2002年普通高等学校招生全国统一考试(数学)理及答案
- 格式:doc
- 大小:506.00 KB
- 文档页数:8
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54co s =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离D E KBC 1A 1B 1AFCG19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos(=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?东O21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{t s + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cos r r z +=,则复数.2rz 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞ 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a 整理得1)(2222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s ++=(r,t,s ),1073160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=资料由谢老师收集:了解初中,高中考试信息,做题技巧,解题思路可去谢老师博客/xiejunchao1。
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(新高考1卷)数学副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合M ={x|√x <4},N ={x|3x ≥1},则M ∩N =( ) A. {x|0≤x <2} B. {x|13≤x <2} C. {x|3≤x <16}D. {x|13≤x <16}2. 若i(1−z)=1,则z +z = A. −2B. −1C. 1D. 23. 在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =n ⃗ ,则CB ⃗⃗⃗⃗⃗ =( ) A. 3m⃗⃗⃗ −2n ⃗ B. −2m⃗⃗⃗ +3n ⃗ C. 3m⃗⃗⃗ +2n ⃗ D. 2m⃗⃗⃗ +3n ⃗ 4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( )A. 1.0×109m 3B. 1.2×109m 3C. 1.4×109m 3D. 1.6×109m 35. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. 16B. 13C. 12D. 236. 记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y =f(x)的图像关于点 (3π2,2)中心对称,则f(π2)=( )A. 1B. 32C. 52D. 37. 设a =0.1e 0.1,b =19,c =−ln0.9,则( ) A. a <b <cB. c <b <aC. c <a <bD. a <c <b8. 已知正四棱锥的侧棱长为l ,其各顶点都在同一个球面上,若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A. [18,814]B. [274,814]C. [274,643]D. [18,27]二、多选题(本大题共4小题,共20.0分。
2002年普通高等学校招生全国统一考试数 学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至9页。
共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦 干净后,再选涂其它答案。
不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并交回。
参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足条件M ∪{1}={1,2,3}的集合M 的个数是A .1B .2C .3D .42.在平面直角坐标系中,已知两点)20sin ,20(cos ),80sin ,80(cos ︒︒︒︒B A 则|AB|的值是A .21B .22C .23D .13.下列四个函数中,以π为最小正周期,且在区间(ππ,2)上为减函数的是A .x y 2cos =B .|sin |2x y= C .x y cos )31(=D .ctgx y-=4.64个直径都为4a的球,记它们的体积之和为V 甲,表面积之和为S 甲;一个直径为a 的球, 记其体积为V 乙,表面积为S 乙,则A .V 甲>V 乙且S 甲>S 乙B .V 甲<V 乙且S 甲<S 乙正棱台、圆台的侧面积公式 l c c S )(21+'=台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长球体的体积公式334R V π=球其中R 表示球的半径C .V 甲=V 乙且S 甲>S 乙D .V 甲=V 乙且S 甲=S 乙5.已知某曲线的参数方程是ϕϕϕ(,sec ⎩⎨⎧==tg y x 为参数).若以原点为极点,x 轴的正半轴为极轴, 长度单位不变,建立极坐标系,则该曲线的极坐标方程是A .1=ρB .12cos =θρC .12sin 2=θρD .12cos 2=θρ6.给定四条曲线:①2522=+y x ,②14922=+y x ,③1422=+y x ,④1422=+y x .其中与直线05=-+y x 仅有一个交点的曲线是A .①②③B .②③④C .①②④D .①③④7.已知C z z ∈21,且|z 1|=1.若i z z 221=+,则||21z z -的最大值是A .6B .5C .4D .38.若1121=+-θθctg ctg ,则θθ2sin 12cos +的值为A .3B .-3C .-2D .21-9.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方 案共有A .4448412C C C 种B .44484123C C C 种C .3348412P C C 种D .334448412P C C C 种 10.设命题甲:“直四棱柱ABCD —A 1B 1C 1D 1中,平面ACB 1与对角面BB 1D 1D 垂直”;命题乙:“直四棱柱ABCD —A 1B 1C 1D 1是正方体”.那么,甲是乙的 A .充分必要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件11.已知)(x f 的定义在(-3,3)上的奇函数,当0<x <3时,)(x f 的图象如图所示,那么不等式0cos )(<x x f 的解集是A .)3,2()1,0()2,3(ππY Y --B .)3,2()1,0()1,2(ππY Y --C .)3,1()1,0()1,3(Y Y --D .)3,1()1,0()2,3(Y Y π--12.如图所示,)4,3,2,1)((=i x f i 是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x 1和x 2,任意)()1()(])1([],1,0[2121x f x f x x f λλλλλ-+≤-+∈恒成立”的只有A .)(),(31x f x fB .)(2x fC .)(),(32x f x fD .)(4x f第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中。
四、解答题:本大题共6小题,共算步骤。
17.记ABC 的内角,,A B C 的对边分别为点,且1AD =.π
(1)证明:BC DA ⊥;
(2)点F 满足EF DA =
,求二面角D 21.已知双曲线C 的中心为坐标原点,左焦点为(1)求C 的方程;
6.C
【分析】根据()
1
e0 x
f x a
x
'=-≥在(1,
【详解】依题可知,()
1 e x
f x a
x '=-≥
10.AC
【分析】先求得焦点坐标,从而求得知识确定正确答案.
15.2(
11
2,2,,
22
--中任意一个皆可以)
【分析】根据直线与圆的位置关系,求出弦长公式即可解出.
【详解】设点C到直线AB的距离为
则11sin 22ADC S AD DC ADC =
⋅∠=⨯ 在ABD △中,2π
3
ADB ∠=,由余弦定理得
设(2,0,0),(0,0,2),(0,2,0),D A B 设平面DAB 与平面ABF 的一个法向量分别为二面角D AB F --平面角为θ,而AB 因为()2,0,2EF DA ==- ,所以
直线1MA 的方程为(112y y x x =
+联立直线1MA 与直线2NA 的方程可得:
()()()()21211212222226y x y my x x y x y my +-+==---1224832224141m m y m m ⋅-⋅+
答案第17页,共17页。
2022年年年年年年年年年年年年年年年年甲年年年年年年一、单选题(本大题共12小题,共60.0分)1.若z=−1+√3i,则zzz−−1=()A. −1+√3iB. −1−√3iC. −13+√33i D. −13−√33i2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图:则()A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x|x2−4x+3=0},则∁U(A∪B)=()A. {1,3}B. {0,3}C. {−2,1}D. {−2,0}4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A. 8B. 12C. 16D. 205.函数y=(3x−3−x)cosx在区间[−π2,π2]的图像大致为()A. B.C. D.6.当x=1时,函数f(x)=alnx+bx取得最大值−2,则f′(2)=()A. −1B. −12C. 12D. 17.在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则()A. AB=2ADB. AB与平面AB1C1D所成的角为30°C. AC=CB1D. B1D与平面BB1C1C所成的角为45°8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB⏜是以O为圆心,OA为半径的圆弧,C是AB的中点,D在AB⏜上,CD⊥AB.“会圆术”给出AB⏜的弧长的近似值s的计算公式:s=AB+CD2OA.