节点都包含数据和指向下一个节点的指针。
- 栈:栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行操作。
- 队列:队列是一种先进先出(FIFO)的数据结构,只能在队首和队尾进行操作。
- 哈希表:哈希表是一种使用哈希函数将键映射到值的数据结构。
- 排序算法:排序算法是将一组数据按照特定顺序排列的算法。
实验五查找的应用一、实验目的:1、掌握各种查找方法及适用场合,并能在解决实际问题时灵活应用。
2、增强上机编程调试能力。
二、问题描述1.分别利用顺序查找和折半查找方法完成查找。
有序表(3,4,5,7,24,30,42,54,63,72,87,95)输入示例:请输入查找元素:52输出示例:顺序查找:第一次比较元素95第二次比较元素87 ……..查找成功,i=**/查找失败折半查找:第一次比较元素30第二次比较元素63 …..2.利用序列(12,7,17,11,16,2,13,9,21,4)建立二叉排序树,并完成指定元素的查询。
输入输出示例同题1的要求。
三、数据结构设计(选用的数据逻辑结构和存储结构实现形式说明)(1)逻辑结构设计顺序查找和折半查找采用线性表的结构,二叉排序树的查找则是建立一棵二叉树,采用的非线性逻辑结构。
(2)存储结构设计采用顺序存储的结构,开辟一块空间用于存放元素。
(3)存储结构形式说明分别建立查找关键字,顺序表数据和二叉树数据的结构体进行存储数据四、算法设计(1)算法列表(说明各个函数的名称,作用,完成什么操作)序号 名称 函数表示符 操作说明1 顺序查找 Search_Seq 在顺序表中顺序查找关键字的数据元素2 折半查找 Search_Bin 在顺序表中折半查找关键字的数据元素3 初始化 Init 对顺序表进行初始化,并输入元素4 树初始化 CreateBST 创建一棵二叉排序树5 插入 InsertBST 将输入元素插入到二叉排序树中6 查找 SearchBST在根指针所指二叉排序树中递归查找关键字数据元素 (2)各函数间调用关系(画出函数之间调用关系)typedef struct { ElemType *R; int length;}SSTable;typedef struct BSTNode{Elem data; //结点数据域 BSTNode *lchild,*rchild; //左右孩子指针}BSTNode,*BSTree; typedef struct Elem{ int key; }Elem;typedef struct {int key;//关键字域}ElemType;(3)算法描述int Search_Seq(SSTable ST, int key){//在顺序表ST中顺序查找其关键字等于key的数据元素。
数据结构中的查找算法总结静态查找是数据集合稳定不需要添加删除元素的查找包括:1. 顺序查找2. 折半查找3. Fibonacci4. 分块查找静态查找可以⽤线性表结构组织数据,这样可以使⽤顺序查找算法,再对关键字进⾏排序就可以使⽤折半查找或斐波那契查找等算法提⾼查找效率,平均查找长度:折半查找最⼩,分块次之,顺序查找最⼤。
顺序查找对有序⽆序表均适⽤,折半查找适⽤于有序表,分块查找要求表中元素是块与块之间的记录按关键字有序动态查找是数据集合需要添加删除元素的查找包括: 1. ⼆叉排序树 2. 平衡⼆叉树 3. 散列表 顺序查找适合于存储结构为顺序存储或链接存储的线性表。
顺序查找属于⽆序查找算法。
从数据结构线形表的⼀端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相⽐较,若相等则表⽰查找成功 查找成功时的平均查找长度为: ASL = 1/n(1+2+3+…+n) = (n+1)/2 ; 顺序查找的时间复杂度为O(n)。
