(全国通用版)高考数学一轮复习 高考达标检测 古典概型命题2类型——简单问题、交汇问题(理)
- 格式:doc
- 大小:90.00 KB
- 文档页数:7
高考数学一轮复习学案:12.2 古典概型(含答案)12.2古典概型古典概型最新考纲考情考向分析1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.全国对古典概型每年都会考查,主要考查实际背景的可能事件,通常与互斥事件.对立事件一起考查在高考中单独命题时,通常以选择题.填空题形式出现,属于中低档题;与统计等知识结合在一起考查时,以解答题形式出现,属中档题.1基本事件的特点1任何两个基本事件是互斥的;2任何事件除不可能事件都可以表示成基本事件的和2古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型1试验中所有可能出现的基本事件只有有限个;2每个基本事件出现的可能性相等3如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A包括的结果有m个,那么事件A的概率PAmn.4古典概型的概率公式PAA包含的基本事件的个数基本事件的总数.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽”与“不发芽”2掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件3从市场上出售的标准为5005g的袋装食盐中任取一袋测其重量,属于古典概型4有3个兴趣小组,甲.乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.5从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.6在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为nm.题组二教材改编2P127例3一个盒子里装有标号为1,2,3,4的4张卡片,随机地抽取2张,则取出的2张卡片上的数字之和为奇数的概率是A.14B.13C.12D.23答案D解析抽取两张卡片的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6种,和为奇数的事件有1,2,1,4,2,3,3,4,共4种所求概率为4623.3P145A组T5袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为A.25B.415C.35D.23答案A解析从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P61525.4P134A组T6已知5件产品中有2件次品,其余为合格品现从这5件产品中任取2件,恰有一件次品的概率为________答案0.6解析从5件产品中任取2件共有C2510种取法,恰有一件次品的取法有C12C136种,所以恰有一件次品的概率为6100.6.题组三易错自纠5将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为A.12B.13C.23D.56答案C解析设两本不同的数学书为a1,a2,1本语文书为b,则在书架上的摆放方法有a1a2b,a1ba2,a2a1b,a2ba1,ba1a2,ba2a1,共6种,其中数学书相邻的有4种因此2本数学书相邻的概率P4623.6xx合肥检测已知函数fx2x24ax2b2,若a4,6,8,b3,5,7,则该函数有两个零点的概率为________答案23解析要使函数fx2x24ax2b2有两个零点,即方程x22axb20有两个实根,则4a24b20,又a4,6,8,b3,5,7,即ab,而a,b的取法共有339种,其中满足ab的取法有4,3,6,3,6,5,8,3,8,5,8,7,共6种,所以所求的概率为6923.题型一题型一基本事件与古典概型的判断基本事件与古典概型的判断1下列试验中,古典概型的个数为向上抛一枚质地不均匀的硬币,观察正面向上的概率;向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;在线段0,5上任取一点,求此点小于2的概率A0B1C2D3答案B解析中,硬币质地不均匀,不是等可能事件,所以不是古典概型;的基本事件都不是有限个,不是古典概型;符合古典概型的特点,是古典概型2xx沈阳模拟有两个正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验用x,y表示结果,其中x表示第1个正四面体玩具出现的点数,y表示第2个正四面体玩具出现的点数试写出1试验的基本事件;2事件“出现点数之和大于3”包含的基本事件;3事件“出现点数相等”包含的基本事件解1这个试验的基本事件为1,1,1,2,1,3,1,4,2,1,2,2,2,3,2,4,3,1,3,2,3,3,3,4,4,1,4,2,4,3,4,42事件“出现点数之和大于3”包含的基本事件为1,3,1,4,2,2,2,3,2,4,3,1,3,2,3,3,3,4,4,1,4,2,4,3,4,43事件“出现点数相等”包含的基本事件为1,1,2,2,3,3,4,43袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号_________,从中摸出一个球1有多少种不同的摸法如果把每个球的编号_________看作一个基本事件建立概率模型,该模型是不是古典概型2若按球的颜色为划分基本事件的依据,有多少个基本事件以这些基本事件建立概率模型,该模型是不是古典概型解1由于共有11个球,且每个球有不同的编号_________,故共有11种不同的摸法又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号_________为基本事件的概率模型为古典概型2由于11个球共有3种颜色,因此共有3个基本事件,分别记为A“摸到白球”,B“摸到黑球”,C“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球.红球的可能性均为311,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型思维升华一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点有限性和等可能性,只有同时具备这两个特点的概型才是古典概型题型二题型二古典概型的求法古典概型的求法典例1xx全国从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25答案D解析从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,所求概率P102525.2袋中有形状.大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________答案56解析基本事件共有C246种,设取出两个球颜色不同为事件A.A包含的基本事件有C12C12C11C115种故PA56.3我国古代“五行”学说认为“物质分金.木.土.水.火五种属性,金克木.木克土.土克水.水克火.火克金”将这五种不同属性的物质任意排成一列,设事件A表示“排列中属性相克的两种物质不相邻”,则事件A发生的概率为________答案112解析五种不同属性的物质任意排成一列的所有基本事件数为A55120,满足事件A“排列中属性相克的两种物质不相邻”的基本事件可以按如下方法进行考虑从左至右,当第一个位置的属性确定后,例如金,第二个位置除去金本身只能排土或水属性,当第二个位置的属性确定后,其他三个位置的属性也确定,故共有C15C1210种可能,所以事件A出现的概率为10120112.引申探究1本例2中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率解基本事件数仍为6.设标号和为奇数为事件A,则A包含的基本事件为1,2,1,4,2,3,3,4,共4种,所以PA4623.2本例2中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率解基本事件数为C14C1416,颜色相同的事件数为C12C11C12C126,故所求概率P61638.思维升华求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法.列表法和树状图法,具体应用时可根据需要灵活选择跟踪训练xx山东某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游1若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;2若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率解1由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有A1,A2,A1,A3,A1,B1,A1,B2,A1,B3,A2,A3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,B1,B2,B1,B3,B2,B3,共15个所选两个国家都是亚洲国家的事件所包含的基本事件有A1,A2,A1,A3,A2,A3,共3个,则所求事件的概率为P31515.2从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,共9个包括A1但不包括B1的事件所包含的基本事件有A1,B2,A1,B3,共2个,则所求事件的概率为P29.题型三题型三古典概型与统计的综合应用古典概型与统计的综合应用典例某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额单位万元的茎叶图如图所示,其中茎为位数,叶为个位数1根据茎叶图计算样本数据的平均数;2若网购金额单位万元不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;3从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率解1由题意知,样本数据的平均数x4612121820612.2样本中优秀服务网点有2个,概率为2613,由此估计这90个服务网点中优秀服务网点有901330个3样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有a1,a2,a1,b1,a1,b2,a1,b3,a1,b4,a2,b1,a2,b2,a2,b3,a2,b4,b1,b2,b1,b3,b1,b4,b2,b3,b2,b4,b3,b4,共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有a1,b1,a1,b2,a1,b3,a1,b4,a2,b1,a2,b2,a2,b3,a2,b4,共8种,故所求概率PM815.