当OA=2,∠AOB=60°时,s=()A. 11−3√32B. 11−4√32C. 9−3√32D. 9−4√329. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A. √5B. 2√2C. √10D. 5√10410. 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( )A. √32B. √22C. 12D. 1311. 设函数f(x)=sin(ωx +π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A. [53,136)B. [53,196)C. (136,83]D. (136,196]12. 已知a =3132,b =cos 14,c =4sin 14,则( )A. c >b >aB. b >a >cC. a >b >cD. a >c >b二、填空题(本大题共4小题,共20.0分)13. 设向量a ⃗ ,b ⃗ 的夹角的余弦值为13,且|a ⃗ |=1,|b ⃗ |=3,则(2a ⃗ +b ⃗ )⋅b ⃗ =______. 14. 若双曲线y 2−x 2m2=1(m >0)的渐近线与圆x 2+y 2−4y +3=0相切,则m =______.15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为______. 16. 已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD.当ACAB 取得最小值时,BD =______.三、解答题(本大题共7小题,共82.0分) 17. 记S n 为数列{a n }的前n 项和.已知2S n n+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.18. 在四棱锥P −ABCD 中,PD ⊥底面ABCD ,CD//AB ,AD =DC =CB =1,AB =2,DP =√3.(1)证明:BD ⊥PA ;(2)求PD 与平面PAB 所成的角的正弦值.19. 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.20. 设抛物线C :y 2=2px(p >0)的焦点为F ,点D(p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF|=3. (1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程. 21. 已知函数f(x)=e x x−lnx +x −a .(1)若f(x)≥0,求a 的取值范围;(2)证明:若f(x)有两个零点x 1,x 2,则x 1x 2<1. 22. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6,y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s6,y =−√s (s 为参数). (1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标.已知a ,b ,c 均为正数,且a 2+b 2+4c 2=3,证明:(1)a +b +2c ≤3;(2)若b=2c,则1a +1c≥3.答案解析1.【答案】C【解析】解:∵z=−1+√3i,∴z⋅z−=|z|2=(√(−1)2+(√3)2)2=4,则zzz−−1=−1+√3i4−1=−13+√33i.故选:C.由已知求得z⋅z−,代入zzz−−1,则答案可求.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.【答案】B【解析】解:对于A,讲座前问卷答题的正确率从小到大为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,∴讲座前问卷答题的正确率的中位数为:(70%+75%)=72.5%,故A错误;对于B,讲座后问卷答题的正确率的平均数为:110(80%+85%+85%+85%+85%+90%+90%+95%+100%+100%)=89.5%>85%,故B正确;对于C,由图形知讲座前问卷答题的正确率相对分散,讲座后问卷答题的正确率相对集中,∴讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故D错误;对于D,讲座后问卷答题的正确率的极差为:100%−80%=20%,讲座前正确率的极差为:95%−60%=35%,∴讲座后问卷答题的正确率的极差小于讲座前正确率的极差,故D错误.故选:B.对于A,求出讲座前问卷答题的正确率的中位数进行判断;对于B,求出讲座后问卷答题的正确率的平均数进行判断;对于C,由图形知讲座前问卷答题的正确率相对分散,讲座后问卷答题的正确率相对集中,进行判断;对于D,求出讲座后问卷答题的正确率的极差和讲座前正确率的极差,由此判断D.本题考查命题真假的判断,考查散点图、中位数、平均数、标准差、极差等基础知识,考查运算求解能力,是基础题.3.【答案】D【解析】解:∵B={x|x2−4x+3=0}={1,3},A={−1,2},∴A∪B={−1,1,2,3},又U={−2,−1,0,1,2,3},∴∁U(A∪B)={−2,0}.故选:D.求解一元二次方程化简B,再由并集与补集运算得答案.本题考查交、并补集的混合运算,是基础题.4.【答案】B【解析】解:由多面体的三视图得该多面体是一正四棱柱ABCD−A1B1C1D1,四棱柱的底面是直角梯形ABCD,如图,AB=4,AD=2,AA1=2,AA1⊥平面ABCD,∴该多面体的体积为:(4+2)×2×2=12.V=12故选:B.由多面体的三视图得该多面体是一正四棱柱ABCD−A1B1C1D1,四棱柱的底面是直角梯形ABCD,AB=4,AD=2,AA1=2,AA1⊥平面ABCD,由此能求出该多面体的体积.本题考查多面体的体积的求法,考查多面体的三视图等基础知识,考查运算求解能力,是中档题.5.【答案】A【解析】解:f(x)=(3x−3−x)cosx,可知f(−x)=(3−x−3x)cos(−x)=−(3x−3−x)cosx=−f(x),函数是奇函数,排除BD;当x=1时,f(1)=(3−3−1)cos1>0,排除C.故选:A.判断函数的奇偶性,结合函数的特殊值判断点的位置,推出选项即可.本题考查函数的奇偶性以及函数的图象的判断,是中档题.6.【答案】B【解析】解:由题意f(1)=b=−2,则f(x)=alnx−2x,则f′(x)=ax +2x2=ax+2x2,∵当x=1时函数取得最值,可得x=1也是函数的一个极值点,∴f′(1)=a+2=0,即a=−2.∴f′(x)=−2x+2x2,易得函数在(0,1)上单调递增,在(1,+∞)上单调递减,故x=1处,函数取得极大值,也是最大值,则f′(2)=−2×2+222=−12.故选:B.由已知求得b,再由题意可得f′(1)=0求得a,得到函数解析式,求其导函数,即可求得f′(2).本题考查导数的应用,考查导数最值与极值的关系,考查运算求解能力,是中档题.7.【答案】D【解析】解:如图所示,连接AB1,BD,不妨令AA1=1,在长方体ABCD−A1B1C1D1中,AD⊥面AA1B1B,BB1⊥面ABCD,所以∠B1DB和∠DB1A分别为B1D与平面ABCD和平面AA1B1B所成的角,即∠B1DB=∠DB1A=30°,所以在Rt△BDB1中,BB1=AA1=1,BD=√3,B1D=2,在Rt△ADB1中,DB1=2,AD=1,AB1=√3,所以AB=√2,CB1=√2,AC=√3,故选项A,C错误,由图易知,AB在平面AB1C1D上的射影在AB1上,所以∠B1AB为AB与平面AB1C1D所成的角,在Rt△ABB1中,sin∠B1AB=BB1AB1=1√3=√33,故选项B错误,如图,连接B1C,则B1D在平面BB1C1C上的射影为B1C,所以∠DB1C为B1D与平面BB1C1C所成的角,在Rt△DB1C中,B1C=√2=DC,所以∠DB1C=45°,所以选项D正确,故选:D.不妨令AA1=1,可根据直线与平面所成角的定义,确定长方体的各棱长,即可求解.本题考查了直线与平面所成角,属于中档题.8.【答案】B【解析】解:∵OA=OB=2,∠AOB=60°,∴AB=2,∵C是AB的中点,D在AB⏜上,CD⊥AB,∴延长DC可得O在DC上,CD=OD−OC=2−√3,∴s=AB+CD2OA =2+(2−√3)22=2+7−4√32=11−4√32.故选:B.由已知求得AB与CD的值,代入s=AB+CD2OA得答案.本题考查扇形及其应用,考查运算求解能力,是基础题.9.【答案】C【解析】解:如图,甲,乙两个圆锥的侧面展开图刚好拼成一个圆,设圆的半径(即圆锥母线)为3,甲、乙两个圆锥的底面半径分别为r1,r2,高分别为ℎ1,ℎ2,则2πr1=4π,2πr2=2π,解得r1=2,r2=1,由勾股定理可得ℎ1=√5,ℎ2=2√2,∴V甲V乙=13πr12ℎ113πr22ℎ2=√10.故选:C.设圆的半径(即圆锥母线)为3,甲、乙两个圆锥的底面半径分别为r1,r2,高分别为ℎ1,ℎ2,则可求得r1=2,r2=1,ℎ1=√5,ℎ2=2√2,进而求得体积之比.本题考查圆锥的侧面积和体积求解,考查运算求解能力,属于中档题.10.【答案】A【解析】解:已知A(−a,0),设P(x0,y0),则Q(−x0,y0),k AP=y0x0+a,k AQ=y0a−x0,故k AP⋅k AQ=y0x0+a ⋅y0a−x0=y02a2−x02=14①,∵x02a2+y02b2=1,即y02=b2(a2−x02)a2②,②代入①整理得:b2a2=14,e=ca =√1−b2a2=√32.故选:A.设P(x0,y0),则Q(−x0,y0),根据斜率公式结合题意可得:k AP⋅k AQ=14,再结合x2a2+y2b2=1,整理可得离心率.本题考查椭圆的简单几何性质,是基础题.11.【答案】C【解析】解:当ω<0时,不能满足在区间(0,π)极值点比零点多,所以ω>0; 函数f(x)=sin(ωx +π3)在区间(0,π)恰有三个极值点、两个零点, ωx +π3∈(π3,ωπ+π3), ∴5π2<ωπ+π3≤3π,求得136<ω≤83, 故选:C .由题意,利用正弦函数的极值点和零点,求得ω的取值范围. 本题主要考查正弦函数的极值点和零点,属于中档题.12.【答案】A【解析】解:设f(x)=cosx +12x 2−1,(0<x <1),则f′(x)=x −sinx , 设g(x)=x −sinx(0<x <1),g′(x)=1−cosx >0, 故g(x)在(0,1)单调递增,即g(x)>g(0)=0, 即f′(x)>0,故f(x)(0,1)单调递增,所以f(14)>f(0)=0,可得cos 14>3132,故b >a , 利用三角函数线可得x ∈(0,π2)时,tanx >x , ∴tan 14>14,即sin14cos14>14,∴4sin 14>cos 14,故c >b .综上:c >b >a , 故选:A .