元素必须是有序的,如果是⽆序的则要先进⾏排序操作。
⼆分查找即折半查找,属于有序查找算法。
⽤给定值value与中间结点mid的关键字⽐较,若相等则查找成功;若不相等,再根据value 与该中间结点关键字的⽐较结果确定下⼀步查找的⼦表 将数组的查找过程绘制成⼀棵⼆叉树排序树,如果查找的关键字不是中间记录的话,折半查找等于是把静态有序查找表分成了两棵⼦树,即查找结果只需要找其中的⼀半数据记录即可,等于⼯作量少了⼀半,然后继续折半查找,效率⾼。
根据⼆叉树的性质,具有n个结点的完全⼆叉树的深度为[log2n]+1。
尽管折半查找判定⼆叉树并不是完全⼆叉树,但同样相同的推导可以得出,最坏情况是查找到关键字或查找失败的次数为[log2n]+1,最好的情况是1次。
时间复杂度为O(log2n); 折半计算mid的公式 mid = (low+high)/2;if(a[mid]==value)return mid;if(a[mid]>value)high = mid-1;if(a[mid]<value)low = mid+1; 折半查找判定数中的结点都是查找成功的情况,将每个结点的空指针指向⼀个实际上不存在的结点——外结点,所有外界点都是查找不成功的情况,如图所⽰。
数据结构查找知识点总结查找是在一组数据中寻找特定元素或特定条件的操作。
1. 线性查找:从列表、数组或链表的头部开始逐个检查元素,直到找到目标元素或搜索结束。
最坏情况下需要遍历整个数据集。
- 特点:简单易懂但效率低。
- 时间复杂度:O(n)。
2. 二分查找:对有序的列表、数组或链表,采用分治思想,通过比较目标元素和中间元素的大小关系,缩小搜索范围,直到找到目标元素或搜索结束。
- 前提条件:数据必须有序。
- 特点:效率高,但要求数据有序,且适用于静态数据集。
- 时间复杂度:O(log n)。
3. 哈希查找:通过将元素进行哈希函数映射,将元素存储在哈希表中,以快速定位目标元素。
- 特点:查找速度快,适用于动态数据集。
- 时间复杂度:平均情况下是O(1),最坏情况下是O(n)(哈希冲突)。
4. 二叉查找树:一种有序的二叉树结构,左子树的所有节点的值都小于根节点的值,右子树的所有节点的值都大于根节点的值。
- 特点:可用于快速插入、删除和查找元素。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(n)(树退化为链表)。
5. 平衡二叉查找树:通过在二叉查找树的基础上对树进行平衡操作,使得树的高度保持在较小范围,从而提高查找效率。
- 特点:保持查找性能稳定,适用于动态数据集。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(log n)(由于树平衡操作的代价,最坏情况下仍可达到O(n))。
6. B树/B+树:一种多路搜索树,通过增加每个节点的子节点数目,减少树的高度,从而提高查找效率。
常用于磁盘索引等场景。
- 特点:适用于大规模数据集以及磁盘访问等场景,对于范围查找尤为高效。
- 时间复杂度:平均情况下是O(log n),最坏情况下是O(log n)。
7. 字典树(Trie树):一种通过字符串的前缀来组织和查找数据的树形数据结构。
- 特点:适用于按前缀匹配查找、排序等操作。
- 时间复杂度:查找操作的时间复杂度与字符串长度有关。
数据结构的查找算法在计算机科学中,数据结构是用于组织和存储数据的一种方式。
查找算法是数据结构中的重要部分,它用于在数据集合中搜索特定元素或信息。
本文将介绍几种常见的数据结构查找算法,包括线性查找、二分查找、哈希查找以及树结构的查找算法。
1. 线性查找线性查找是一种简单直观的查找方法,适用于无序的数据集合。
其基本思想是从数据集合的第一个元素开始逐个比较,直到找到目标元素或者遍历完整个数据集合。
