2012年普通高等学校招生全国统一考试辽宁卷(理综)Word版
- 格式:doc
- 大小:754.00 KB
- 文档页数:6
2012年普通高等学校招生全国统一考试理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至4页,第II卷5至11页。
考试结束后,将本试题卷和答题卡一并交回。
第I卷注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I卷共21小题,每小题6分,共126分。
一下数据可供解题时参考:相对原子质量(原子量):H 1 C一、选择题:本题共13小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于膝跳反射的叙述,错误的是A.反射活动由一点的刺激引起B.反射活动中兴奋在突触处双向传递C.反射活动的发生需要反射弧结构完整D.发射活动中需要神经递质参与兴奋的传递2.下列关于叶绿体和线粒体的叙述,正确的是A.线粒体和叶绿体均含有少量的DNAB.叶绿体在光下和黑暗中均能合成ATPC.细胞生命活动所需的ATP均来自线粒体D.线粒体基质和叶绿体基质所含酶的种类相同。
3.一块农田中有豌豆、杂草、田鼠和土壤微生物等生物,其中属于竞争关系的是A.田鼠和杂草B.豌豆和杂草C.豌豆和其根中的根瘤菌D.细菌和其细胞内的噬菌体4.下列关于森林群落垂直结构的叙述,错误的是A.群落中的植物具有垂直分层现象B.群落中的动物具有垂直分层现象C.动物在群落中的垂直分层与植物的分层有关D.乔木层的疏密程度不会影响草木层的水平结构5、下列关于细菌的叙述,正确的是A 不同种类细菌的生长均需要相同碳源B 常用液体培养基分离获得细菌单菌落C 细菌大量培养过程中,芽孢形成于细菌生长的调整期D 培养基中含有高浓度NaCl 有利于金黄色葡萄球菌的筛选6 、下列关于化学键的叙述,正确的一项是A 粒子化合物中一定含有离子键B 单质分子中均不存在化学键C 含有极性键的分子一定是极性分子D 含有共价键的化合物一定是共价化合物7 、能正确表示下列反应的离子方程式是A 硫酸铝溶液中加入过量氨水 3Al ++3OH=Al(OH)3 ↓B 碳酸钠溶液中加入澄清石灰水 Ca(OH) 2 +23CO -=CaCO 3 ↓ + 2OH -C 冷的氢氧化钠溶液中通入氯气 Cl 2 + 2OH -=Cl O - + Cl -+ H 2OD 稀硫酸中加入铁粉 2Fe + 6 H += 23Fe + + 3H 2 ↑8 、合成氨所需的氢气可用煤和水作原料经多步反映值得,其中的一步反应为 CO (g )+ H 2O(g) −−−→←−−−催化剂CO 2(g) + H 2(g) △H <0 反应达到平衡后,为提高CO 的转化率,下列措施中正确的是A 增加压强B 降低温度C 增大CO 的浓度D 更换催化剂9 、反应 A+B →C (△H <0)分两步进行 ① A+B →X (△H >0) ② X →C (△H <0)下列示意图中,能正确表示总反应过程中能量变化的是10 、 元素X 形成的离子与钙离子的核外电子排布相同,且X 的离子半径小于负二级硫的离子半径,X 元素为A AlB PC ArD K11、 ①②③④ 四种金属片两两相连浸入稀硫酸中都可组成原电池 ,①②相连时,外电路电流从②流向① ;①③相连时,③为正极,②④相连时,②有气泡逸出 ;③ ④ 相连时,③ 的质量减少 ,据此判断这四种金属活动性由大到小的顺序是A ①③②④B ①③④②C ③ ④ ②①D ③ ① ②④12.在常压和500℃条件下,等物质的量的A g2 ,F E (OH)3 ,NH 4HCO 3 ,N a HCO 3完全分解,所得气体体积依次是V 1\V 2\V 3\V 4.体积大小顺序正确的是3>V 2>V 4>V 1 B. V 3>V 4>V 2>V 13>V 2>V 1>V 42>V 3>V 1>V 413.橙花醇具有玫瑰及苹果香气,可作为香料,其结构简式如下下列关于橙花醇的叙述,错误的是A . 既能发生取代反应,也能发生加成反应B . 在浓硫酸催化下加热脱水,可以生成不止一种四烯烃C . 1mo1橙花醇在室温下与溴四氯化碳溶液反应,最多消耗240g 溴二,选择题:本题共8题。
辽宁理科1.(2012辽宁,理1)已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=( ). A .{5,8} B .{7,9} C .{0,1,3} D .{2,4,6}B 由已知条件可得∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},所以(∁U A )∩(∁U B )={7,9},故选B . 2.(2012辽宁,理2)复数2i 2i -+=( ). A .35-45iB .35+45iC .1-45iD .1+35iA 2i 2i-+=2(2i)(2i)(2i)-+-=244i i 5-+=35-45i ,故选A .3.(2012辽宁,理3)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( ). A .a ∥b B .a ⊥b C .