构造函数f(x)=cosx +12x 2−1,(0<x <1),可得cos 14>3132,即b >a ,利用三角函数线可得tanx >x ,即tan 14>14,即sin14cos14>14,可得c >b .本题考查了三角函数不等式的证明与应用,考查了运算能力,属难题..13.【答案】11【解析】解:由题意可得a⃗⋅b⃗ =1×3×13=1,b⃗ 2=9,则(2a⃗+b⃗ )⋅b⃗ =2a⃗⋅b⃗ +b⃗ 2=2+9=11.故答案为:11.首先计算a⃗⋅b⃗ ,b⃗ 2的值,然后结合向量的运算法则可得所给式子的值.本题主要考查平面向量的定义,平面向量的运算法则等知识,属于中等题.14.【答案】√33【解析】解:双曲线y2−x2m2=1(m>0)的渐近线:x=±my,圆x2+y2−4y+3=0的圆心(0,2)与半径1,双曲线y2−x2m2=1(m>0)的渐近线与圆x2+y2−4y+3=0相切,√1+m2=1,解得m=√33,m=−√33舍去.故答案为:√33.求出渐近线方程,求出圆心与半径,利用点到直线的距离等于半径求解即可.本题考查双曲线的简单性质的应用,直线与圆的位置关系的判断,是中档题.15.【答案】635【解析】解:根据题意,从正方体的8个顶点中任选4个,有C84=70种取法,若这4个点在同一个平面,有侧面6个、对棱面6个,一共有6+6=12种情况,则这4个点在同一个平面的概率P=1270=635;故答案为:635.根据题意,由组合数公式计算“从正方体的8个顶点中任选4个”的取法,分析其中“4个点在同一个平面”的情况,由古典概型公式计算可得答案.本题考查古典概型的计算,涉及正方体的几何结构,属于基础题.16.【答案】√3−1【解析】解:设BD=x,CD=2x,在三角形ACD中,b2=4x2+4−2⋅2x⋅2⋅cos60°,可得:b2=4x2−4x+4,在三角形ABD中,c2=x2+4−2⋅x⋅2⋅cos120°,可得:c2=x2+2x+4,要使得ACAB 最小,即b2c2最小,b2 c2=4x2−4x+4x2+2x+4=4−12x+1+3x+1,其中x+1+3x+1≥2√3,此时b2c2≥4−2√3,当且仅当x+1=√3时,即x=√3−1时取等号,故答案为:√3−1.首先设出BD,CD,在两个三角形中分别表示AC,BC,继而ACAB =b2c2=4x2−4x+4x2+2x+4=4−12x+1+3x+1,从而利用均值不等式取等号的条件即可.本题主要考查余弦定理及均值不等式的应用,属于中档题.17.【答案】解:(1)证明:由已知有:2S n+n2=2na n+n⋯①,把n换成n+1,2S n+1+(n+1)2=2(n+1)a n+1+n+1⋯②,②−①可得:2a n+1=2(n+1)a n+1−2na n−2n,整理得:a n+1=a n+1,由等差数列定义有a n为等差数列;(2)由已知有a72=a4⋅a9,设等差数列a n的首项为x,由(1)有其公差为1,故(x+6)2=(x+3)(x+8),解得x=−12,故a1=−12,所以a n=−12+(n−1)×1=n−13,故可得:a1<a2<a3<⋯<a12<0,a13=0,a14>0,故S n在n=12或者n=13时取最小值,S12=S13=(−12+0)×132=−78,故S n的最小值为−78.【解析】(1)由已知令n=n+1做差可得递推关系从而证明,(2)由a4,a7,a9成等比数列,求出首项,利用等差数列通项公式找出a n正负分界点计算即可.本题主要考查利用数列递推关系求通项及等差数列前n项和的最小值,属于中档题.18.【答案】解:(1)证明:∵PD⊥底面ABCD,BD⊂面ABCD,∴PD⊥BD,取AB 中点E ,连接DE ,则DE =12AB =1,则CD//BE ,且CD =BE , ∴四边形BCDE 为平行四边形, ∴DE =CB =1, ∵DE =12AB ,∴△ABD 为直角三角形,且AB 为斜边, ∴BD ⊥AD ,又PD ∩AD =D ,PD ⊂面PAD ,AD ⊂面PAD , ∴BD ⊥面PAD , 又PA ⊂面PAD , ∴BD ⊥PA ;(2)由(1)知,PD ,AD ,BD 两两互相垂直,故建立如图所示的空间直角坐标系, BD =√AB 2−AD 2=√3,则D(0,0,0),A(1,0,0),B(0,√3,0),P(0,0,√3),∴PD⃗⃗⃗⃗⃗ =(0,0,−√3),PA ⃗⃗⃗⃗⃗ =(1,0,−√3),AB ⃗⃗⃗⃗⃗ =(−1,√3,0), 设平面PAB 的一个法向量为n ⃗ =(x,y,z),则{n ⃗ ⋅PA⃗⃗⃗⃗⃗ =x −√3z =0n⃗ ⋅AB ⃗⃗⃗⃗⃗ =−x +√3y =0,则可取n⃗ =(√3,1,1),设PD 与平面PAB 所成的角为θ,则sinθ=|cos <PD ⃗⃗⃗⃗⃗ ,n ⃗ >|=|PD ⃗⃗⃗⃗⃗⃗⋅n ⃗⃗ |PD ⃗⃗⃗⃗⃗⃗ ||n ⃗⃗ ||=√55, ∴PD 与平面PAB 所成的角的正弦值为√55.【解析】(1)易知PD ⊥BD ,取AB 中点E ,容易证明四边形BCDE 为平行四边形,再根据长度关系可得BD ⊥AD ,进而得证;(2)建立空间直角坐标系,写出各点的坐标,再求出平面PAB 的法向量,利用向量的夹角公式即可得解.本题考查线面垂直的判定以及利用空间向量求解二面角的正弦值,考查逻辑推理能力及运算求解能力,属于中档题.19.【答案】解:(1)甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,可以得到两个学校每场比赛获胜的概率如下表:甲学校要获得冠军,需要在3场比赛中至少获胜2场, ①甲学校3场全胜,概率为:P 1=0.5×0.4×0.8=0.16,②甲学校3场获胜2场败1场,概率为:P 2=0.5×0.4×0.2+0.5×0.6×0.8+0.5×0.4×0.8=0.44,所以甲学校获得冠军的概率为:P =P 1+P 2=0.6;(2)乙学校的总得分X 的可能取值为:0,10,20,30,其概率分别为: P(X =0)=0.5×0.4×0.8=0.16,P(X =10)=0.5×0.4×0.2+0.5×0.6×0.8+0.5×0.4×0.8=0.44, P(X =20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34, P(X =30)=0.5×0.6×0.2=0.06, 则X 的分布列为:X 的期望EX =0×0.16+10×0.44+20×0.34+30×0.06=13.【解析】根据相互独立事件的概率乘法公式,可以求出甲学校获胜2场或者3场的概率,可以得到甲学校获得冠军的概率;乙学校的总得分X 的值可取0,10,20,30,分别求出X 取上述值时的概率,可得分布列与数学期望.本题考查随机变量的分布列与数学期望的计算,难度不大.20.【答案】解:(1)由题意可知,当x =p 时,y 2=2p 2,得y M =√2p ,可知|MD|=√2p ,|FD|=p2.则在Rt △MFD 中,|FD|2+|DM|2=|FM|2,得(p2)2+(√2p)2=9,解得p =2. 则C 的方程为y 2=4x ;(2)设M(x 1,y 1),N(x 2,y 2),A(x 3,y 3),B(x 4,y 4),由(1)可知F(1,0),D(2,0),则tanα=k MN =y 1−y2x 1−x 2=y 1−y 2y 124−y 224=4y1+y 2,又N 、D 、B 三点共线,则k ND =k BD ,即y 2−0x2−2=y 4−0x 4−2, ∴y 2−0y 224−2=y 4−0y 424−2, 得y 2y 4=−8,即y 4=−8y 2;同理由M 、D 、A 三点共线,得y 3=−8y 1.则tanβ=y 3−y 4x 3−x 4=4y3+y 4=y 1y 2−2(y 1+y 2).由题意可知,直线MN 的斜率不为0,设l MN :x =my +1, 由{y 2=4x x =my +1,得y 2−4my −4=0, y 1+y 2=4m ,y 1y 2=−4,则tanα=44m =1m ,tanβ=−4−2×4m =12m , 则tan(α−β)=tanα−tanβ1+tanαtanβ=1m −12m1+12m ⋅1m=12m+1m,当m >0时,tan(α−β)=12m+1m≤2√2m⋅1m=√24;当m<0时,tan(α−β)无最大值,∴当且仅当2m =1m ,即m =√22时,等号成立,tan(α−β)取最大值,此时AB 的直线方程为y −y 3=4y 3+y 4(x −x 3),即4x −(y 3+y 4)y +y 3y 4=0,又∵y 3+y 4=−8y 1−8y 2=−8(y 1+y 2)y 1y 2=8m =4√2,y 3y 4=−8y 1⋅−8y 2=−16,∴AB 的方程为4x −4√2y −16=0,即x −√2y −4=0.【解析】(1)由已知求得|MD|=√2p ,|FD|=p2,则在Rt △MFD 中,利用勾股定理得p =2,则C 的方程可求;(2)设M ,N ,A ,B 的坐标,写出tanα与tanβ,再由三点共线可得y 3=−8y 1,y 4=−8y 2;由题意可知,直线MN 的斜率不为0,设l MN :x =my +1,联立直线方程与抛物线方程,化为关于y 的一元二次方程,利用根与系数的关系可得y 1+y 2=4m ,y 1y 2=−4,求得tanβ与tanα,再由两角差的正切及基本不等式判断,从而求得AB 的方程.本题考查抛物线方程的求法,考查直线与抛物线位置关系的应用,考查运算求解能力,属难题.21.【答案】解:(1)f(x)的定义域为(0,+∞),f′(x)=e x (x−1)x−1x+1=(e x +x)(x−1)x,令f′(x)>0,解得x >1,故函数f(x)在(0,1)单调递减,(1,+∞)单调递增, 故f(x)min =f(1)=e +1−a ,要使得f(x)≥0恒成立,仅需e +1−a ≥0, 故a ≤e +1,故a 的取值范围是(−∞,e +1];(2)证明:由已知有函数f(x)要有两个零点,故f(1)=e +1−a <0,即a >e +1, 不妨设0<x 1<1<x 2,要证明x 1x 2<1,即证明x 2<1x 1,∵0<x 1<1,∴1x 1>1,即证明:1<x 2<1x 1,又因为f(x)在(1,+∞)单调递增,即证明:f(x 2)<f(1x 1)⇔f(x 1)<f(1x 1),构造函数ℎ(x)=f(x)−f(1x ),0<x <1, ℎ′(x)=f′(x)+1x 2f′(1x )=( x−1)(xe x +x 2−1x−e 1x )x 2,令k(x)=xe x+x 2−1x−e 1x,0<x <1,k′(x)=(x +1)e x+2x +1x 2+1x 2e 1x>0,k(x)<k(1)=0, 所以k(x)在(0,1)上递增, 又因为x −1<0,x 2>0,故ℎ′(x)>0在(0,1)恒成立,故ℎ(x)在(0,1)单调递增, 又因为ℎ(1)=0,故ℎ(x)<ℎ(1)=0, 故f(x 1)<f(1x 1),即x 1x 2<1.得证.【解析】(1)对函数求导研究其在定义域内单调性,由于函数在(0,+∞)恒大于等于0,故f(x)min =f(1)=e +1−a >0,解出a 的范围即可.