由于线性查找需要遍历所有元素,所以时间复杂度为O(n),其中n为数据集合的大小。
2. 二分查找二分查找是一种高效的查找算法,但它要求数据集合中的元素必须有序。
具体实现方式是将数据集合分为两半,然后与目标元素进行比较,不断缩小查找范围,直到找到目标元素或者确定目标元素不存在。
由于每次都将查找范围减小一半,所以时间复杂度为O(log n),其中n为数据集合的大小。
3. 哈希查找哈希查找利用哈希函数将目标元素映射到哈希表中的特定位置,从而快速定位目标元素。
哈希表是一种以键-值对形式存储数据的数据结构,可以快速插入和删除元素,因此在查找时具有良好的性能。
哈希查找的时间复杂度为O(1),但在处理哈希冲突时可能会影响性能。
4. 树结构的查找算法树是一种常见的数据结构,其查找算法主要包括二叉搜索树、平衡二叉搜索树以及B树和B+树。
二叉搜索树是一种有序的二叉树,左子树的所有节点值都小于根节点,右子树的所有节点值都大于根节点。
通过比较目标元素与节点的值,可以快速定位目标元素。
平衡二叉搜索树是为了解决二叉搜索树在某些情况下可能出现的退化情况,通过旋转操作保持树的平衡性。
B树和B+树是一种多路搜索树,它们可以减少磁盘I/O操作,适用于大规模数据的查找。
综上所述,数据结构的查找算法是计算机科学中的重要内容。
不同的查找算法适用于不同的场景,选择合适的算法可以提高查找效率。
在实际应用中,需要根据数据集合的特点及查找需求来选择合适的算法。
基本数据结构及其运算1.数组:数组是一种线性数据结构,可以存储相同类型的一组元素。
数组的特点是连续存储,可以通过索引快速访问元素。
数组的常用运算包括访问指定索引的元素、插入和删除元素等。
2.链表:链表也是一种线性数据结构,但不同于数组的连续存储,链表是由一系列节点组成的,每个节点包含元素和指向下一个节点的指针。
链表的常用运算包括在指定位置插入和删除节点、遍历链表等。
3. 栈:栈是一种后进先出(LIFO)的数据结构,用于存储和管理函数调用、表达式求值等需要按照特定顺序操作的场景。
栈的基本运算包括入栈(push)和出栈(pop)。
4. 队列:队列是一种先进先出(FIFO)的数据结构,用于存储和管理需要按照特定顺序处理的元素。
队列的基本运算包括入队列(enqueue)和出队列(dequeue)。
5.树:树是一种非线性数据结构,由一组节点和边组成,用于表示层次关系。
树的根节点是唯一的,每个非叶子节点可以有多个子节点。
树的常用运算包括遍历树(前序、中序、后序遍历)、特定节点等。
除了上述基本的数据结构,还有其它常见的数据结构如哈希表、图等。
不同的数据结构适用于不同的应用场景,具有不同的性能特点和运算复杂度。
在进行数据结构的运算时,可以使用不同的算法和技术来提高效率,常见的包括递归、迭代、排序算法、算法等。
此外,还可以使用一些高级数据结构如红黑树、堆等来优化特定的问题。
总结起来,数据结构是计算机科学中非常重要的基础概念,它提供了存储和组织数据的方法。
不同的数据结构适用于不同的应用场景,通过不同的算法和技术可以提高数据结构的运算效率。
第一章信息与计算机什么是信息?信息与数据的区别和联系在何处?信息定义之一:信息是现实世界中存在的客观实体、现象、关系进行描述的数据。
信息定义之二:信息是经过加工后并对实体的行为产生影响的数据。
与数据的区别和联系:数据定义:数据是现实世界客观存在的实体或事物的属性值,即指人们听到的事实和看到的景象。
我们把这些数据收集起来,经过处理后,即得到人们需要的信息。
信息和数据的关系可以归结为: 1. 信息是有一定含义的数据。
2. 信息是经过加工(处理)后的数据。
3. 信息是对决策有价值的数据。
信息有哪些基本属性?信息的基本属性有: 1. 事实性。
2. 等级性。
3. 可压缩性。
4. 可扩散性。
5. 可传输性。