|a |=|b | D .a +b =a -bB |a +b |2=|a |2+2a ·b +|b |2,|a -b |2=|a |2-2a ·b +|b |2,因为|a +b |=|a -b |,所以|a |2+2a ·b +|b |2=|a |2-2a ·b +|b |2,即2a ·b =-2a ·b , 所以a ·b =0,a ⊥b .故选B .4.(2012辽宁,理4)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则p 是( ). A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0C 命题p 是一个全称命题,其否定为存在性命题,p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0,故选C .5.(2012辽宁,理5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ). A .3×3! B .3×(3!)3 C .(3!)4 D .9!C 完成这件事可以分为两步,第一步排列三个家庭的相对位置,有33A 种排法;第二步排列每个家庭中的三个成员,共有333333A A A 种排法.由乘法原理可得不同的坐法种数有33333333A A A A ,故选C . 6.(2012辽宁,理6)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ). A .58 B .88 C .143D .176 B 因为数列{a n }为等差数列,所以S 11=11111(a a )2+,根据等差数列的性质,若p +q =m +n ,则a p +a q =a m +a n 得,a 1+a 11=a 4+a 8=16,所以S 11=11162⨯=88,故选B .7.(2012辽宁,理7)已知sin α-cos α∈(0,π),则tan α=( ).A .-1B 2C 2D .1A 将sin α-cos sin 2α-2sin αcos α+cos 2α=2,即sin αcos α=-12,则22ααααsin cos sin cos +=2αα1tan tan +=-12,整理得2tan α+tan 2α+1=0,即(tan α+1)2=0, 所以tan α=-1.故选A .8.(2012辽宁,理8)设变量x ,y 满足x y 10,0x y 20,0y 15,-≤⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( ).A .20B .35C .45D .55D 不等式组表示的平面区域如图所示,则2x +3y 在A (5,15)处取得最大值,故选D .9.(2012辽宁,理9)执行如图所示的程序框图,则输出的S 值是( ). A .-1 B .23C .32D .4 D 当i =1时,S =224-=-1; i =2时,S =221+=23; i =3时,S =2223-=32;i =4时,S =2322-=4;i =5时,S =224-=-1;i =6时,S =23;i =7时,S =32;i =8时,S =4;i =9时,输出S ,故选D .10.(2012辽宁,理10)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( ). A .16B .13C .23D .45C 设AC =x cm (0<x <12),则CB =12-x (cm ),则矩形面积S =x (12-x )=12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12,在数轴上表示为由几何概型概率公式得,概率为812=23,故选C .11.(2012辽宁,理11)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos (πx )|,则函数h (x )=g (x )-f (x )在13,22⎡⎤-⎢⎥⎣⎦上的零点个数为( ).A .5B .6C .7D .8 B 由f (-x )=f (x ),f (x )=f (2-x )可知,f (x )是偶函数,且关于直线x =1对称,又由f (2-x )=f (x )=f (-x )可知,f (x )是以2为周期的周期函数.在同一坐标系中作出f (x )和g (x )在13,22⎡⎤-⎢⎥⎣⎦上的图象如图,可知f (x )与g (x )的图象在13,22⎡⎤-⎢⎥⎣⎦上有6个交点,即h (x )的零点个数为6.12.(2012辽宁,理12)若x ∈[0,+∞),则下列不等式恒成立的是( ). A .e x ≤1+x +x 2 B1-12x +14x 2C .cos x ≥1-12x 2D .ln (1+x )≥x -18x 2C 对于e x 与1+x +x 2,当x =5时,e x >32,而1+x +x 2=31,所以A 选项不正确;1-12x +14x 2,当x =14时51-12x +14x 2=5764<5所以B 选项不正确;令f (x )=cos x +12x 2-1,则f '(x )=x -sin x ≥0对x ∈[0,+∞)恒成立,f (x )在[0,+∞)上为增函数,所以f (x )的最小值为f (0)=0,所以f (x )≥0,cos x ≥1-12x 2,故C 正确;令g (x )=ln (1+x )-x +18x 2,则g '(x )=1x 1++14x -1,令g '(x )=0,得x =0或x =3.