(2)首先将原不等式转化为证明1<x 2<1x 1,再利用函数f(x)在(1,+∞)单调递增,即转化为证明f(x 2)<f(1x 1)⇔f(x 1)<f(1x 1),继而构造函数ℎ(x)=f(x)−f(1x )证明其在(0,1)恒小于0即可.本题主要考查利用导函数研究函数单调性,即构造函数证明不等式恒成立问题,属于较难题目.22.【答案】解:(1)由{x =2+t6,y =√t (t 为参数),消去参数t , 可得C 1的普通方程为y 2=6x −2(y ≥0); (2)由{x =−2+s6,y =−√s (s 为参数),消去参数s , 可得C 2的普通方程为y 2=−6x −2(y ≤0). 由2cosθ−sinθ=0,得2ρcosθ−ρsinθ=0, 则曲线C 3的直角坐标方程为2x −y =0.联立{y =2x y 2=6x −2,解得{x =12y =1或{x =1y =2,∴C 3与C 1交点的直角坐标为(12,1)与(1,2);联立{y =2x y 2=−6x −2,解得{x =−12y =−1或{x =−1y =−2,∴C 3与C 2交点的直角坐标为(−12,−1)与(−1,−2). 【解析】(1)消去参数t ,可得C 1的普通方程;(2)消去参数s ,可得C 2的普通方程,化C 3的极坐标方程为直角坐标方程,然后联立直角坐标方程求解C 3与C 1、C 3与C 2交点的直角坐标.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查运算求解能力,是基础题.23.【答案】证明:(1)∵a ,b ,c 均为正数,且a 2+b 2+4c 2=3,∴由柯西不等式知,(a 2+b 2+4c 2)(12+12+12)≥(a +b +2c)2, 即3×3≥(a +b +2c)2,∴a +b +2c ≤3; 当且仅当a =b =2c ,即a =b =1,c =12时取等号; (2)由(1)知,a +b +2c ≤3且b =2c , 故0<a +4c ≤3,则1a+4c ≥13, 由权方和不等式可知,1a +1c=12a+224c ≥9a+4c ≥3,即1a +1c ≥3.【解析】(1)由已知结合柯西不等式证明;(2)由已知结合(1)中的结论,再由权方和不等式证明.本题考查不等式的证明,考查柯西不等式与权方和不等式的应用,是中档题.。
绝密★启用前2022年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若1z =-+,则1zzz =-( )A. 1-+B. 1-C. 13-+ D. 13--【答案】C 【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】1(1113 4.z zz =-=-+-=+=113z zz ==--故选 :C2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3. 设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð( )A {1,3}B. {0,3}C. {2,1}-D. {2,0}-【答案】D.【解析】【分析】解方程求出集合B ,再由集合的运算即可得解.【详解】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5. 函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.6. 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A. 1- B. 12-C.12D. 1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.7. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则( )A. 2AB AD = B. AB 与平面11AB C D 所成的角为30°C. 1AC CB = D. 1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为tan c BAE a ∠==30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,11sin 2CD a DB C B D c ∠===1090DB C <∠< ,所以145DB C ∠= .D 正确.故选:D .8. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,»AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在»AB 上,CD AB ⊥.“会圆术”给出»AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A.B.C.D.【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以22CD s AB OA=+==故选:B .9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( )A.B.C.D.【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l lπππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以2112221313r h V V r h ππ===甲乙故选:C.10. 椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ的斜率之积为14,则C 的离心率为( )A.B.C.12D.13【答案】A 【解析】【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.【详解】[方法一]:设而不求设()11,P x y ,则()11,Q x y -则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+,由2211221x y a b +=,得()2221212b a x y a-=,所以()2221222114b a x a x a -=-+,即2214b a =,所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a =所以椭圆C的离心率c e a === A.11. 设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A. 513,36⎫⎡⎪⎢⎣⎭ B. 519,36⎡⎫⎪⎢⎣⎭C. 138,63⎛⎤⎥⎝⎦ D. 1319,66⎛⎤⎥⎝⎦【答案】C 【解析】【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0>ω,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .12. 已知3111,cos ,4sin 3244a b c ===,则( )A. c b a >> B. b a c>> C. a b c>> D. a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数()()21cos 1,0,2f x x x x ∞=+-∈+,利用导数可得b a >,即可得解.【详解】[方法一]:构造函数因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选A [方法二]:不等式放缩因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得:2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a>1114sin cos 444ϕ⎛⎫+=+ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=-此时1sin cos 4ϕ==,1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c <所以b a >,所以c b a >>,故选A[方法三]:泰勒展开设0.25x =,则2310.251322a ==-,2410.250.25cos 1424!b =≈-+,241sin 10.250.2544sin1143!5!4c ==≈-+,计算得c b a >>,故选A.[方法四]:构造函数因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A .[方法五]:【最优解】不等式放缩因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得2211131cos 12sin 1248832⎛⎫=->-= ⎪⎝⎭,故b a >,所以c b a >>.故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.二、填空题:本题共4小题,每小题5分,共20分.13. 设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= _________.【答案】11【解析】【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅ ,最后根据数量积的运算律计算可得.【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.14. 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m -=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =..15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635.16. 已知ABC V 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】[方法一]:余弦定理设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m =-时,等号成立,所以当AC AB取最小值时,1m =.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系.则C (2t,0),A (1),B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD -+-+∴===-≥-++++++++==-当且仅当即时等号成立。