6. 共享性。
7. 增值性和再生性。
8. 转换性。
计算机的主要特点是什么?计算机最主要的特点是: 1. 高速自动的操作功能。
2. 具有记忆的能力。
3. 可以进行各种逻辑判断。
4. 精确高速的计算能力。
完整的计算机系统应该包括哪几部分?目前最完整的计算机系统学说认为由五部分组成: 1. 人员 2. 数据 3. 设备 4. 程序 5. 规程什么是计算机硬件?什么是计算机软件?硬件:泛指实际存在的物理设备,包括计算机本身及其外围设备。
微型计算机的硬件系统:主机、外存储器、输入设备、输出设备、微机的系统总线。
软件:是指计算机程序、方法、规则的文档以及在计算机上运行它时所必须的数据。
计算机软件一般分为系统软件和应用软件。
软件技术发展的几个阶段各有什么特点?它与硬件的关系如何?第一阶段:高级语言阶段特点:这一时期,编译技术代表了整个软件技术,软件工作者追求的主要目的是设计和实现在控制结构和数据结构方面表现能力强的高级语言。
但在这一时期内,编译系统主要是靠手工编制,自动化程度很低。
硬件关系:此时期计算机的硬件要求仅能用机器指令来编制可运行的程序。
第二阶段:结构程序设计阶段特点:在程序的正确性方面,提出了结构化程序设计思想使程序的可靠性提高了。
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构复习--排序和查找现在正在学习查找和排序,为了节省时间提⾼效率,就正好边学习边整理知识点吧!知识点⼀:⼆分查找/折半查找1.⼆分查找的判定树(选择题)下列⼆叉树中,可能成为折半查找判定树(不含外部结点)的是: (4分)1.2.3.4.注:折半查找判定树是⼀棵⼆叉排序树,它的中序遍历结果是⼀个升序序列,可以在选项中的树上依次填上相应的元素。
虽然折半查找可以上取整也可以下取整但是⼀个查找判定树只能有⼀种取整⽅式。
如果升序序列是偶数个,那么终点应该偏左多右少。
在2选项中,由根节点左⼦树4个节点⽽右⼦树5个节点可以确定⽤的是向下取整策略,但是它的左⼦节点在左⼦树种对应的终点左边2个,右边个,明显是上取整策略,策略没有统⼀,所以是错的。
其他的选项类似分析。
2.⼆分查找法/折半查找法已知⼀个长度为16的顺序表L,其元素按关键字有序排列。
若采⽤⼆分查找法查找⼀个L中不存在的元素,则关键字的⽐较次数最多是: (2分)1. 72. 63. 54. 4 注:⼀次找到最边界的那⼀个树的情况下有最多次数 这个题中结点数16是个偶数:第⼀次(0+15)/2 7 第⼆次(8+15)/2 11第三次(12+15)/2 14 第四次(14+15)/2 14 第五次(15+15)/2 15(下取整的就向右计算求最多次数)第⼀次(0+15)/2 8 第⼆次(0+7)/2 4 第三次(0+3)/2 2 第四次(0+1)/2 0第五次(0+0)/2 0(下取整的话就向左求最多次数)若结点数是奇数15:第⼀次(0+14)/2 7 第⼆次( 0+6)/2 3 第三次(0+2)/2 1第四次(0+0)/2 0第⼀次(0+14)/2 7 第⼆次(8+14)/2 11 第三次(12+14)/2 13第四次(14+14)/2 0这时候向左或者向右都是OK的(因为得到的数都是能够被2整除的)但是划重点了折半查找⼀个有序表中不存在的元素,若向下取整,则要最多⽐较[log2n]+1次,若向上取整,则要最多⽐较[log2(n+1)],其实就是求树的深度.(这⼀块⾃⼰的说法可能不够准确,希望⼤家看到有问题的可以指出来)结合实际,我们⽤[log2n]+1来算更简单并且计算[log2n]要取整数,因为可能会存在不是满⼆叉树的情况。
数据结构与算法1.1 基本概念信息--------》数据1.11 数据结构的基本概念数据:数据就是计算机化的信息,数据元素(结点记录表目)是数据的基本单位,一个数据元素由多个数据项组成,数据项是有独立含义的数据的最小单位。