当x ∈(0,3)时,g '(x )<0,当x ∈(3,+∞)时,g '(x )>0,g (x )在x =3时取得最小值g (3)=ln 4-3+98<0,所以D 不正确.13.(2012辽宁,理13)一个几何体的三视图如图所示,则该几何体的表面积为 .38 由三视图可以看出该几何体为一个长方体从中间挖掉了一个圆柱,长方体表面积为2×(4×3+3×1+4×1)=38,圆柱的侧面积为2π,上下两个底面积和为2π,所以该几何体的表面积为38+2π-2π=38.14.(2012辽宁,理14)已知等比数列{a n }为递增数列,且25a =a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n = .2n 设数列{a n }的首项为a 1,公比为q ,则21a ·q 8=a 1·q 9,a 1=q ,由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0,解得q =2或q =12,因为数列{a n }为递增数列,所以q =2,a 1=2,a n =2n .15.(2012辽宁,理15)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为.-4 由已知可设P (4,y 1),Q (-2,y 2),∵点P ,Q 在抛物线x 2=2y 上,∴212242y ,(-2)2y ,⎧=⎨=⎩①② ∴12y 8,y 2,=⎧⎨=⎩ ∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y '=x ,∴过点P 的切线斜率为y 'x 4==4. ∴过点P 的切线为:y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y 'x 2 =-=-2, ∴过点Q 的切线为y -2=-2(x +2), 即y =-2x -2. 联立y 4x 8,y 2x 2,=-⎧⎨=--⎩得x =1,y =-4,∴点A 的纵坐标为-4.16.(2012辽宁,理16)已知正三棱锥P -ABC ,点P ,A ,B ,C,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为.3正三棱锥P -ABC 可看作由正方体PADC -BEFG 截得,如图所示,PF 为三棱锥P -ABC 的外接球的直径,且PF ⊥平面ABC .设正方体棱长为a ,则3a 2=12,a =2,AB =AC =BC =S △ABC =12×2由V P -ABC =V B -PAC ,得13·h ·S △ABC =13×12×2×2×2,所以h3因此球心到平面ABC317.(2012辽宁,理17)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°,所以cos B =12.(2)解法一:由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,所以sin A sin C =1-cos 2B =34.解法二:由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =22a c ac 2ac+-,解得a =c ,所以A =C =B =60°,故sin A sin C =34.18.(2012辽宁,理18)如图,直三棱柱ABC -A 'B 'C ',∠BAC =90°,AB =AC =λAA ',点M ,N 分别为A 'B 和B 'C '的中点. (1)证明:MN ∥平面A 'ACC ';(2)若二面角A '-MN -C 为直二面角,求λ的值.解:(1)证法一:连结AB ',AC ',由已知∠B AC =90°,AB =AC ,三棱柱ABC -A 'B 'C '为直三棱柱,所以M 为AB '中点. 又因为N 为B 'C '的中点, 所以MN ∥AC '.又MN ⊄平面A 'A CC ',AC '⊂平面A 'ACC ', 因此MN ∥平面A 'ACC '.证法二:取A 'B '中点P ,连结MP ,NP , 而M ,N 分别为AB '与B 'C '的中点, 所以MP ∥AA ',PN ∥A 'C ',所以MP ∥平面A 'ACC ',PN ∥平面A 'ACC '. 又MP ∩NP =P ,因此平面MPN ∥平面A 'A CC '. 而MN ⊂平面MPN ,因此MN ∥平面A 'ACC '.(2)以A 为坐标原点,分别以直线AB ,AC ,AA '为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图所示. 设AA '=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A '(0,0,1),B '(λ,0,1),C '(0,λ,1),所以M λ1,0,22⎛⎫ ⎪⎝⎭,N λλ,,122⎛⎫⎪⎝⎭.