思维升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表.频率分布直方图.茎叶图等给出信息,准确从题中提炼信息是解题的关键跟踪训练从某学校xx届高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组第一组155,160,第二组160,165,,第八组190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同1求第六组.第七组的频率并补充完整频率分布直方图;2若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|xy|5的概率解1由频率分布直方图知,前五组的频率为0.0080.0160.040.040.0650.82,所以后三组的频率为10.820.18,人数为0.18509,由频率分布直方图得第八组的频率为0.00850.04,人数为0.04502,设第六组人数为m,则第七组人数为m1,又mm129,所以m4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示2由1知身高在180,185内的男生有四名,设为a,b,c,d,身高在190,195的男生有两名,设为A,B.若x,y180,185,有ab,ac,ad,bc,bd,cd共6种情况;若x,y190,195,只有AB1种情况;若x,y分别在180,185,190,195内,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,所以基本事件的总数为68115,事件|xy|5包含的基本事件的个数为617,故所求概率为715.六审细节更完善典例12分一个袋中装有四个形状大小完全相同的球,球的编号_________分别为1,2,3,4.1从袋中随机取两个球,求取出的球的编号_________之和不大于4的概率;2先从袋中随机取一个球,该球的编号_________为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号_________为n,求nm2的概率1基本事件为取两个球两球一次取出,不分先后,可用集合的形式表示把取两个球的所有结果列举出来1,2,1,3,1,4,2,3,2,4,3,4两球编号_________之和不大于4注意和不大于4,应为小于4或等于41,2,1,3利用古典概型概率公式求解P26132两球分两次取,且有放回两球的编号_________记录是有次序的,用坐标的形式表示基本事件的总数可用列举法表示1,1,1,2,1,3,1,4,2,1,2,2,2,3,2,4,3,1,3,2,3,3,3,4,4,1,4,2,4,3,4,4注意细节,m是第1个球的编号_________,n是第2个球的编号_________nm2的情况较多,计算复杂将复杂问题转化为简单问题计算nm2的概率nm2的所有情况为1,3,1,4,2,4P1316注意细节,P1316是nm2的概率,需转化为其对立事件的概率nm2的概率为1P11316.规范解答解1从袋中随机取两个球,其一切可能的结果组成的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6个从袋中取出的球的编号_________之和不大于4的事件有1,2,1,3,共2个因此所求事件的概率P2613.4分2先从袋中随机取一个球,记下编号_________为m,放回后,再从袋中随机取一个球,记下编号_________为n,其一切可能的结果有1,1,1,2,1,3,1,4,2,1,2,2,2,3,2,4,3,1,3,2,3,3,3,4,4,1,4,2,4,3,4,4,共16个6分又满足条件nm2的事件为1,3,1,4,2,4,共3个,所以满足条件nm2的事件的概率P1316.10分故满足条件nm2的事件的概率为1P113161316.12分第 11 页共 11 页。
高考数学古典概型一轮专项练习题及答案高三各科目的学习对同窗们提高综分解绩十分重要,大家一定要仔细掌握,查字典数学网为大家整理了古典概型一轮专项练习题及答案,让我们一同窗习,一同提高吧!一、选择题1.以下事情属于古典概型的基身手情的是( D )(A)恣意抛掷两枚骰子,所得点数之和作为基身手情(B)篮球运发动投篮,观察其能否投中(C)测量某天12时的教室内温度(D)一先一后掷两枚硬币,观察正反面出现的状况解析:A项恣意抛掷两枚骰子,所得点数之和作为基身手情,但各点数之和不是等能够的,例如和为2的概率为 ,和为3的概率为 = ,所以它不是等能够的,不是古典概型.B项显然事情投中和事情未投中发作的能够性不一定相等,所以它也不是古典概型.C项其基身手情空间包括有限个结果,所以不是古典概型.D项含有4个基身手情,每个基身手情出现的能够性相等,契合古典概型,应选D.2.甲乙二人玩猜数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b{1,2,3},假定|a-b|1,那么称甲乙心有灵犀,现恣意找两团体玩这个游戏,那么他们心有灵犀的概率为( D )(A) (B) (C) (D)解析:甲想一数字有3种结果,乙猜一种数字有3种结果,基身手情总数33=9.设甲乙心有灵犀为事情A,那么A的统一事情B为|a-b|,即|a-b|=2,包括2个基身手情,P(B)= ,P(A)=1- = ,应选D.3.中国作家莫言被授予诺贝尔文学奖,成为有史以来首位取得诺贝尔文学奖的中国籍作家.某学校组织了4个学习小组.现从中抽出2个小组停止学习效果汇报,在这个实验中,基身手情的个数为( C )(A)2(B)4(C)6(D)8解析:设4个学习小组为A,B,C,D,从中抽出2个的能够状况有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6种.应选C.4.从正六边形的6个顶点中随机选择4个顶点,那么以它们作为顶点的四边形是矩形的概率等于( D )(A) (B) (C) (D)解析:如下图,从正六边形ABCDEF 的6个顶点中随机选4个顶点,可以看作随机选2个顶点,剩下的4个顶点构成四边形,有A、B,A、C,A、D,A、E,A、F,B、C,B、D,B、E,B、F,C、D,C、E,C、F,D、E,D、F,E、F,共15种.假定要构成矩形,只需选相对顶点即可,有A、D,B、E,C、F,共3种,故其概率为 = ,应选D.5.(2021年高考新课标全国卷Ⅰ)从1,2,3,4中任取2个不同的数,那么取出的2个数之差的相对值为2的概率是( B )(A) (B) (C) (D)解析:从1,2,3,4中任取2个不同的数有六种状况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的有(1,3),(2,4),故所求概率是 = .应选B.6.(2021银川模拟)抛掷两枚平均的骰子,失掉的点数区分为a,b,那么直线 + =1的斜率k- 的概率为( D )(A) (B) (C) (D)解析:记a,b的取值为数对(a,b),由题意知a,b的一切能够取值有(1,1),(1,2),,(1,6),(2,1),(2,2),,(2,6),(3,1),(3,2),, (3,6),(4,1),(4,2),,(4,6),(5,1),(5,2),,(5,6),(6,1),( 6,2),,(6,6),共36种.由直线 + =1的斜率k=- ,知 ,那么满足题意的a,b能够的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6, 3),共有9种,所以所求概率为 = .应选D.7.(2021临沂模拟)A={1,2,3},B={xR|x2-ax+b=0,aA,bA},那么AB=B的概率是( C )(A) (B) (C) (D)1解析:∵AB=B,B能够为,{1},{2},{3},{1,2},{2,3},{1 ,3}.当B=时,a2-4b0,满足条件的a,b为a=1,b=1,2,3;a=2,b=2,3;a=3,b=3.当B={1}时,满足条件的a,b为a=2,b=1.当B={2},{3}时,没有满足条件的a,b.当B={1,2 }时,满足条件的a,b为a=3,b=2.当B={2,3},{1,3}时,没有满足条件的a,b,AB=B的概率为 = .应选C.二、填空题8.曲线C的方程为 + =1,其中m、n是将一枚骰子先后投掷两次所得点数,事情A=方程 + =1表示焦点在x轴上的椭圆,那么P(A)=.解析:实验中所含基身手情个数为36,假想象表示椭圆,那么前后两次的骰子点数不能相反,那么去掉6种能够,既然椭圆焦点在x轴上,那么mn,又只剩下一半状况,即有15种,因此P(A)= = .答案:9.(2021年高考新课标全国卷Ⅱ)从1,2,3,4,5中恣意取出两个不同的数,其和为5的概率是.解析:从1,2,3,4,5中恣意取两个不同的数共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3, 5),(4,5)10种.其中和为5的有(1,4 ),(2,3)2种.由古典概型概率公式知所求概率为 = .答案:10.关于x的二次函数f(x)=ax2-4bx+1.设集合P={-1,1,2,3,4,5},Q={-2,-1,1,2,3,4},区分从集合P和Q 中随机取一个数作为a和b,那么函数y=f(x)在[1,+)上是增函数的概率为.解析:区分从集合P、Q中各任取一个数,一切的能够状况有(-1,-2),(-1,-1),(-1,1),(-1,2),(-1,3),(-1,4),(1,-2), (1,-1),(1,1),(1,2),(1,3),(1,4),(2,-2),(2,-1),(2 ,1) ,(2,2),(2,3),(2,4),(3,-2),(3,-1),(3,1),(3,2),(3,3), (3,4),(4,-2),(4,-1),(4,1),(4,2),(4,3),(4,4),(5,-2), (5,-1),(5,1),(5,2),(5,3),(5,4),共36种,能使f(x)是增函数,需a0且 1,所以其中契合上述条件的有(1,-2),(1,-1),(2,-2),(2,-1),(2,1),(3,-2),(3,-1),(3, 1),(4 ,-2),(4,-1),(4,1),(4,2),(5,-2),(5,-1),(5,1),( 5,2)共16种,P= = .答案:11.(2021南京模拟)在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,失掉点P(m,n),那么点P在圆x2+y2=9外部的概率为.解析:点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种状况,只要(2,1),(2,2)这2个点在圆x2+y2=9的外部,所求概率为 = . 答案:12.(2021年高考浙江卷)从边长为1的正方形的中心和顶点这五点中,随机(等能够)取两点,那么该两点间的距离为的概率是.