2002年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 A .1,1-B .2.2-C .1D .1-2.复数3)2321(i +的值是 A .i -B .iC .1-D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .0|{<x x 且}1-≠x C .}11|{<<-x xD .1|{<x x 且}1-≠x4.函数xa y =在]1,0[上的最大值与最小值这和为3,则a = A .21B .2C .4D .41 5.在)2,0(π内,使x x cos sin >成立的x 的取值范围是A .)45,()2,4(ππππ B .),4(ππC .)45,4(ππD .)23,45(),4(ππππ 6.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则A .N M =B .N M ⊂C .N M ⊃D .∅=N M7.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k A .1-B .1C .5D .5-8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 A .43B .54C .53D .53-9.10<<<<a y x ,则有 A .0)(log <xy aB .1)(log 0<<xy aC .2)(log 1<<xy aD .2)(log >xy a10.函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 A .0≥b B .0≤bC .0>bD .0<b11.设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率取值范围A .)21,0(B .)22,21( C .)2,22(D .),2(+∞12.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13.据新华社2002年3月12日电,1985年到2000年间.我国农村人均居住面积如图所示,其中,从 年2000年的五年间增长最快. 14.函数xxy +=12(),1(+∞-∈x )图象与其反函数图象的交点为 15.72)2)(1(-+x x 展开式中3x 的系数是16.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为)1,2(. 能使这抛物线方程为x y 102=的条件是第 (要求填写合适条件的序号) 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω(1)求这段时间的最大温差; (2)写出这段时间的函数解析式;18.甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?19.四棱锥ABCD P -的底面是边长为a 的正方形,⊥PB 平面ABCD .(1)若面PAD 与面ABCD 所成的二面角为︒60,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化.面PAD 与面PCD 所成的二面角恒大于︒9020.设函数1|2|)(2+-+=x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.21.已知点P 到两定点)0,1(-M 、)0,1(N 距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 22.(本小题满分12分,附加题满分4分)(I )给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (II )试比较你剪拼的正三棱锥与正三棱柱的体积的大小; (III )(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分) 如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCCBCBBCDADB二、填空题(13)1995 (14))1,1(),0,0( (15)1008 (16)②⑤ 三、解答题 (17)解:(1)由图示,这段时间的最大温差是201030=-℃ (2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω=由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x ) (18)解:(1)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n ,整理得0140132=-+n n ,解得7=n ,20-=n (舍) 第1次相遇是在开始后7分钟.(2)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n ,整理得0420132=-+n n ,解得15=n ,28-=n (舍) 第2次相遇是在开始后15分钟.(19)解(1)∵⊥PB 平面ABCD ,∴BA 是PA 在面ABCD 上的射影,∴DA PA ⊥∴PAB ∠是面PAD 与面ABCD 所成二面角的平面角,︒=∠60PAB而PB 是四棱锥ABCD P -的高,a tg AB PA 360=︒⋅=∴3233331a a a V ABCD P =⋅⋅=- (2)证:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作DP AE ⊥,垂足为E ,连结EC ,则CDE ADE ∆≅∆.∴EC AE =,︒=∠90CED ,故CFA ∠是面PAD 与面PCD 所成的二面角的平面角. 设AC 与DB 相交于点O ,连结EO ,则AC EO ⊥.a AD AE OA a =<<=22在△AEC 中,0)2)(2(2)2(cos 2222<-+=⋅⋅-+=∠AEOA AE OA AE EC AE OA EC AE AEC 所以,面PAD 与面PCD 所成的二面角恒大于︒90(20)解:(I )3)2(=f ,7)2(=-f ,由于)2()2(f f ≠-,)2()2(f f -≠- 故)(x f 既不是奇函数,也不是偶函数.(2)⎪⎩⎪⎨⎧<+-≥-+=2123)(22x x x x x x x f由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f 故函数)(x f 在),(∞-∞内的最小值为43 (21)解:设P 的坐标为),(y x ,由题意有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++,整理得01622=+-+x y x因为点N 到PM 的距离为1,2||=MN所以︒=30PMN ,直线PM 的斜率为33±直线PM 的方程为)1(33+±=x y 将)1(33+±=x y 代入01622=+-+x y x 整理得0142=+-x x 解得32+=x ,32-=x则点P 坐标为)31,32(++或)31,32(+--)31,32(--+或)31,32(---直线PN 的方程为1-=x y 或1+-=x y .(22)解(I )如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥.如图2,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的41,有一组对角为直角,余下部分按虚线折起,可成一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱锥的上底.(II )依上面剪拼方法,有锥柱V V >.推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正三角形,其面积为43.现在计算它们的高: 36)2332(12=⋅-=锥h ,633021=︒=tg h 柱. 02422343)9663(43)31(>-=⋅-=⋅=-锥柱锥柱-h h V V所以锥柱V V >.(III )如图3,分别连结三角形的内心与各顶点,得三条线段,再以这三条线段的中点为顶点作三角形.以新作的三角形为直棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可心拼成直三棱柱的上底,余下部分按虚线折起,成为一个缺上底的直三棱柱,即可得到直三棱柱.。
2022年普通高等学校招生全国统一考试(北京卷)数学一、选择题1.已知全集{|33}U x x =-<<,集合{|21}A x x =-<≤,则U C A =()A.(2,1]-B.(3,2)[1,3)-- C.[2,1)-D.(3,2](1,3)-- 【答案】D【解析】易得(3,2)(1,3)U C A =-- .2.若复数z 满足34i z i ⋅=-,则z =()A.1B.5C.7D.25【答案】B【解析】条件可知3443iz i i -==--,所以5z =.3.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则a =()A.12B.12-C.1D.1-【答案】A【解析】若直线是圆的对称轴,则直线过圆心,圆心坐标(,0)a ,所以由2010a +-=解得12a =.4.已知函数1()12x f x =+,则对任意实数x ,有()A.()()0f x f x -+=B.()()0f x f x --=C.()()1f x f x -+=D.1()()3f x f x --=【答案】C【解析】由1()12x f x =+,可得12()1221x x x f x --==++,所以得21()()121x x f x f x +-+==+.5.已知函数22()cos sin f x x x =-,则()A.()f x 在(,26ππ--上单调递减B.()f x 在(,412ππ-C.()f x 在(0,)3π上单调递减D.()f x 在7(,)412ππ上单调递增【答案】C【解析】22()cos sin cos 2f x x x x =-=,选项A 中:2(,)3x ππ∈--,此时()f x 单调递增,选项B 中:2(,)26x ππ∈-,此时()f x 先递增后递减,选项C 中:22(0,)3x π∈,此时()f x 单调递减,选项D 中:72(,26x ππ∈,此时()f x 先递减后递增;所以选C.6.设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A.