设m =(x 1,y 1,z 1)是平面A 'MN 的法向量,由m '0,m 0A M M N ⎧⋅=⎪⎨⋅=⎪⎩得111110,2210,22x z y z λλ⎧-=⎪⎪⎨⎪+=⎪⎩可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由n 0,n 0N C M N ⎧⋅=⎪⎨⋅=⎪⎩得222220,2210,22x y z y z λλλ⎧-+-=⎪⎪⎨⎪+=⎪⎩可取n =(-3,-1,λ).因为A '-MN -C 为直二面角,所以m ·n =0,即-3+(-1)×(-1)+λ2=0,解得19.(2012辽宁,理19)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列,期望E (X )和方差D (X ).附:χ2=211221221n (n n n n )n n n n -,将2×2列联表中的数据代入公式计算,得χ2=2112212211212n (n n n n )n n n n ++++-=2100(30104515)75254555⨯⨯-⨯⨯⨯⨯=10033≈3.030.因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意X ~B 13,⎛⎫ ⎪,从而X 的分布列为E (X )=np =3×14=34,D (X )=np (1-p )=3×14×34=916.20.(2012辽宁,理20)如图,椭圆C 0:22x a+22y b=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=21t ,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程; (2)设动圆C 2:x 2+y 2=22t 与C 0相交于A ',B ',C ',D '四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A 'B 'C 'D '的面积相等,证明:21t +22t 为定值. (1)解:设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a ,0),A 2(a ,0),则直线A 1A 的方程为y =11y x a+(x +a ),①直线A 2B 的方程为y =11y x a--(x -a ).②由①②得y 2=21221y x a--(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故212x a+212y b=1.从而21y =b 2212x 1a ⎛⎫- ⎪⎝⎭,代入③得22x a-22y b=1(x <-a ,y <0).(2)证明:设A '(x 2,y 2),由矩形ABCD 与矩形A 'B 'C 'D '的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故2211x y =2222x y . 因为点A ,A '均在椭圆上,所以b 222112x x 1a ⎛⎫-⎪⎝⎭=b 222222x x 1a ⎛⎫- ⎪⎝⎭. 由t 1≠t 2,知x 1≠x 2,所以21x +22x =a 2. 从而21y +22y =b 2, 因此21t +22t =a 2+b 2为定值.21.(2012辽宁,理21)设f (x )=ln (x +1ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9x x 6+.(1)解:由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32,又y '|x =0=1ax 1⎛⎫+⎪+⎝⎭|x =0=32+a ,得a =0.(2)证法一:由均值不等式,当x >0时,x +1+1=x +2,故x 1+<x 2+1.记h (x )=f (x )-9x x 6+,则h '(x )=1x 1++2x 1+-254(x 6)+=2x 12(x 1)+++-254(x 6)+<x 64(x 1)++-254(x 6)+=32(x 6)216(x 1)4(x 1)(x 6)+-+++.令g (x )=(x +6)3-216(x +1),则当0<x <2时,g '(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数, 又由g (0)=0,得g (x )<0, 所以h '(x )<0.因此h (x )在(0,2)内是递减函数, 又h (0)=0,得h (x )<0. 于是当0<x <2时,f (x )<9x x 6+.证法二:由(1)知f (x )=ln (x +1)+x 1+-1.由均值不等式,当x >0时,2(x 1) 1+<x +1+1=x +2, 故x 1+<x 2+1.①令k (x )=ln (x +1)-x ,则k (0)=0,k '(x )=1x 1+-1=x x 1-+<0,故k (x )<0,即ln (x +1)<x .② 由①②得,当x >0时,f (x )<32x .