解析:如下图,在正方形ABCD中,O为中心,从五个点中随机取两个,共有(O,A),(O,B),(O,C),(O,D),(A,B),(A,C),(A,D),(B,C),(B, D),(C,D),10种等能够状况.∵正方形的边长为1,两点距离为的状况有(O,A),(O,B),(O,C),(O,D)4种,故P= = .答案:13.(2021年高考重庆卷)假定甲、乙、丙三人随机地站成一排,那么甲、乙两人相邻而站的概率为.解析:甲、乙、丙三人随机地站成一排有6种方法:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,其中甲、乙相邻的有4种.故所求概率P= = .答案:三、解答题14.向量a=(2,1),b=(x,y).假定x{-1,0,1,2},y{-1,0,1},求向量a∥b的概率.解:设a∥b为事情A,由a∥b得x=2y.基身手情有(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1 ,1),(2,-1),(2,0),(2,1),共包括12种等能够状况.其中A={(0,0),(2, 1)},包括2个基身手情.那么P(A)= = ,即向量a∥b的概率为 .15.(2021滨州一模)甲、乙两名考生在填报志愿时都选中了A、B、C、D四所需求面试的院校,这四所院校的面试布置在同一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假定每位同窗选择各个院校是等能够的,试求:(1)甲、乙选择同一所院校的概率;(2)院校A、B至少有一所被选择的概率.解:由题意可得,甲、乙都只能在这四所院校中选择一个做志愿的一切能够结果为:(甲A,乙A),(甲A,乙B),(甲A,乙C),(甲A,乙D),(甲B,乙A),(甲B,乙B),(甲B,乙C),(甲B,乙D),(甲C,乙A),(甲C,乙B),(甲C,乙C),(甲C,乙D),(甲D,乙A),(甲D,乙B),(甲D,乙C),(甲D,乙D),共16种.(1)其中甲、乙选择同一所院校有4种,所以甲、乙选择同一所院校的概率为 = .(2)院校A、B至少有一所被选择的有12种,所以院校A、B 至少有一所被选择的概率为 = .16.(2021年高考天津卷)某产品的三个质量目的区分为x,y,z,用综合目的S=x+y+z评价该产品的等级.假定S4,那么该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量目的列表如下:产品编号A1A2A3A4A5质量目的(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1) 产品编号A6A7A8A9A10质量目的(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(1)应用上表提供的样本数据估量该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出一切能够的结果;②设事情B为在取出的2件产品中,每件产品的综合目的S 都等于4,求事情B发作的概率.解:(1)计算10件产品的综合目的S,如下表:产品编号A1A2A3A4A5A6A7A8A9A10S4463454535其中S4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为 =0.6,从而可估量该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的一切能够结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2 ,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7 },{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合目的S等于4的产品编号区分为A1,A2,A5,A7,那么事情B发作的一切能够结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2 ,A7},{A5,A7},共6种.所以P(B)= = .古典概型一轮专项练习题及答案的相关内容就是这些,希望考生仔细做题,发现效果。
课时提升作业五十八古典概型(20分钟40分)一、选择题(每小题5分,共25分)1.从数字1,2,3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A. B. C. D.【解析】选B.从数字1,2,3中任取两个不同的数字构成一个两位数,有12,13,21,23,31,32共6种,则这个两位数大于30有31,32共2种,因此概率P==.2.(2016·泰安模拟)有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是()A. B. C. D.【解题提示】能构成三角形的三数须满足任两个数的和大于第三个数.【解析】选A.从四条线段中任取三条,基本事件有(1,3,5),(1,5,7),(1,3,7),(3,5,7),共4种,能构成三条形的只有(3,5,7)这一个基本事件,故由概率公式得所取三条线段能构成三角形的概率P=.3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x,y,则满足log2x y=1的概率为()A. B. C. D.【解析】选 C.由log2x y=1得2x=y.又x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},所以满足题意的有x=1,y=2或x=2,y=4或x=3,y=6,共3种情况.所以所求的概率为=.4.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为()A. B. C. D.【解析】选 C.由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为.5.A,B两个学生分别从2名数学教师和2名英语教师共4人中各选择一位教师给自己补缺补差,若A,B不选同一位教师,则学生A选择数学教师,学生B选择英语教师的概率为() A. B. C. D.【解题提示】分别用列举法,列出A先选,B后选的基本事件数,再列出数学在前,英语在后的基本事件数,代入公式求解.【解析】选A.两位数学教师用1,2表示,英语教师用3,4表示,不妨让A先选,B后选(不重复),则他们所有的选择如下:12,13,14,21,23,24,31,32,34,41,42,43共12种情况,数学在前,英语在后的是13,14,23,24,共4种情况,所以要求的概率P=. 【加固训练】1.(2016·济南模拟)在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离大于3的概率为()A. B. C. D.【解析】选B.如图所示,从8个顶点中选1个,有8种选法.若第1次选A点,则有AB,AC,AD,AA1,AB1,AC1,AD1,共7种选法,所以有8×7=56种,由于两次分别选AB,还是BA只能算一种选法,所以选法共有56÷2=28种,平面ADD1A1与平面BCC1B1的对角线长为,12条棱的长度不大于3,故长度大于3的有28-4-12=12,所以两点距离大于3的概率为=.2.(2016·莱芜模拟)设b,c分别是先后抛掷一枚骰子得到的点数,则函数f(x)=x2+bx+c有零点的概率为()A. B. C. D.【解析】选C.所有的(b,c)共计6×6=36(个),函数f(x)=x2+bx+c有零点等价于b2-4c≥0,故满足条件的(b,c)有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共计19个.故函数f(x)=x2+bx+c有零点的概率为.【易错警示】解答本题时易将事件函数f(x)=x2+bx+c有零点的个数计算错误而误选.二、填空题(每小题5分,共15分)6.(2014·广东高考)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为. 【解析】因为从字母a,b,c,d,e中任取两个不同字母,不考虑先后顺序共有10种取法,分别是(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),其中取到字母a的有4种:(a,b),(a,c),(a,d),(a,e),所求概率为P==.答案:【误区警示】有无顺序是最容易出错的,列10种取法部分同学会遗漏或重复.7.如图,沿田字型的路线从A往N走,且只能向右或向下走,随机地选一种走法,则经过点C的概率是.【解析】按规定要求从A往N走只能向右或向下,所有可能走法有:A→D→S→J→N,A→D→C→J→N,A→D→C→M→N,A→B→C→J→N,A→B→C→M→N,A →B→F→M→N共6种,其中经过C点的走法有4种,所以所求概率P==.答案:【一题多解】本题还可以用如下方法解决:由于从A点出发后只允许向右或向下走,记向右走为1,向下走为2,欲到达N点必须两次向右,两次向下即有两个2两个1.所以基本事件空间Ω={(1122),(1212),(1221),(2112),(2121),(2211)}共6种不同结果,而只有先右再下或先下再右两类情形经过C点,即前两个数字必须一个1一个2,所以事件“经过C点”含有的基本事件为(1212),(1221),(2112),(2121)共4个,所以P==.答案:8.(2016·临沂模拟)如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为.【解析】由茎叶图可得甲的5次得分分别为18,19,20,21,22,则甲的平均得分:(18+19+20+21+22)=20,设污损数字为x,则乙的5次得分分别为15,16,18,28,(20+x),则乙的平均得分:(15+16+18+28+20+x)=19.4+,因为0≤x≤9,x∈Z.当x=3,4,5,6,7,8,9时,甲的平均得分≤乙的平均得分,所以甲的平均得分不超过乙的平均得分的概率为.答案:(20分钟35分)1.(5分)(2016·济宁模拟)“序数”指每个数字比其左边的数字大的自然数(如1246),在两位的“序数”中任取一个数比36大的概率是()A. B. C. D.【解析】选A.十位是1的两位的“序数”:8个;十位是2的:7个,依此类推:十位分别是3,4,5,6,7,8的各有6,5,4,3,2,1个,故两位的“序数”共有8+7+6+5+4+3+2+1=36个,比36大的有:十位是3的:3个;十位是4的:5个,依次类推:十位分别是5,6,7,8的各有4,3,2,1个,所以比36大的两位的“序数”有3+5+4+3+2+1=18(个),所以所求概率P==.【加固训练】从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A. B. C. D.