充分而不必有条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】①充分性证明:若{}n a 为递增数列,则有对n N ∀∈,1n n a a +>,公差10n n d a a +=->,取正整数10[]2a N d =-+(其中1[]a d -为不大于1a d -的最大正整数),则当0n N >时,只要0n a >,都有111(1)([]1)0n a a a n d a d d =+->+-+>,②必要性证明:若存在正整数0N ,当0n N >时,0n a >,∵1(1)n a a n d =+-,∴1d a d n->,对0n N ∀>,n N ∈都成立,∵1lim 0n d a n →+∞-=,且0d ≠,∴0d >,∴对n N ∀∈,都有10n n a a d +-=>,1n n a a +>,即:{}n a 为递增数列;所以“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充要条件,∴选C.7.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奧作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A.当220T =,1026P =时,二氧化碳处于液态B.当270T =,128P =时,二氧化碳处于气态C.当300T =,9987P =时,二氧化碳处于超临界状态D.当360T =,729P =时,二氧化碳处于超临界状态【答案】D【解析】A 选项:lg lg10263P =>,220T =,由图易知处于固态;B 选项:lg 1282P =>,270T =,由图易知处于液态;C 选项:lg lg9987 3.999P =≈,300T =,由图易知处于固态;D 选项:lg lg 7292P =>,360T =,由图易知处于超临界状态;所以选D.8.若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A.40B.41C.40-D.41-【答案】B【解析】当1x =时,432101a a a a a =++++①;当时1x =-时,4321081a a a a a =-+-+②;①+②得原式41=.9.已知正三棱锥P ABC -的六条棱长为6,S 是ABC ∆及其内部的点构成的集合.设集合{|5}T Q S PQ =∈≤,则T 表示的区域的面积为()A.34πB.πC.2πD.3π【答案】B【解析】过点P 作底面射影点O ,则由题意,CO =6PC =,∴PO =CO 上存在一点Q 使得5PQ =,,此时1QO =,则动点Q 为半径,O 为圆心的圆里,所以面积为π.10.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅ 的取值范围是()A.[5,3]-B.[3,5]-C.[6,4]-D.[4,6]-【答案】D【解析】建立如图所示坐标系,由题易知,设(0,0)C ,(3,0)A ,(0,4)B ,∵1PC =,∴设(cos ,sin ),[0,2]P θθθπ∈22(3cos ,sin )(cos ,4sin )3cos 4sin cos sin PA PB θθθθθθθθ⋅=--⋅--=--+ 3415sin()(sin ,cos )[4,6]55θϕϕϕ=-+==∈-,所以选D.方法二:,|,|2PC CB PC CA π=- ,且0CA CB ⋅= ∴PA PB⋅ ()()PC CA PC CB =+⋅+ 2PC PC CA PC CB CA CB=+⋅+⋅+⋅ 13cos ,4cos ,0PC CA PC CB =+++ 13cos ,4sin ,PC CA PC CA=++ 15sin[,]PC CA ϕ++ 其中,(0,)2πϕ∈,3tan 4ϕ=,∴46PA PB -≤⋅≤ ,∴选D.二、填空题11.函数1()1f x x x =+-的定义域是.【答案】(,0)(0,1]-∞ 【解析】依题意010x x ≠⎧⎨-≥⎩,解得(,0)(0,1]x ∈-∞ .12.已知双曲线221x y m +=的渐近线方程为33y x =±,则m =.【答案】3-【解析】双曲线221x y m +=的渐近线方程为y m =-,故3m =-.13.若函数()sin 3f x A x x =-的一个零点为3π,则A =________.【答案】12【解析】33()sin 3033322f A A πππ=-=-=,解得1A =.()sin 2sin(3f x x x x π==-,故(2sin()2sin()121234f ππππ=-=-=.14.设函数21,()(2),ax x a f x x x a-+<⎧=⎨-≥⎩,若()f x 存在最小值,则a 的一个取值为,a 的最大值为.【答案】0(答案不唯一),1【解析】由题意知,函数最值于函数单调性相关,故可考虑以0,2为分界点研究函数()f x 的性质,当0x <时,()1,f x ax x a =-+<,该段的值域为2(,1)a -∞-+,故整个函数没有最小值;当0a =时,()1f x ax =-+,x a <该段值域为{1},而2()(2),f x x x a =-≥的值域为[0,)+∞,故此时()f x 的值域为[0,)+∞,即存在最小值为0,故第一个空可填写0;当02a <≤时,()1,f x ax x a =-+<,该段值域为2(1,)a -++∞,而2()(2),f x x x a =-≥的值域为[0,)+∞,若存在最小值,则需满足210a -+≥,于是可得01a <≤;当2a >时,()1,f x ax x a =-+<,该段的值域为2(1,)a -++∞,而2()(2),f x x x a =-≥的值域为2[(2),)a -+∞,若存在最小值,则需满足221(2)a a -+≥-,此不等式无解。
2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题1. 设集合,U 为整数集,( )A. B. C. D. 【答案】A 【解析】【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集,,所以,.故选:A .2. 若复数,则( )A. -1 B. 0 · C. 1 D. 2【答案】C 【解析】【分析】根据复数的代数运算以及复数相等即可解出.【详解】因为,所以,解得:.故选:C.3. 执行下面的程序框遇,输出的( ){31,},{32,}A xx k k Z B x x k k Z ==+∈==+∈∣∣()A B =U ð{|3,}x x k k =∈Z {31,}xx k k Z =-∈∣{32,}xx k k Z =-∈∣∅{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z U Z =(){}|3,U A B x x k k ==∈Z ð()()i 1i 2,R a a a +-=∈=a ()()()22i 1i i i 21i 2a a a a a a a+-=-++=+-=22210a a =⎧⎨-=⎩1a =B =A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行,即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;当时,判断框条件不满足,跳出循环体,输出.故选:B.4.向量,且,则()A. B. C.D.【答案】D 【解析】【分析】作出图形,根据几何意义求解.【详解】因为,所以,即,即,所以.如图,设,1n =123A =+=325B =+=112n =+=2n =358A =+=8513B =+=213n =+=3n =81321A =+=211334B =+=314n =+=4n =34B =1,a b c === 0a b c ++= cos ,a c b c 〈--〉= 15-25-25450a b c ++=a b c +=-rrr2222a b a b c ++⋅=1122a b ++⋅=rr 0a b ⋅=,,OA a OB b OC c ===由题知,是等腰直角三角形,AB 边上的高,所以,,.故选:D.5. 已知正项等比数列中,为前n 项和,,则( )A 7B. 9C. 15D. 30【答案】C 【解析】【分析】根据题意列出关于的方程,计算出,即可求出.【详解】由题知,即,即,即.由题知,所以.所以.故选:C.6. 有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球.1,OA OB OC OAB === OD AD ==CD CO OD =+=+=1tan ,cos 3AD ACD ACD CD ∠==∠=2cos ,cos cos 22cos 1a cbc ACB ACD ACD 〈--〉=∠=∠=∠-24215=⨯-={}n a 11,n a S ={}n a 5354S S =-4S =q q 4S ()23421514q q q q q q++++=++-34244q q q q +=+32440q q q +--=(2)(1)(2)0q q q -++=0q >2q =4124815S =+++=俱乐部,则其报乒乓球俱乐部的概率为( )A. 0.8 B. 0.4C. 0.2D. 0.1【答案】A 【解析】【分析】先算出报名两个俱乐部的人数,从而得出某人报足球俱乐部的概率和报两个俱乐部的概率,利用条件概率的知识求解.【详解】报名两个俱乐部的人数为,记“某人报足球俱乐部”为事件,记“某人报兵乓球俱乐部”为事件,则,所以.故选:.7. “”是“”的( )A. 充分条件但不是必要条件 B. 必要条件但不是充分条件C. 充要条件 D. 既不是充分条件也不是必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解.【详解】当时,例如但,即推不出;当时,,即能推出.综上可知,是成立的必要不充分条件.故选:B8. 已知双曲线交于A ,B两点,则( )50607040+-=A B 505404(),()707707P A P AB ====4()7()0.85()7P AB P B A P A ===∣A 22sin sin 1αβ+=sin cos 0αβ+=22sin sin 1αβ+=π,02αβ==sin cos 0αβ+≠22sin sin 1αβ+=sin cos 0αβ+=sin cos 0αβ+=2222sin sin (cos )sin 1αβββ+=-+=sin cos 0αβ+=22sin sin 1αβ+=22sin sin 1αβ+=sin cos 0αβ+=22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =A.B.C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线距离所以弦长.故选:D9. 有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A. 120 B. 60C. 40D. 30【答案】B 【解析】【分析】利用分类加法原理,分类讨论五名志愿者连续参加两天社区服务的情况,即可得解.【详解】不妨记五名志愿者为,假设连续参加了两天社区服务,再从剩余的4人抽取2人各参加星期六与星期天的社区服务,共有种方法,同理:连续参加了两天社区服务,也各有种方法,所以恰有1人连续参加了两天社区服务的选择种数有种.故选:B.10. 