记h (x )=(x +6)f (x )-9x ,则当0<x <2时, h '(x )=f (x )+(x +6)f '(x )-9 <32x +(x +6)1x 12x 1⎛+⎪++⎝⎭-9 =12(x 1)+[3x (x +1)+(x +6)(2+x 1+)-18(x +1)]<1x 3x (x 1)(x 6)318(x 1)2(x 1)2⎡⎤⎛⎫++++-+ ⎪⎢⎥+⎝⎭⎣⎦ =x 4(x 1)+(7x -18)<0.因此h (x )在(0,2)内单调递减, 又h (0)=0,所以h (x )<0,即f (x )<9x x 6+.22.(2012辽宁,理22)选修4-1:几何证明选讲如图,☉O 和☉O '相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交☉O 于点E .证明:(1)AC ·BD =AD ·AB ; (2)AC =AE .证明:(1)由AC 与☉O '相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB , 所以△ACB ∽△DAB .从而A C A D=A B B D,即AC ·BD =AD ·AB .(2)由AD 与☉O 相切于A ,得∠AED =∠BAD , 又∠ADE =∠BDA ,得△EAD ∽△ABD . 从而A E A B=A D BD,即AE ·BD =AD ·AB .结合(1)的结论,AC =AE .23.(2012辽宁,理23)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. (1)解:圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ.解ρ2,ρ4θcos =⎧⎨=⎩得ρ=2,θ=±3π,故圆C 1与圆C 2交点的坐标为2,3π⎛⎫⎪⎝⎭,2,-3π⎛⎫ ⎪⎝⎭.注:极坐标系下点的表示不唯一.(2)解法一:由x ρθ,y ρθcos sin =⎧⎨=⎩得圆C 1与C 2交点的直角坐标分别为(11故圆C 1与C 2的公共弦的参数方程为x 1,y t,=⎧⎨=⎩t(或参数方程写成x 1,y y,=⎧⎨=⎩y 解法二:将x =1代入x ρθ,y ρθcos sin =⎧⎨=⎩得ρcos θ=1,从而ρ=1θcos .于是圆C 1与C 2的公共弦的参数方程为x 1,y θ,tan =⎧⎨=⎩-3π≤θ≤3π.24.(2012辽宁,理24)选修4—5:不等式选讲已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若x f (x)-2f 2⎛⎫ ⎪⎝⎭≤k 恒成立,求k 的取值范围. 解:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1}, 所以当a ≤0时,不合题意.当a >0时,-4a≤x ≤2a,得a =2.(2)记h (x )=f (x )-2f x 2⎛⎫ ⎪⎝⎭,则h(x)=1,x1,1 4x3,-1x,211,x,2⎧⎪≤-⎪⎪--<<-⎨⎪⎪-≥-⎪⎩所以|h(x)|≤1,因此k≥1.。
2012年全国新课标高考理综试卷及答案2012年普通高等学校招生全国统一考试理科综合能力测试共分为第I卷(选择题)和第II卷(非选择题)两部分,共300分。
在答题前,考生需要认真核对答题卡上的准考证号、姓名和考试科目是否与个人准考证一致。
第I卷的每小题需要用2B铅笔在答题卡上涂黑对应题目的答案标号,如需改动,则需使用橡皮擦干净后再涂其他答案标号。
而第II卷则需要使用黑色墨水签字笔在答题卡上书写作答,答案无效。
考试结束后,监考员将试题卷和答题卡一并收回。
选择题部分包括5道题目,下面是其中的几道题目和答案:1.同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。
其原因是参与这两种蛋白质合成的是 mRNA碱基序列不同。
2.下列关于细胞癌变的叙述,错误的是原癌基因的主要功能是阻止细胞发生异常增殖。
3.哺乳动物因长时间未饮水导致机体脱水时,会发生的生理现象是肾小管和集合管对水的重吸收作用减弱。
4.当人看到酸梅时唾液分泌会大量增加,对此现象的分析,错误的是酸梅色泽直接刺激神经中枢引起唾液分泌。
5.取生长状态一致的燕麦胚芽鞘,分为a、b、c、d四组。
将a、b两组胚芽鞘尖端下方的一段切除,再从c、d两组胚芽鞘中的相应位置分别切取等长的一段,并按图中所示分别接入a、b两组胚芽鞘被切除的位置,得到a′、b′两组胚芽鞘。
然后用单侧光照射,发现a′组胚芽鞘向光弯曲生长,b′组胚芽鞘无弯曲生长,其原因是 c组尖端的生长素向胚芽鞘基部运输,d组尖端的生长素不能。
6.该动物种群的个体从出生到性成熟需要6个月,因此10月份的出生率可能不为零。
正确叙述应为:该种群10月份的出生率不一定为零。
7.A。
液溴易挥发,应在存放液溴的试剂瓶中加入水封。
B。
能使淀粉KI试纸变成蓝色的物质不一定是Cl2.C。
该溶液中存在I-,但不能确定原溶液的物质。
D。
该溶液含有Cl-或SO42-,但不能确定是否含有Ag+。