【解析】选A.设两名男生为A1,A2,两名女生为B1,B2,依题意任意选择两人在星期六、星期日参加某公益活动的情况有(A1,A2),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(B1,B2),(A2,A1),(B1,A1),(B2,A1),(B1,A2),(B2,A2),(B2,B1),共12种,其中星期六安排一名男生、星期日安排一名女生的情况有(A1,B2),(A1,B1),(A2,B1),(A2,B2),共4种,所以概率为.2.(5分)(2016·滨州模拟)已知函数f(x)=x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A. B. C. D.【解析】选D.求导数可得f′(x)=x2+2ax+b2,要满足题意,需x2+2ax+b2=0有两个不等实根,即Δ=4(a2-b2)>0,即a>b,又a,b的取法共有3×3=9种,其中满足a>b的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2)共6种,故所求的概率为P==.【加固训练】1.(2016·淄博模拟)已知|p|≤3,|q|≤3,当p,q∈Z时,则方程x2+2px-q2+1=0有两个相异实数根的概率是.【解析】由方程x2+2px-q2+1=0有两个相异实数根,可得Δ=(2p)2-4(-q2+1)>0,即p2+q2>1.当p,q∈Z时,设点M(p,q),如图,直线p=-3,-2,-1,0,1,2,3和直线q=-3,-2,-1,0,1,2,3的交点,即为点M,共有49个,其中在圆上和圆内的点共有5个(图中黑点).当点M(p,q)落在圆p2+q2=1外时,方程x2+2px-q2+1=0有两个相异实数根,所以方程x2+2px-q2+1=0有两个相异实数根的概率P==.答案:2.(2016·重庆模拟)投掷一枚质地均匀的正方体骰子两次,第一次出现向上的点数为a,第二次出现向上的点数为b,直线l1的方程为ax-by-3=0,直线l2的方程为x-2y-2=0,则直线l1与直线l2有交点的概率为.【解析】投掷一枚质地均匀的正方体骰子两次,向上的点数的结果有36种情况:(1,1),(1,2),…,(6,6),直线l1与直线l2有交点即两直线斜率不相等,b≠2a,所以除(1,2),(2,4),(3,6)这3种情况外,其余都符合题意,即直线l1与直线l2有交点的情况有33种,故所求概率为=. 答案:3.(12分)(2016·滨州模拟)在一次抽奖活动中,被记为a,b,c,d,e,f的6人有获奖机会,抽奖规则如下:主办方先从这6人中随机抽取2人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这余下的4人中随机抽取1人获三等奖,如果在每次抽取中,参与当次抽奖的人被抽到的机会相等.(1)求a获一等奖的概率.(2)若a,b已获一等奖,求c能获奖的概率.【解析】(1)记“a获一等奖”为事件A,从这6人中随机抽取两人,其一切可能的结果组成的基本事件有:{a,b},{a,c},{a,d},{a,e},{a,f},{b,c},{b,d},{b,e},{b,f},{c,d},{c,e},{c,f},{d,e},{d,f},{e,f},共15个.事件A包含的基本事件有:{a,b},{a,c},{a,d},{a,e},{a,f},共5个.所以P(A)==,故a获一等奖的概率为.(2)记“若a,b已获一等奖,c能获奖”为事件B,a,b已获一等奖,余下的四个人中获二、三等奖,其一切可能的结果组成的基本事件有:{c,c},{c,d},{c,e},{c,f},{d,c},{d,d},{d,e},{d,f},{e,c},{e,d},{e,e},{e,f},{f,c},{f,d},{f,e},{f,f}共16个,事件B包含的基本事件有{c,c},{c,d},{c,e},{c,f},{d,c},{e,c},{f,c},共7个,所以P(B)=,故若a,b已获一等奖,c能获奖的概率为.4.(13分)某学校举行元旦晚会,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率.(2)若从身高180cm以上(包括180cm)的志愿者中选出男、女各一人,求这2人身高相差5cm 以上的概率.【解析】(1)根据茎叶图知,“高个子”有12人,“非高个子”有18人,用分层抽样的方法,每个人被抽中的概率是=,所以抽取的5人中,“高个子”有12×=2人,“非高个子”有18×=3人.“高个子”用A,B表示,“非高个子”用a,b,c表示,则从这5人中选2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种.至少有一名“高个子”被选中的情况有:(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共7种,因此,至少有一人是“高个子”的概率是P=.(2)由茎叶图知,有5名男志愿者身高在180cm以上(包括180cm),身高分别为181cm,182cm,184cm,187cm,191cm;有2名女志愿者身高为180cm以上(包括180cm),身高分别为180cm,181cm,抽出的2人用身高表示,则有(181,180),(181,181),(182,180),(182,181),(184,180),(184,181),(187,180),(187,181),(191,180),(191,181),共10种情况.身高相差5cm以上的有(187,180),(187,181),(191,180),(191,181),共4种情况,故这2人身高相差5cm以上的概率为=.【加固训练】(2016·烟台模拟)某厂家生产甲、乙、丙三种样式的杯子,每种杯子均有300mL 和500mL两种型号,某月的产量(单位:个)如下表所示:按样式用分层抽样的方法在这个月生产的杯子中随机的抽取100个,其中有乙样式的杯子35个.(1)求z的值.(2)用分层抽样的方法在甲样式的杯子中抽取一个容量为5的样本,从这个样本中任选2个杯子,求至少有1个300mL的杯子的概率.【解析】(1)设该厂本月生产的甲样式的杯子为n个,在丙样式的杯子中抽取了x个,由题意=,所以x=40.所以在甲样式的杯子中抽取了100-40-35=25个,所以=,解得n=5000,所以z=5000-3000=2000.(2)设所抽样本中有m个300mL的杯子,所以=,所以m=2.也就是抽取的5个样本中有2个300mL的杯子,分别记作A1,A2,3个500mL的杯子,分别记作B1,B2,B3,则从中任取2个杯子的所有基本事件为(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A1,A2),(B1,B2),(B1,B3),(B2,B3)共10个.其中至少有1个300mL的杯子的基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A1,A2),共7个.所以至少有1个300mL的杯子的概率为.。
一、选择题1. (2013 ·城质检聊)先后投掷两枚平均的正方体骰子,骰子向上的面的点数分别为x, y,则log 2x y= 1 的概率为 ()1B.5A. 63611C.12D. 2分析:选 C.知足 log2 x y= 1 的(x,y),有 (1,2),(2,4), (3,6)这 3 种状况,而总的可能数有3 136 种,所以所求概率为 P=36=12.2. (2011 高·考课标全国卷)有 3 个兴趣小组,甲、乙两位同学各自参加此中一个小组,每位同学参加各个小组的可能性同样,则这两位同学参加同一个兴趣小组的概率为() 11A. 3B.223C.3D. 4分析:选 A. 记三个兴趣小组分别为1、 2、 3,甲参加 1 组记为“甲 1”,则基本领件为“甲 1,乙 1;甲 1,乙 2;甲 1,乙 3;甲 2,乙 1;甲 2,乙 2;甲 2,乙 3;甲 3,乙 1;甲 3,乙 2;甲 3,乙 3”,共 9 个.记事件 A 为“ 甲、乙两位同学参加同一个兴趣小组”,此中事件 A 有“甲 1,乙 1;甲312,乙 2;甲 3,乙 3”,共 3 个.所以P(A)=9=3.3. (2012 高·考安徽卷 ) 袋中共有 6 个除了颜色外完整同样的球,此中有1个红球、 2个白球和 3 个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()1 B.2A. 5534C.5D. 5分析:选 B. 设袋中红球用 a 表示, 2 个白球分别用b1,b2表示, 3 个黑球分别用 c1,c2,c3表示,则从袋中任取两球所含基本领件为:(a, b1), (a, b2), (a, c1), (a, c2), (a, c3),( b1,b2),(b1, c1),(b1,c2) ,(b1, c3), (b2,c1), (b2,c2), (b2, c3), (c1,c2 ),(c1, c3), (c2,c3),共 15 个.两球颜色为一白一黑的基本领件有:(b1, c1), (b1,c2), (b1, c3), (b2, c1), (b2, c2),( b2, c3),共 6 个.62∴其概率为15=5.应选 B.4. (2011 高·考安徽卷 )从正六边形的6个极点中随机选择 4 个极点,则以它们作为极点的四边形是矩形的概率等于 ()11A. 10B.811C.6D.5分析: 选 D.假定正六边形的6 个极点分别为 A 、 B 、C 、 D 、 E 、 F ,则从 6 个极点中任取 4 个极点共有15 种结果,以所取 4 个点作为极点的四边形是矩形有3 种结果,故所求概1率为 5.5.一个坛子里有编号为 1,2, , 12 的 12 个大小同样的球,此中 1 到 6 号球是红球,其他的是黑球, 若从中任取两个球, 则取到的都是红球, 且起码有 1 个球的号码是偶数的概 率为 ( )A. 1B. 1 22 113 2C.22D. 11分析:选 D.基本领件总数为 C 122,事件包括的基本领件数为 C 62-C 32,故所求的概率为 PC 62- C 32=2=C 12211.二、填空题6. (2011 高·考福建卷 )盒中装有形状、大小完整同样的 5 个球,此中红色球 3 个,黄色球 2 个.若从中随机拿出 2 个球,则所拿出的 2 个球颜色不一样的概率等于 ________.分析: 从 5 个球中任取 2 个球有 10 种取法, 2 个球颜色不一样的取法有 3× 2= 6(种 ),故6 3所求概率为 10= 5.答案:357.一笼里有 3 只白兔和 2 只灰兔, 现让它们一一出笼, 假定每一只跑出笼的概率同样,则先出笼的两只中一不过白兔,而另一不过灰兔的概率是 ________.分析: 从笼子中跑出两只兔子的状况有A 52= 20 种状况.设事件 A :先出笼的两只中一1 1 1 13 2+C 2 C 3 12 3C C不过白兔,另一不过灰兔.则 P(A)= A 52=20= 5.答案: 358.