已知为函数向左平移个单位所得函数,则与的交点个数为( )的15e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===,,,,a b c d e a 24A 12=,,,b c d e 1251260⨯=()f x πcos 26y x ⎛⎫=+ ⎪⎝⎭π6()y f x =1122y x =-A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.11. 在四棱锥中,底面为正方形,,则的面积为( )A. B. C. D. ()sin 2f x x =-()fx 1122y x=-()f x1122y x =-πcos 26y x ⎛⎫=+ ⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3P ABCD -ABCD 4,3,45AB PC PD PCA ===∠=︒PBC【答案】C 【解析】【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得中利用余弦定理与三角形面积公式即可得解;法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得由此在中利用余弦定理与三角形面积公式即可得解.【详解】法一:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以,又,,所以,则,又,,则,在中,,则由余弦定理可得,故,则,故在中,,所以,又,所以,PDO PCO ≅ PDB PCA ≅ PA PB =PAC △PA =PB =PBC PAC△PA=1cos 3PCB ∠=3PA PC ⋅=- ,PB BPD ∠PB =PBC ,AC BD O PO O ,AC BD ABCD 4AB =AC BD ==DO CO ==3PC PD ==PO OP =PDO PCO ≅ PDO PCO ∠=∠3PC PD ==AC BD ==PDB PCA ≅ PA PB =PAC △3,45PC AC PCA ==∠=︒2222cos 3292317PA AC PC AC PC PCA =+-⋅∠=+-⨯=PA =PB =PBC 43,P PB C C B ===222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯0πPCB <∠<sin PCB ∠==所以的面积为法二:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以在中,,则由余弦定理可得,故,所以,不妨记,因为,所以,即,则,整理得①,又在中,,即,则②,两式相加得,故,故在中,,PBC 11sin 3422S PC BC PCB =⋅∠=⨯⨯=,AC BD O PO O ,AC BD ABCD 4AB =AC BD ==PAC △3,45PC PCA =∠=︒2222cos 3292317PA AC PC AC PC PCA =+-⋅∠=+-⨯=PA =222cos 2PA PC AC APC PA PC +-∠===⋅cos 33PA PC PA PC APC ⎛⋅=∠=⨯=- ⎝ ,PB m BPD θ=∠=()()1122PO PAPC PB PD =+=+()()22PA PC PB PD +=+222222PA PC PA PC PB PD PB PD ++⋅=++⋅ ()217923923cos m m θ++⨯-=++⨯⨯26cos 110m m θ+-=PBD △2222cos BD PB PD PB PD BPD =+-⋅∠23296cos m m θ=+-26cos 230m m θ--=22340m -=PB m ==PBC 43,P PB C C B ===所以,又,所以,所以的面积为故选:C.12. 己知椭圆,为两个焦点,O 为原点,P 为椭圆上一点,,则( )A.B.C.D.【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可得到点的坐标,从而得出的值;方法二:利用椭圆的定义以及余弦定理求出,再结合中线的向量公式以及数量积即可求出;方法三:利用椭圆的定义以及余弦定理求出,即可根据中线定理求出.【详解】方法一:设,所以,由,解得:,由椭圆方程可知,,所以,,解得:,即,因此.故选:B.方法二:因为①,,222916171cos 22343PC BC PB PCB PC BC +-+-∠===⋅⨯⨯0πPCB <∠<sin PCB ∠==PBC 11sin 3422S PC BC PCB =⋅∠=⨯⨯=22196x y +=12,F F 123cos 5F PF ∠=||PO =253512PF F △P OP 221212,PF PF PF PF +2212PF PF +12π2,02F PF θθ∠=<<122212tantan 2PF F F PF S b b θ∠== 22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ--∠====+1tan 2θ=222229,6,3a b c a b ===-=12121116222PF F p S F F y =⨯⨯=⨯⨯ 23p y =2399162p x ⎛⎫=⨯-= ⎪⎝⎭OP ===1226PF PF a +==222121212122PF PF PF PF F PF F F +-∠=即②,联立①②,解得:,而,所以,即.故选:B .方法三:因为①,,即②,联立①②,解得:,由中线定理可知,,易知,解得:故选:B .【点睛】本题根据求解目标可以选择利用椭圆中的二级结论焦点三角形的面积公式快速解出,也可以常规利用定义结合余弦定理,以及向量的数量积解决中线问题的方式解决,还可以直接用中线定理解决,难度不是很大.二、填空题13. 若为偶函数,则________.【答案】2【解析】【分析】利用偶函数的性质得到,从而求得,再检验即可得解.【详解】因为为偶函数,定义域为,所以,即,则,故,此时,的2212126125PF PF PF PF +-=22121215,212PF PF PF PF =+=()1212PO PF PF =+ 1212OP PO PF PF ==+1212PO PF PF =+==1226PF PF a +==222121212122PF PF PF PF F PF F F +-∠=2212126125PF PF PF PF +-=221221PF PF +=()()222212122242OP F F PF PF +=+=12F F=OP =2π(1)sin 2y x ax x ⎛⎫=-+++ ⎪⎝⎭=a ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭2a =()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭R ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝2a =()()2212cos 1cos f x x x x x x =-++=++所以,又定义域为,故为偶函数,所以.故答案为:2.14. 设x ,y 满足约束条件,设,则z 的最大值为____________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1515. 在正方体中,E ,F 分别为CD ,的中点,则以EF 为直径的球面与正方体每条棱的交点总数为____________.【答案】12【解析】【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.【详解】不妨设正方体棱长为2,中点为,取,中点,侧面的中心为,连接,如图,()()()()221cos s 1co f x x x x x f x -=-++++-==R ()f x 2a =2333231x y x y x y -+≤⎧⎪-≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -11A B EF O AB 1BB ,G M 11BB C C N ,,,,FG EG OM ON MN由题意可知,为球心,在正方体中,,即,则球心到的距离为,所以球与棱相切,球面与棱只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF 为直径的球面与正方体每条棱的交点总数为12.故答案为:1216. 在中,,D 为BC 上一点,AD 为的平分线,则_________.【答案】【解析】【分析】方法一:利用余弦定理求出,再根据等面积法求出;方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.【详解】如图所示:记,方法一:由余弦定理可得,,因为,解得:由可得,O EF ===R =O 1BB OM ===O 1BB 1BB ABC 2AB =60,BAC BC ∠=︒=BAC ∠AD =2AC AD AC ,B C ,,AB c AC b BC a ===22222cos 606b b +-⨯⨯⨯= 0b >1b =+ABC ABD ACD S S S =+,解得:.故答案为:.方法二:由余弦定理可得,,因为,解得:,解得:,,因为,,又,所以,即.故答案为:.【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.三、解答题17. 已知数列中,,设为前n 项和,.(1)求的通项公式;(2)求数列的前n 项和.【答案】(1)(2)【解析】分析】(1)根据即可求出;(2)根据错位相减法即可解出.【小问1详解】因为,当时,,即;【1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯ 2AD ===222222cos 606b b +-⨯⨯⨯= 0b >1b =2sin sin b B C==sin B =sin C =1+>>45C = 180604575B =--= 30BAD ∠=o 75ADB ∠= 2AD AB ==2{}n a 21a =n S {}n a 2n n S na ={}n a 12n n a +⎧⎫⎨⎬⎩⎭n T 1n a n =-()1222nn T n ⎛⎫=-+ ⎪⎝⎭11,1,2n nn S n a S S n -=⎧=⎨-≥⎩2n n S na =1n =112a a =10a =当时,,即,当时,,所以,化简得:,当时,,即,当时都满足上式,所以.【小问2详解】因为,所以,,两式相减得,,,即,.18. 在三棱柱中,,底面ABC ,,到平面的距离为1.(1)求证:;(2)若直线与距离为2,求与平面所成角的正弦值.