数据结构:数据的逻辑结构线性结构非线性结构数据的储存结构数据的运算包括:检索,插入,删除,更新,排序等。
1.12主要的数据存储方式(1)顺序存储结构结点中只有自身信息字段,没有链接信息字段可以通过计算确定数据结构中第I个结点的位置删除,插入运算会引起大量的结点移动(2)链式存储结构结点中除了自身信息外,还有表示连接信息的指针字段,用指针来体现数据之间逻辑上的联系逻辑上相邻的结点物理上不必相邻插入,删除操作灵活方便,不必移动结点,只要改变结点中指针值即可1.13算法的设计与分析算法采用由粗到细,由抽象到具体的逐步求精的方法算法分析:主要分析算法所占用的计算机资源,即时间代价和空间代价两个方面。
1.2线性表线性表是最简单,最常用的数据结构。
线性表的逻辑结构为n个数据元素的有序序列。
线性表的储存结构多样其中:顺序储存结构的线性表称为顺序表(一维数组)链式储存结构的线性表称为链表散列方法储存的线性表称为散列表线性表根据其上的运算集合不同可以分为:栈和队列1.21 顺序表和一维数组用顺序方式储存的线性表成为一维数组。
用存储单元的邻接性体现线性表元素间的一维顺序关系,对线性表进行插入和删除操作时,可能需要移动大量的结点。
1.22 链表(1)线性链表(单链表)头指针--→头结点--→结点(2)双链表设置两个指针,其中Llink指向前驱结点,Rlink指向后继结点。
(3)可利用空间表作用是管理可用于链表插入的结点,当链表插入需要一个结点时,从可利用空间表删除第一个结点,用这个结点去做链表插入;当从链表中删除一个结点的时候,就把这个结点插入到可利用空间表第一个结点的前面。
1.23 栈栈是限定仅在一端进行插入和删除的线性表。
数据结构中的树、图、查找、排序在计算机科学中,数据结构是组织和存储数据的方式,以便能够有效地对数据进行操作和处理。
其中,树、图、查找和排序是非常重要的概念,它们在各种算法和应用中都有着广泛的应用。
让我们先来谈谈树。
树是一种分层的数据结构,就像是一棵倒立的树,有一个根节点,然后从根节点向下延伸出许多分支节点。
比如一个家族的族谱,就可以用树的结构来表示。
最上面的祖先就是根节点,他们的后代就是分支节点。
在编程中,二叉树是一种常见的树结构。
二叉树的每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉搜索树是一种特殊的二叉树,它具有特定的性质,即左子树中的所有节点值都小于根节点的值,而右子树中的所有节点值都大于根节点的值。
这使得在二叉搜索树中查找一个特定的值变得非常高效。
二叉搜索树的插入和删除操作也相对简单。
插入时,通过比较要插入的值与当前节点的值,确定往左子树还是右子树移动,直到找到合适的位置插入新节点。
删除节点则稍微复杂一些,如果要删除的节点没有子节点,直接删除即可;如果有一个子节点,用子节点替换被删除的节点;如果有两个子节点,通常会找到右子树中的最小节点来替换要删除的节点,然后再删除那个最小节点。
接下来,我们聊聊图。
图是由顶点(也称为节点)和边组成的数据结构。
顶点代表对象,边则表示顶点之间的关系。
比如,社交网络中的用户可以看作顶点,用户之间的好友关系就是边。
图可以分为有向图和无向图。
有向图中的边是有方向的,就像单行道;无向图的边没有方向,就像双向车道。
图的存储方式有邻接矩阵和邻接表等。
邻接矩阵用一个二维数组来表示顶点之间的关系,如果两个顶点之间有边,对应的数组元素为 1,否则为 0。
邻接表则是为每个顶点建立一个链表,链表中存储与该顶点相邻的顶点。
图的遍历是图算法中的重要操作,常见的有深度优先遍历和广度优先遍历。
深度优先遍历就像是沿着一条路一直走到底,然后再回头找其他路;广度优先遍历则是先访问距离起始顶点近的顶点,再逐步扩展到更远的顶点。