(2013 ·城质检东 )某地为了检查职业满意度, 决定用分层抽样的方法从公事员、 教师、自由职业者三个集体的有关人员中, 抽取若干人构成检查小组, 有关数据见下表, 则检查小组的总人数为 ________;若从检查小组中的公事员和教师中随机选 2 人撰写检查报告, 则其中恰巧有 1 人是公事员的概率为 ________.有关人员数抽取人数公事员 32x教师48 y自由职业者644分析: 由从自由职业者64 人抽取 4 人可得,每一个个体被抽入样的概率为4 164=16,则公事员应该抽取 32×1= 2(人 ),教师应该抽取 48×1= 3(人 ),由此可得检查小组共有 2+31616+ 4= 9(人 ).从检查小组中的公事员和教师中随机选2 人撰写检查报告,则此中恰有 1 人是C 12·C 31 3公事员的概率为 P =C =523 答案: 95三、解答题9. (2013 ·南质检济 )现有编号分别为 1,2,3,4,5 的五道不一样的政治题和编号分别为 6,7,8,9的四道不一样的历史题. 甲同学从这九道题中一次性随机抽取两道题, 每道题被抽到的概率是相等的,用符号 (x , y)表示事件“抽到的两道题的编号分别为(1)问有多少个基本领件,并列举出来;(2)求甲同学所抽取的两道题的编号之和小于17 但不小于x , y ,且 x < y ”.11 的概率.解: (1)共有 36 个等可能的基本领件,列举以下:(1,2), (1,3), (1,4), (1,5), (1,6), (1,7) , (1,8), (1,9),(2,3) , (2,4),(2,5) , (2,6) ,(2,7) ,(2,8) ,(2,9),(3,4),(3,5),(3,6) ,(3,7),(3,8),(3,9), (4,5),(4,6),(4,7),(4,8) ,(4,9),(5,6),(5,7) ,(5,8), (5,9) ,(6,7) ,(6,8), (6,9), (7,8) , (7,9), (8,9).(2)记 “ 甲同学所抽取的两道题的编号之和小于 17 但不小于 11” 为事件 A.则事件 A 为“ x , y ∈{1,2,3,4,5,6,7,8,9} ,且 x +y ∈[11,17) ,此中 x <y ” ,由 (1)可知事件 A 共包括 15 个基本领件,列举以下:(2,9), (3,8), (3,9), (4,7), (4,8), (4,9) , (5,6), (5,7),(5,8) , (5,9),(6,7) , (6,8) ,(6,9) ,(7,8) ,(7,9),所以 15 5P(A)= 36= 12,即甲同学所抽取的两道题的编号之和小于17 但不小于11 的概率为125.10.(2012·考天津卷高)某地域有小学21 所,中学14 所,大学7 所,现采纳分层抽样的方法从这些学校中抽取 6 所学校正学生进行视力检查.(1)求应从小学、中学、大学中分别抽取的学校数量;(2)若从抽取的 6 所学校中随机抽取 2 所学校做进一步数据剖析, ①列出全部可能的抽取结果;②求抽取的 2 所学校均为小学的概率.解: (1)从小学、中学、大学中分别抽取的学校数量为3、 2、 1.(2)①在抽取到的 6 所学校中, 3 所小学分别记为 A 1, A 2, A 3, 2 所中学分别记为 A 4, A 5,大学记为 A 6,则抽取 2 所学校的全部可能结果为 { A 1,A 2 1,A 3 },{ A1,A 4 1,A 5} , } ,{A } ,{A 1 62, A 32 ,A 4 2, A 5 },{A2,A 6 ,{ A 3,A 4 } , { A3,A 5 , { A 3, A 6 },{ A 4,{A A },{A},{ A},{A}}54, A 65,A 6种.A },{A } , { A },共 15②从 6 所学校中抽取的 2 所学校均为小学 (记为事件 B)的全部可能结果为 { A 1,A 2 1,},{A 3 2, A 3种.A },{A},共 33 1所以 P(B)= 15= 5.一、选择题1.甲从正方形四个极点中随意选择两个极点连成直线,乙也从该正方形四个极点中任意选择两个极点连成直线,则所得的两条直线互相垂直的概率是 ( )3 4A. 18B.1856C.18D. 18分析: 选 C.甲从正方形四个极点中随意选择两个极点连成直线,乙也从该正方形四个6× 6极点中随意选择两个极点连成直线,所得的直线共有2 =18 对,而互相垂直的有5 对,P = 5故依据古典概型概率公式得 18.2.(2013 ·肥质检合 )已知 A ={1,2,3} , B = { x ∈R |x 2- ax +b = 0,a ∈ A ,b ∈ A} ,则 A ∩ B=B 的概率是 ()21A. 9B.38C.9D. 1分析:选 C.∵A∩B= B,∴B 可能为 ?,{1} , {2} , {3} , {1,2} , {2,3} , {1,3} .当 B=?时, a2- 4b< 0,知足条件的a, b 为 a= 1, b= 1,2,3;a=2, b= 2,3;a= 3, b= 3.当 B= {1}时,知足条件的a, b 为 a= 2, b= 1.当 B= {2} , {3} 时,没有知足条件的 a, b.当 B={1,2}时,知足条件的a,b 为 a= 3,b= 2.当 B= {2,3} , {1,3} 时,没有知足条件的 a, b.∴A∩ B=8 = 8B 的概率为3×39.应选 C.二、填空题3.盒子里共有大小同样的 3 只白球, 1 只黑球.若从中随机摸出两只球,则它们颜色不一样的概率是 ________.分析:设 3只白球为 A,B, C,1 只黑球为 d,则从中随机摸出两只球的情况有:AB,1AC ,Ad,BC ,Bd, Cd,共 6 种,此中两只球颜色不一样的有 3 种,故所求概率为2.答案:124.(2012 高·考江苏卷 )现有 10 个数,它们能构成一个以 1 为首项,- 3 为公比的等比数列,若从这 10 个数中随机抽取一个数,则它小于8 的概率是 ________.分析:由题意得 a n= (- 3)n-1,易知前 10项中奇数项为正,偶数项为负,所以小于863的项为第一项和偶数项,共 6 项,即 6 个数,所以 P=10=5.3答案:5三、解答题5.一个袋中装有四个形状大小完整同样的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求拿出的球的编号之和不大于 4 的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,而后再从袋中随机取一个球,该球的编号为n,求 n<m+2 的概率.解: (1)从袋中随机取两个球,其全部可能的结果构成的基本领件有: 1 和 2,1 和 3,1和4,2和 3,2和 4,3和 4,共 6个.从袋中拿出的两个球的编号之和不大于 4 的事件有: 1 和2,1和3,共 2 个.所以所求2 1事件的概率为 P=6=3.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为 n,其全部可能的结果(m, n)有:(1,1), (1,2), (1,3), (1,4), (2,1), (2,2) , (2,3), (2,4),(3,1) , (3,2),(3,3) , (3,4) ,(4,1) ,(4,2) ,(4,3), (4,4) ,共 16 个.又知足条件n≥m+2 的事件有: (1,3), (1,4), (2,4),共 3 个.3所以知足条件n≥ m+ 2 的事件的概率为P1=16.故知足条件n<m+ 2 的事件的概率为1-P1= 1-163=1316.。
课时过关检测(五十九) 随机事务的概率与古典概型A 级——基础达标1.某种机器运用三年后即被淘汰,该机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个a 元;在机器运用期间,假如备件不足再购买,则每个2a 元.某人在购买该机器前,搜集并整理了100台这种机器在三年运用期内更换的易损零件数,得到如图所示的频数分布直方图.若以频率为概率,估计此人购机时购买20个备件,则在机器淘汰时备件有剩余的概率为( )A .15B .710C .45D .910解析:B 由频数分布直方图可知,机器在三年运用期内更换的易损零件数小于20的频率为6+16+24+24100=710,所以购机时购买20个备件,在机器淘汰时备件有剩余的概率约为710.故选B . 2.假如一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合{1,2,3,4}中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为( )A .23B .112C .16D .13解析:D 当十位上的数为4时,共有A 23=6个;当十位上的数为3时,共有A 22=2个,共8个.故P =8A 34=824=13,故选D . 3.已知大于3的素数只分布在{6n -1}和{6n +1}两数列中(其中n 为非零自然数).数列{6n -1}中的合数叫阴性合数,其中的素数叫阴性素数;数列{6n +1}中的合数叫阳性合数,其中的素数叫阳性素数.则从30以内的素数中随意取出两个,恰好是一个阴性素数、一个阳性素数的概率是( )A .12B .13C .16D .34解析:B 30以内的素数有2,3,5,7,11,13,17,19,23,29,共10个,其中阴性素数有5,11,17,23,29,共5个,阳性素数有7,13,19,共3个.因此,所求概率为P =C 15C 13C 210=13.故选B .4.(多选)小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所改变,其概率分布如下表所示:A .任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事务B .从所需的平均时间看,线路一比线路二更节约时间C .假如要求在45分钟以内从家赶到公司,小张应当走线路一D .若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04解析:BD 对于选项A ,“所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事务,所以选项A 错误;对于选项B ,线路一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39分钟,线路二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40分钟,所以线路一比线路二更节约时间,所以选项B 正确;对于选项C ,线路一所需时间小于45分钟的概率为0.7,线路二所需时间小于45分钟的概率为0.8,小张应当选线路二,所以选项C 错误;对于选项D ,所需时间之和大于100分钟,则线路一、线路二的时间可以为(50,60),(60,50)和(60,60)三种状况,概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,所以选项D 正确.故选B 、D .5.