【答案】(1)证明见解析 (2【解析】3n =()33213a a +=32a =2n ≥()1121n n S n a --=-()()11221n n n n n S S a na n a ---==--()()121n n n a n a --=-3n ≥131122n n a a an n -====-- 1n a n =-1,2,3n =()*1N n a n n =-∈122n n n a n +=12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭123111111111222222111222211n n nn n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+-⎝=-⎭⨯-⨯ 11122n n ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭()1222nn T n ⎛⎫=-+ ⎪⎝⎭*N n ∈111ABC A B C -12AA =1A C ⊥90ACB ∠=︒1A 11BCC B 1AC A C =1AA 1BB 1AB 11BCC B【分析】(1)根据线面垂直,面面垂直的判定与性质定理可得平面,再由勾股定理求出为中点,即可得证;(2)利用直角三角形求出的长及点到面的距离,根据线面角定义直接可得正弦值.【小问1详解】如图,底面,面,,又,平面,,平面ACC 1A 1,又平面,平面平面,过作交于,又平面平面,平面,平面到平面的距离为1,,在中,,设,则,为直角三角形,且,,,,,解得,1A O ⊥11BCC B O 1AB A 1AC ⊥ ABC BC ⊂ABC 1A C BC ∴⊥BC AC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC ∴⊥BC ⊂11BCC B ∴11ACC A ⊥11BCC B 1A 11A O CC ⊥1CC O 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ∴⊥11BCC B 1A 11BCC B 11∴=A O 11Rt A CC △111112,AC AC CC AA ⊥==CO x =12C O x =-11111,,A OC A OC A CC △△△12CC =22211CO A O A C +=2221111A O OC C A +=2221111A C A C C C +=2211(2)4x x ∴+++-=1x =111AC A C A C ∴===1AC A C∴=【小问2详解】,,过B 作,交于D ,则为中点,由直线与距离为2,所以,,在,,延长,使,连接,由知四边形为平行四边形,,平面,又平面,则在中,,,在中,,又到平面距离也为1,所以与平面19. 为探究某药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为,求的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g ):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.214.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0111,,AC A C BC A C BC AC =⊥⊥ 1Rt Rt ACB A CB ∴△≌△1BA BA ∴=1BD AA ⊥1AA D 1AA 1AA 1BB 2BD =11A D = 2BD =1A B AB ∴==Rt ABC △BC ∴==AC AC CM =1C M 1111,CM A C CM A C =∥11A CMC 11C M A C ∴∥1C M ∴⊥ABC AM ⊂ABC 1C M AM∴⊥1Rt AC M △112,AM AC C M AC ==1AC ∴=11Rt AB C △1AC =11B C BC ==1AB ∴==A 11BCC B 1AB 11BCC B =X X(i )求40只小鼠体重的中位数m ,并完成下面2×2列联表:对照组实验组(ii )根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:0.100.050.0102.7063.841 6.635【答案】(1)分布列见解析, (2)(i );列联表见解析,(ii )能【解析】【分析】(1)利用超几何分布的知识即可求得分布列及数学期望;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】依题意,的可能取值为,则,,,所以的分布列为:故.【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数m<m≥0k ()20P k k ≥()1E X =23.4m =23.4m =X 0,1,2022020240C C 19(0)C 78P X ===120224010C C 20(1)C 39P X ===202020240C C 19(2)C 78P X ===X X12P197820391978192019()0121783978E X =⨯+⨯+⨯=据的平均数,由于原数据已经排好,所以我们只需要观察对照组第一排数据与实验组第二排数据即可,可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420实验组14620合计202040(ii )由(i )可得,,所以能有的把握认为药物对小鼠生长有抑制作用.20. 已知直线与抛物线交于两点,且.(1)求;(2)设C 的焦点为F ,M ,N 为C 上两点,,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,14.417.3,17.3,18.4,19.2,20.1,20.2,20.4,21.5,23.2,23.6, 23.223.623.223.623.42m +==m<m≥240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%210x y -+=2:2(0)C y px p =>,A B ||AB =p 0MF NF ⋅=MNF 2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF ()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.21. 已知B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-3n =-MNF (2min 212S =-=-,m n 3sin π(),0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭(1)若,讨论的单调性;(2)若恒成立,求a 的取值范围.【答案】(1)答案见解析. (2)【解析】【分析】(1)求导,然后令,讨论导数的符号即可;(2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.【小问1详解】令,则则当当,即.当,即.所以在上单调递增,在上单调递减【小问2详解】设设8a =()f x ()sin 2f x x <(,3]-∞2cos t x =()()sin 2g x f x x =-()g x 'a a 326cos cos 3sin cos sin ()cos x x x x x f x a x'+=-22244cos 3sin 32cos cos cos x x x a a x x+-=-=-2cos x t =(0,1)t ∈2223223()()t at t f x g t a t t '-+-==-=222823(21)(43)8,()()t t t t a f x g t t t '+--+====10,2t ⎛⎫∈ ⎪⎝⎭ππ,,()042x f x '⎛⎫∈< ⎪⎝⎭1,12t ⎛⎫∈⎪⎝⎭π0,,()04x f x '⎛⎫∈> ⎪⎝⎭()f x π0,4⎛⎫ ⎪⎝⎭ππ,42⎛⎫⎪⎝⎭()()sin 2g x f x x=-()22222323()()2cos 2()22cos 12(21)24at t g x f x x g t x t a t t t t ''+-=-=--=--=+-+-223()24t a t t t ϕ=+-+-所以.若,即在上单调递减,所以.所以当,符合题意.若当,所以..所以,使得,即,使得.当,即当单调递增.所以当,不合题意.综上,的取值范围为.【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,若,当,对应当.四、选做题22. 已知,直线(t 为参数),为的倾斜角,l 与x 轴,y 轴正半轴交于A ,B 两点,.(1)求的值;(2)以原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1) (2)【解析】322333264262(1)(22+3)()40t t t t t t t t t t ϕ'--+-+=--+==->()(1)3t a ϕϕ<=-1︒(,3]a ∈-∞()()30g x t a ϕ'=<-≤()g x 0,2π⎛⎫ ⎪⎝⎭()(0)0g x g <=(,3],()sin 2a f x x ∈-∞<2︒(3,)a ∈+∞22231110,333t t t t ⎛⎫→-=--+→-∞ ⎪⎝⎭()t ϕ→-∞(1)30a ϕ=->0(0,1)t ∃∈()00t ϕ=00,2x π⎛⎫∃∈ ⎪⎝⎭()00g x '=()0,1,()0t t t ϕ∈>()00,,()0,()x x g x g x '∈>()00,,()(0)0x x g x g ∈>=a (,3]-∞cos t x =00cos t x =()0,1,()0t t t ϕ∈>()00,,()0x x g x '∈>(2,1)P 2cos :1sin x t l y t αα=+⎧⎨=+⎩αl ||||4PA PB ⋅=α3π4cos sin 30ραρα+-=【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫ ⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3a x a <≤若,则,解得,即,综上,不等式的解集为.小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以,解得【x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭||=AB a 21132224OAD ABC S S OA a AB a a +=⋅+⋅==a =三人行教育资源。
2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 11=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1xx x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。