2012年普通高等学校招生全国统一考试理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至8页,第II卷9至16页,共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第I卷一、选择题:1.同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。
其原因是参与这两种蛋白质合成的是(B)A. tRNA 种类不同B. mRNA碱基序列不同C.核糖体成分不同D.同一密码子所决定的氨基酸不同2.下列关于细胞癌变的叙述,错误的是(D)A.癌细胞在条件不适宜时可无限增殖B.癌变前后,细胞的形态和结构有明显差别C.病毒癌基因可整合到宿主基因组诱发癌变D.原癌基因的主要功能是阻止细胞发生异常增殖3.哺乳动物因长时间未饮水导致机体脱水时,会发生的生理现象是(B)A.血浆渗透压降低B.抗利尿激素分泌增加C.下丘脑渗透压感受器受到的刺激减弱D.肾小管和集合管对水的重吸收作用减弱4.当人看到酸梅时唾液分泌会大量增加,对此现象的分析,错误的是(C)A.这一反射过程需要大脑皮层的参与B.这是一种反射活动,其效应器是唾液腺C.酸梅色泽直接刺激神经中枢引起唾液分泌D.这一过程中有“电—化学—电”信号的转化5.取生长状态一致的燕麦胚芽鞘,分为a、b、c、d四组。
将a、b两组胚芽鞘尖端下方的一段切除,再从c、d两组胚芽鞘中的相应位置分别切取等长的一段,并按图中所示分别接入a、b两组胚芽鞘被切除的位置,得到a′、b′两组胚芽鞘。
2012年普通高等学校招生全国统一考试理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至8页,第II卷9至16页,共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第I卷一、选择题:1.同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。
其原因是参与这两种蛋白质合成的是(B)A. tRNA 种类不同 B. mRNA碱基序列不同C.核糖体成分不同D.同一密码子所决定的氨基酸不同2.下列关于细胞癌变的叙述,错误的是(D)A.癌细胞在条件不适宜时可无限增殖B.癌变前后,细胞的形态和结构有明显差别C.病毒癌基因可整合到宿主基因组诱发癌变D.原癌基因的主要功能是阻止细胞发生异常增殖3.哺乳动物因长时间未饮水导致机体脱水时,会发生的生理现象是(B)A.血浆渗透压降低B.抗利尿激素分泌增加C.下丘脑渗透压感受器受到的刺激减弱D.肾小管和集合管对水的重吸收作用减弱4.当人看到酸梅时唾液分泌会大量增加,对此现象的分析,错误的是(C)A.这一反射过程需要大脑皮层的参与B.这是一种反射活动,其效应器是唾液腺C.酸梅色泽直接刺激神经中枢引起唾液分泌D.这一过程中有“电—化学—电”信号的转化5.取生长状态一致的燕麦胚芽鞘,分为a、b、c、d四组。
将a、b两组胚芽鞘尖端下方的一段切除,再从c、d两组胚芽鞘中的相应位置分别切取等长的一段,并按图中所示分别接入a、b两组胚芽鞘被切除的位置,得到a′、b′两组胚芽鞘。
2012年普通高等学校招生全国统一考试(辽宁卷)英语本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
考试结束后,将本试卷和答题卡一并交回。
第一卷注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选其他答案标号,不能答在试卷上,否则无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题:每小题1. 5分,满分7. 5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例;How much is the shirt?A. £19. 15B. £9. 15C. £9. 18答案是B。
1. Where does this conversation probably take place?A. In the bookstoreB. In a classroomC. In a library2. At what time will the film begin?A. 7:20B. 7:15C. 7:003.What are the two speakers mainly talking about?A. Their friend Jane.B. A weekend trip.C. A radio programme.4. What will the woman probably do?A. Catch a train.B. See the man off.C. Go shopping.4.Why did the woman apologize?A. She made a late delivery.B. She went to the wrong place.C. She couldn’t take the cake back.第二节(共15小题;每小题1. 5分,满分22. 5分)听下面5段对话。