已知事务A ,B 互斥,且事务A 发生的概率P (A )=15,事务B 发生的概率P (B )=13,则事务A ,B 都不发生的概率是________.解析:因为事务A ,B 互斥,且P (A )=15,P (B )=13,则事务A ,B 至少一个发生的事务为A +B ,其概率为P (A +B )=P (A )+P (B )=15+13=815,事务A ,B 都不发生的事务是A +B 的对立事务,则其概率为1-P (A +B )=1-815=715.所以事务A ,B 都不发生的概率是715.答案:7156.小明在一个专用的邮票箱中,保藏了北京2024年冬奥会祥瑞物和冬残奥会祥瑞物纪念邮票一套2枚,冬奥会会徽和冬残奥会会徽纪念邮票一套2枚.现从这4枚邮票中随机抽取2枚,恰好有一张是“冰墩墩”(图案为大熊猫)的概率为________.解析:设冬奥会祥瑞物和冬残奥会祥瑞物纪念邮票一套2枚分别记为A (为“冰墩墩”),B ,冬奥会会徽和冬残奥会会徽纪念邮票一套2枚分别记为a ,b ,从这4枚邮票中随机抽取2枚的样本空间Ω={(A ,B ),(A ,a ),(A ,b ),(B ,a ),(B ,b ),(a ,b )},共6个样本点,其中恰好有一张是“冰墩墩”的样本点有(A ,B ),(A ,a ),(A ,b ),共3个,故所求概率为36=12. 答案:127.(2024·天津一模)将一颗骰子先后抛掷2次,视察向上的点数,两数中至少有一个奇数的概率为________;以第一次向上的点数为横坐标x ,其次次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=15的内部的概率为________.解析:将一颗骰子先后抛掷2次,共有62=36个样本点,记事务A :两次向上的点数中至少有一个奇数,则事务A -所包含的样本点有:(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6),共9个,所以,P (A )=1-P (A -)=1-936=34;记事务B :点(x ,y )在圆x 2+y 2=15的内部,则事务B 所包含的样本点有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8个,故P (B )=836=29. 答案:34 298.A ,B ,C 三个班共有100名学生,为调查他们的体育熬炼状况,通过分层随机抽样获得了部分学生一周的熬炼时间,数据如表(单位:小时): A 班6 6.57 7.58 B 班6 7 8 9 10 11 12 C 班3 4.5 6 7.5 9 10.5 1213.5(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设全部学生的熬炼时间相互独立,求该周甲的熬炼时间比乙的熬炼时间长的概率.解:(1)由题意,得三个班共抽20个学生,其中C 班抽8个,故抽样比k =20100=15,故C 班有学生8÷15=40(人).(2)从A 班和C 班抽出的学生中,各随机选取一个人,共有5×8=40(种)状况,而且这些状况是等可能的.当甲的熬炼时间为6小时时,甲的熬炼时间比乙的熬炼时间长的有2种状况;当甲的熬炼时间为6.5小时时,甲的熬炼时间比乙的熬炼时间长的有3种状况;当甲的熬炼时间为7小时时,甲的熬炼时间比乙的熬炼时间长的有3种状况;当甲的熬炼时间为7.5小时时,甲的熬炼时间比乙的熬炼时间长的有3种状况;当甲的熬炼时间为8小时时,甲的熬炼时间比乙的熬炼时间长的有4种状况.故该周甲的熬炼时间比乙的熬炼时间长的概率P =2+3+3+3+440=38.B 级——综合应用9.《三十六计》是中华民族非物质文化遗产之一,是一部传习久远的兵法奇书.三十六计中,每六计为一套,共分为胜战计、敌战计、攻战计、混战计、并战计、败战计六套,合三十六个计策,假如从这36个计策中任取2个计策,则这2个计策都来自同一套的概率为( )A .121B .114C .17D .142解析:C 从36个计策中任取2个计策的样本空间中包含的样本点总数为C 236=630,所选2个计策都来自同一套包含的样本点个数为6C 26=90,则这2个计策都来自同一套的概率为P =90630=17.故选C . 10.(多选)利用简洁随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事务A 为“是一等品”,B 为“是合格品”,C 为“是不合格品”,则下列结果正确的是( )A .P (B )=710B .P (A ∪B )=910C .P (A ∩B )=0D .P (A ∪B )=P (C )解析:ABC 由题意知A ,B ,C 为互斥事务,故C 正确;又因为从100件中抽取产品符合古典概型的条件,所以P (B )=710,P (A )=210,P (C )=110,则P (A ∪B )=910,故A 、B 、C 正确;故D 错误.故选A 、B 、C .11.(2024·福州模拟)已知方程x 2a +y 2b=1表示的曲线为C ,任取a ,b ∈{1,2,3,4,5},则曲线C 表示焦距等于2的椭圆的概率等于________.解析:全部可能的(a ,b )的组数为5×5=25,又因为焦距2c =2,所以c =1,所以a -b =±1,则满意条件的有(1,2),(2,3),(3,4),(4,5),(5,4),(4,3),(3,2),(2,1),共8组,所以概率为P =825. 答案:82512.厦门国际马拉松赛是与北京国际马拉松赛齐名的中国闻名赛事品牌,两者“一南一北”,形成春秋交替之势,为了备战2024年厦门马拉松赛,厦门市某“跑协”确定从9名协会会员中随机选择3人参赛,则事务“其中A ,B ,C ,D 这4人中至少1人参与,且A 与B 不同时参与,C 与D 不同时参与”发生的概率为________.解析:从9名协会会员中随机选择3人参赛,所包含的总的样本点共有C 39=84个;若A ,B ,C ,D 这4人中只参与一人,则需从剩下的5名会员中再选2人,所以对应的样本点有C 14C 25=40个;若A ,B ,C ,D 这4人中参与两人,则需从剩下的5名会员中再选1人,所以对应的样本点有C 12C 12C 15=20个;因此事务“其中A ,B ,C ,D 这4人中至少1人参与,且A 与B 不同时参与,C 与D 不同时参与”发生的概率为P =40+2084=57. 答案:5713.有一种击球竞赛,把从裁判发球哨响起先到之后裁判第一哨响止,叫做一回合,每一回合中,发球队赢球后得分1分并在下一回合发球,另一队得零分,发球队输球后,竞赛双方均得零分,下一回合由另一队发球,甲乙两球队正在进行这种击球竞赛,从以往统计结果看,每一回合,甲乙两队输赢球的概率都相等.(1)在连续三个回合中,第一回合由甲队发球,求甲队得1分的概率;(2)竞赛进入决胜局,两队得分均为25分.在接下来的竞赛中,甲队第一回合发球,若甲乙两队某一队得分比对方得分多2分,则竞赛结束,得分多的队获竞赛成功,求甲队在第四回合获得竞赛成功的概率.解:(1)用A 表示事务“一回合中,甲队赢球”,则三个回合中,全部可能结果是:AAA ,AA A -,A A -A ,A -AA ,A -A -A ,A -A A -,A A -A -,A -A -A -,共8个,其中只有A A -A ,A A -A -,A -AA 三个结果,甲队得1分.设“在连续三个回合中,第一回合由甲队发球.甲队得1分”为事务B ,则P (B )=38, 所以,甲队得1分的概率为38. (2)打完四回合的全部可能结果是:A A -AA ,A -AAA ,A -A -AA ,A -A A -A ,A -AA A -,A A -A A -,A A -A -A ,A -A -A A -,A -A A -A -,A A -A -A -,共10个,其中只有A A -AA ,A -AAA 两个结果,甲队在第四回合比乙队多2分,甲获胜.设“甲队在第四回合获竞赛成功”为事务C ,则P (C )=210=15. 所以,甲队在第四回合获得竞赛成功的概率为15.。
古典概型和几何概型方法1:列举法方法2:求和法【例2】球或黑球或白球的概率.解取一球为红球的记为事件A,取一球为黑球的记为事件B,取一球为白球的记为事件C,取一球为绿球的记为事件D,那么取出一球是红球或黑球或白球,即为事件A∪B∪C,由于事件A、事件B、事件C彼此互斥,所以P(A∪B∪C)=P(A)+P(B)+P(C)=512+412+212=1112.方法3:正难则反法【例3】►加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个是一等品的概率.解(1)设A、B、C分别为“甲、乙、丙三台机床各自加工的零件是一等品”的事件.由题设条件,知⎩⎪⎨⎪⎧ P (A )·[1-P (B )]=14,P (B )·[1-P (C )]=112,P (A )·P (C )=29, 解之得⎩⎪⎨⎪⎧ P (A )=13,P (B )=14,P (C )=23.即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为“从甲、乙、丙加工的零件中各取一个检验,至少有一个是一等品”的事件,则P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56,故从甲、乙、丙加工的零件中各取一个检验,至少有一个是一等品的概率为56.方法运用训练41.已知函数y =x -1,令x =-4,-3,-2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P 1,P 2,则P 1,P 2两点在同一反比例函数图象上的概率是( ).A.19B.118C.536D.112解析 所有基本事件的总数为36;其中(2,1),(-1,-2)在反比例函数y =2x 的图象上;(3,2),(-2,-3)在反比例函数y =6x 的图象上;(4,3),(-3,-4)在反比例函数y =12x 的图象上;因此,概率为P =336=112.几何概型基础梳理1.几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.满足以上条件的试验称为几何概型.2.几何概型中,事件A 的概率计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). 3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.一条规律对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.两种类型(1)线型几何概型:当基本事件只受一个连续的变量控制时.(2)面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决.双基自测1.(人教A 版教材习题改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ).A.12B.13C.14 D .1解析 点坐标小于1的区间长度为1,故所求其概率为13.答案 B2.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当某人到达路口时看见的是红灯的概率是( ).A.15B.25C.35D.45解析 以时间的长短进行度量,故P =3075=25.3.(2012·衡阳模拟)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ).解析 P (A)=38,P (B)=28,P (C)=26,P (D)=13,∴P (A)>P (C)=P (D)>P (B).答案 A4.某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为( ).A.π3B.334πC.34 D .以上全错解析 设正三角形边长为a ,则外接圆半径r =32a ×23=33a ,∴所求概率P =34a 2π⎝ ⎛⎭⎪⎫33a 2=334π.答案 B 5.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为________.解析 如图,这是一个长度型的几何概型题,所求概率P =|CD ||AB |=13.考向一 与长度有关的几何概型【例1】►点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析如右图,设A 、M 、N 为圆周的三等分点,当B 点取在优弧MAN 上时,对劣弧AB 来说,其长度小于1,故其概率为23. 答案 23▲▲▲考向二 与面积有关的几何概型【例2】►(2012·华东师大附中模拟)设有关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.[审题视点] (1)为古典概型,利用列举法求概率.(2)建立ab 平面直角坐标系,将问题转化为与面积有关的几何概型.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },所以所求的概率为P (A )=3×2-12×223×2=23.【训练2】 (2011·福建)如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ). A.14 B.13 C.12 D.23解析 S △ABE =12|AB |·|AD |,S 矩形ABCD =|AB ||AD |.故所求概率P =S △ABE S 矩形ABCD =12. ★★规范解答21——如何解决概率与函数的综合问题【示例】► (本题满分12分)(2011·潍坊模拟)已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎨⎧ x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率[解答示范] (1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2b a ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2b a ≤1,即2b ≤a .(2分)若a =1,则b =-1;若a =2,则b =-1或1;若a =3,则b =-1或1.∴事件包含基本事件的个数是1+2+2=5.(5分)∴所求事件的概率为515=13.(6分)(2)由(1),知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,(8分)依条件可知事件的全部结果所构成的区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(a ,b )⎪⎪⎪⎪ ⎩⎨⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 由⎩⎪⎨⎪⎧ a +b -8=0,b =a 2,得交点坐标为⎝ ⎛⎭⎪⎫163,83,(10分) ∴所求事件的概率为P =12 ×8×8312×8×8=13.(12分)【试一试】已知关于x的一元二次方程x2-2(a-2)x-b2+16=0.(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.[尝试解答](1)基本事件(a,b)共有36个,方程有正根等价于a-2>0,16-b2>0,Δ≥0,即a>2,-4<b<4,(a-2)2+b2≥16.设“方程有两个正根”为事件A,则事件A包含的基本事件为(6,1),(6,2),(6,3),(5,3),共4个,故所求的概率为P(A)=436=19.(2)试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16,设“方程无实根”为事件B,则构成事件B的区域为B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16},其面积为S(B)=14×π×42=4π,故所求的概率为P(B)=4π16=π4。
古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。
例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。
3、基本事件特点:设一次试验中的基本事件为12,,,n A A A(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A =(3)所有基本事件的并事件为必然事件 由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++因为()1P Ω=,所以()()()121n P A P A P A +++=4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。
5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A ===()()()121n P A P A P A +++= 6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个 (2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个7、运用古典概型解题的步骤:① 确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件 ② ()(),n A n Ω可通过计数原理(排列,组合)进行计算③ 要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的 二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
千里之行,始于足下。
202X年高考数学一轮复习——古典概型与几何概率古典概型与几何概率是高中数学中的重要学问点,也是高考数学中的常考内容。
本文将从古典概型和几何概率的概念入手,介绍其基本原理和解题方法,并供应一些例题进行练习。
古典概型是指在一次试验中,全部可能的结果都是等可能发生的状况。
在古典概型中,我们可以通过计算样本空间中的元素个数和大事的发生状况来确定大事的概率。
常见的古典概型有:掷硬币、抛骰子、抽球等。
例如,抛一枚硬币,只有正面和反面两种可能结果,概率分别为1/2。
抛一颗骰子,可能结果为1、2、3、4、5、6,概率也均为1/6。
在计算古典概型的概率时,可以使用如下公式:P(A) = 大事A的可能结果数 / 总的可能结果数其中,P(A)表示大事A发生的概率。
除了古典概型,高中数学还有一种常见的概率计算方法叫做几何概率。
几何概率是建立在几何模型的基础上,通过几何图形的面积或长度等来计算概率。
几何概率的计算方法主要包括:1. 正方形模型:假如试验的样本空间是一个平方区域,大事的可能结果是一个面积确定的子区域,那么大事的概率可以用子区域的面积与平方区域的面积之比来表示。
第1页/共3页锲而不舍,金石可镂。
2. 圆模型:假如试验的样本空间是一个圆形区域,大事的可能结果是一个圆弧所确定的子区域,那么大事的概率可以用子区域的弧长与圆的周长之比来表示。
几何概率的计算方法相对来说较为简洁直观,但要留意选择适当的几何模型来确定样本空间和大事的可能结果。
接下来,我们通过几个例题来加深对古典概型和几何概率的理解:例题1:一枚均匀硬币一次抛掷,正面朝上的概率是多少?解析:由于硬币只有正面和反面两种可能结果,并且两种结果是等可能发生的,所以正面朝上的概率为1/2。
例题2:一个标准骰子一次抛掷,点数为偶数的概率是多少?解析:骰子的可能结果为1、2、3、4、5、6,其中偶数为2、4、6三种结果,所以点数为偶数的概率为3/6 = 1/2。
高考达标检测(四十六) 古典概型命题2类型——简单问题、交汇问题一、选择题1.(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45 B.35 C.25D.15解析:选C 从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P =410=25.2.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ) A.112B.16C.14D.13解析:选C 骰子的点数为1,2,3,4,5,6,先后抛掷两颗质地均匀的骰子, 设基本事件为(x ,y ),共有6×6=36个, 记两次点数之积为奇数的事件为A ,有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5) 共9个, 所以两次朝上的点数之积为奇数的概率为P (A )=936=14.3.高中数学联赛期间,某宾馆随机安排五名男生入住3个标间(每个标间至多住2人),则A ,B 入住同一标间的概率为( )A.110 B.15 C.310D.25解析:选B 记A ,B 入住同一标间的概率为P ,某宾馆随机安排五名男生入住3个标间(每个标间至多住2人)共有C 25C 23A 22A 33=90种不同的方法,A ,B 入住同一标间有C 23A 33=18种不同的方法,∴P =1890=15.4.(2018·泉州质检)一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时,称该三位自然数为“凹数”(如213,312等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( )A.16 B.524 C.13D.724解析:选C 由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个; 同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个; 由2,3,4组成的三位自然数也是6个.所以共有4×6=24个. 当b =1时,有214,213,312,314,412,413,共6个“凹数”; 当b =2时,有324,423,共2个“凹数”. 所以这个三位数为“凹数”的概率P =6+224=13.5.高考后,4位考生各自在甲、乙两所大学中任选一所参观,则甲、乙两所大学都有考生参观的概率为( )A.18B.38C.58D.78解析:选D 高考后,4位考生各自在甲、乙两所大学中任选一所参观,基本事件总数n =24=16,甲、乙两所大学都有考生参观的对立事件是4位考生都参观甲大学或4位考生都参观乙大学,所以甲、乙两所大学都有考生参观的概率P =1-116-116=78.6.a ,b ,c ,d ,e 是从集合{1,2,3,4,5}中任取的5个元素(不允许重复),则abc +de 为奇数的概率为( )A.12B.415C.25D.35解析:选C 由题意可得a ,b ,c ,d ,e 是1,2,3,4,5这5个数,将这5个数分组可得(123,45),(124,35),(125,34),(134,25),(135,24),(145,23),(234,15),(235,14),(245,13),(345,12),共分10组,其中能使abc +de 为奇数的有(124,35),(135,24),(234,15),(245,13),共有4组, 所以abc +de 为奇数的概率P =410=25.7.抛掷质地均匀的甲、乙两颗骰子,设出现的点数分别为a ,b ,则a2<|b -a 2|<6-a 成立的概率为( )A.1336B.518C.736D.536解析:选C 由题意知(a ,b )的所有可能情况为(1,1),(1,2),(1,3),…,(6,4),(6,5),(6,6),共36种,设“a2<|b -a 2|<6-a 成立”为事件A ,则事件A 包括(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,6),共7种, 故P (A )=736.8.已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A.79B.13C.59D.23解析:选D 对函数f (x )求导可得f ′(x )=x 2+2ax +b 2, 要满足题意需x 2+2ax +b 2=0有两个不等实根, 即Δ=4(a 2-b 2)>0,即a >b . 又(a ,b )的取法共有9种,其中满足a >b 的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种, 故所求的概率P =69=23.二、填空题9.若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是________.解析:由任何三点不共线,则共有C 38=56个三角形,8个等分点可得4条直径,可构成直角三角形有4×6=24个,所以构成直角三角形的概率P =2456=37.答案:3710.从-1,0,1,3,4这五个数中任选一个数记为a ,则使曲线y =7-3ax的图象在第一、三象限,且满足不等式组⎩⎪⎨⎪⎧2x +3>9,x -a <0无解的概率为________.解析:曲线y =7-3ax 的图象在第一、三象限,且满足不等式组⎩⎪⎨⎪⎧2x +3>9,x -a <0无解,即7-3a >0且a ≤3,所以a <73,所以a 可取-1,0,1,由古典概型的概率公式,得P =35.答案:3511.从x 2m -y 2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为________.解析:当方程x 2m -y 2n =1表示椭圆、双曲线、抛物线等圆锥曲线时,不能有m <0,n >0,所以方程x 2m -y 2n=1表示椭圆、双曲线、抛物线等圆锥曲线的(m ,n )有(2,-1),(3, -1),(2,2),(2,3),(3,2),(3,3),(-1,-1),共7种,其中表示焦点在x 轴上的双曲线时,m >0,n >0,有(2,2),(2,3),(3,2),(3,3),共4种,所以所求概率P =47.答案:4712.设集合A ={0,1,2},B ={0,1,2},分别从集合A 和B 中随机取一个数a 和b ,确定平面上一个点P (a ,b ),设“点P (a ,b )落在直线x +y =n 上”为事件C n (0≤n ≤4,n ∈N),若事件C n 的概率最大,则n 的值为________.解析:由题意知,点P 的坐标的所有情况为(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共9种.当n =0时,落在直线x +y =0上的点的坐标为(0,0),共1种; 当n =1时,落在直线x +y =1上的点的坐标为(0,1)和(1,0),共2种; 当n =2时,落在直线x +y =2上的点的坐标为(1,1),(2,0),(0,2),共3种; 当n =3时,落在直线x +y =3上的点的坐标为(1,2),(2,1),共2种; 当n =4时,落在直线x +y =4上的点的坐标为(2,2),共1种. 因此,当C n 的概率最大时,n =2. 答案:2 三、解答题13.有一枚正方体骰子,六个面分别写有数字1,2,3,4,5,6,规定抛掷该枚骰子得到的数字是抛掷后面向上的那一个数字.已知b 和c 是先后抛掷该枚骰子得到的数字,函数f (x )=x 2+bx +c (x ∈R).(1)若先抛掷骰子得到的数字是3,求再次抛掷骰子时,函数y =f (x )有零点的概率; (2)求函数y =f (x )在区间(-3,+∞)上是增函数的概率. 解:(1)记“函数f (x )=x 2+bx +c (x ∈R)有零点”为事件A , 由题意知,b =3,c =1,2,3,4,5,6,∴所有的基本事件为(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),共6个. 当函数f (x )=x 2+bx +c (x ∈R)有零点时,方程x 2+bx +c =0有实数根, 即Δ=b 2-4c ≥0,∴c ≤94,∴c =1或2,即事件A 包含2个基本事件,∴函数f (x )=x 2+bx +c (x ∈R)有零点的概率P (A )=26=13.(2)由题意可知,所有的基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.记“函数y =f (x )在区间(-3,+∞)上是增函数”为事件B . ∵y =f (x )的图象开口向上,∴要想使函数y =f (x )在区间(-3,+∞)上是增函数, 只需-b2≤-3即可,解得b ≥6,∴b =6.∴事件B 包含的基本事件有6个.∴函数y =f (x )在区间(-3,+∞)上是增函数的概率P (B )=636=16.14.学校组织学生参加某项比赛,参赛选手必须有很好的语言表达能力和文字组织能力.学校对10位已入围的学生进行语言表达能力和文字组织能力的测试,测试成绩分为A ,B ,C 三个等级,其统计结果如下表:由于部分数据丢失,只知道从这10位参加测试的学生中随机抽取一位,抽到语言表达能力或文字组织能力为C 的学生的概率为310.(1)求a ,b 的值;(2)从测试成绩均为A 或B 的学生中任意抽取2位,求其中至少有一位语言表达能力或文字组织能力为A 的学生的概率.解:(1)依题意可知,语言表达能力或文字组织能力为C 的学生共有(b +2)人, 所以b +210=310,a +b =3,解得b =1,a =2. (2)测试成绩均为A 或B 的学生共有7人,其中语言表达能力和文字组织能力均为B 的有2人,设为b 1,b 2,其余5人设为a 1,a 2,a 3,a 4,a 5.则基本事件空间Ω={(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 1,b 1),(a 1,b 2), (a 2,a 3),(a 2,a 4),(a 2,a 5),(a 2,b 1),(a 2,b 2),(a 3,a 4),(a 3,a 5),(a 3,b 1),(a 3,b 2),(a 4,a 5),(a 4,b 1),(a 4,b 2),(a 5,b 1),(a 5,b 2),(b 1,b 2)}. 所以基本事件空间总数为21.选出的2人语言表达能力和文字组织能力均为B 的有(b 1,b 2).所以至少有一位语言表达能力或文字组织能力为A 的学生的概率P =1-121=2021.1.若x ∈A 的同时,还有1x ∈A ,则称A 是“好搭档集合”,在集合B =⎩⎨⎧⎭⎬⎫13,12,1,2,3 的所有非空子集中任选一集合,则该集合是“好搭档集合”的概率为( )A.731B.732C.14D.831解析:选A 由题意可得,集合B 的非空子集有25-1=31个,其中是“好搭档集合”的有:{1},⎩⎨⎧⎭⎬⎫13,3,⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫13,1,3,⎩⎨⎧⎭⎬⎫12,1,2,⎩⎨⎧⎭⎬⎫13,12,2,3,⎩⎨⎧⎭⎬⎫13,12,1,2,3 ,共7个,所以该集合是“好搭档集合”的概率为P =731. 2.“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T188012015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:累积净化量(克)(3,5] (5,8] (8,12] 12以上 等级P1P2P3P4为了了解一批空气净化器(共2 000台)的质量,随机抽取n 台机器作为样本进行估计,已知这n 台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14]均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.1,5.2,5.7和5.9,并绘制了如下频率分布直方图.(1)求n 的值及频率分布直方图中的x 值;(2)以样本估计总体,试估计这批空气净化器(共2 000台)中等级为P2的空气净化器有多少台?(3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率. 解:(1)∵在(4,6]之间的数据一共有6个,再由频布直方图得,落在(4,6]之间的频率为0.03×2=0.06, ∴n =60.06=100.由频率分布直方图的性质得:(0.03+x +0.12+0.14+0.15)×2=1, 解得x =0.06.(2)由频率分布直方图可知,落在(6,8]之间共0.12×2×100=24台, 又∵在(5,6]之间共4台, ∴落在(5,8]之间共28台,∴估计这批空气净化器(共2 000台)中等级为P2的空气净化器有28100×2 000=560台.(3)设“恰好有1台等级为P2”为事件B ,依题意落在(4,6]之间共6台,属于国标P2级的有4台, 则从(4,6]中随机抽取2台,基本事件总数n =C 26=15, 事件B 包含的基本事件个数m =C 12·C 14=8, ∴恰好有1台等级为P2的概率P (B )=m n =815.。