2012年普通高等学校招生全国统一考试(辽宁卷)数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=U U C A C BA .{}5,8B .{}7,9C .{}0,1,3D .【命题意图】本题主要考查集合的补集、交{}2,4,6集运算,是容易题. 【解析】()()(){}=C =7,9U U U C A C B AB ,故选B.2.复数2-=2+i i A .34-55iB .34+55i C .41-5iD .31+5i【命题意图】本题主要考查复数的除法运算,是容易题.【解析】()()()22-2-3-434===-2+2+2-555i i i i i i i ,故选A.3. 已知两个非零向量,a b 满足+=-a b a b ,则下面结论正确A .//a bB .a b ⊥C .=a bD .+=-a b a b【命题意图】本题主要考查平面向量运算,是简单题.【解析1】+=-a b a b ,可以从几何角度理解,以非零向量,a b 为邻边做平行四边形,对角线长分别为+,-a b a b ,若+=-a b a b ,则说明四边形为矩形,所以a b ⊥,故选B. 【解析2】已知得22+=-a b a b ,即2222-2+=+2+=0a ab b a ab b ab a b ∴∴⊥,故选B.4. 已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈D .()()()()122121,,--<0x x R f x f x x x ∀∈【命题意图】本题主要考查全称命题的否定,是容易题.【解析】全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()2121--0f x f x x x ≥”改为“()()()()2121--<0f x f x x x ”,故选C.5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 A .33!⨯ B .()333!⨯ C .()43!D .9!【命题意图】本题主要考查相邻的排列问题,是简单题.【命题意图】每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!,故选C.6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=SA .58B .88C .143D .176【命题意图】本题主要考查等差数列通项公式和前n 项和公式,是简单题.【解析】4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a ,故选B. 7.已知()sin -cos 0,αααπ∈,则tan α=A .1- B.2-C.2D .1【命题意图】本题主要考查同角三角函数基本关系式、特殊角的的三角函数,是中档题. 【解析1】()sin -cos 0,αααπ∈,两边平方得1-sin 2=2,α()sin 2=-1,20,2,ααπ∈332=,=,24ππααtan =-1α∴,故选A. 【解析2】由于形势比较特殊,可以两边取导数得cos +sin =0,tan =-1ααα∴8. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .55【命题意图】本题主要考查简单线性规划,是中档题. 【解析】作出可行域如图中阴影部分所示,由图知目标函数过点()5,15A 时,2+3x y 的最大值为55,故选D. 9. 执行如图所示的程序框图,则输出的S 值是A .-1B .23 C .32D .4 【命题意图】本题主要考查程序框图知识,是中档题.【解析】当=1i 时,经运算得2==-12-4S ; 当=2i 时,经运算得()22==2--13S ; 当=3i 时,经运算得23==222-3S ; 当=4i 时,经运算得2==432-2S ;当=5i 时,经运算得2==-12-4S ;故选D. 从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S10. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为 A .16B .13 C .23 D .45【命题意图】本题主要考查几何概型及应用意识.是中档题.【解析】如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==12-32S xy x x ≤,解得0<48<12x x ≤≤或,该矩形面积小于322cm 的概率为82=123,故选C.11. 设函数)(x f ()x R ∈满足()()()(),=2-f x f x f x f x -=,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()=-h x g x f x 在13-,22⎡⎤⎢⎥⎣⎦上的零点个数为A .5B .6C .7D .8【命题意图】本题主要考查函数的奇偶性、对称性、周期性、函数图像、函数零点等基础知识,是难题.【解析】由()()f x f x -=知,所以函数)(x f 为偶函数,所以()()()=2-=-2f x f x f x ,所以函数)(x f 为周期为2的周期函数,且()()0=0,1=1f f ,而()()=c o s g x x x π为偶函数,且()1130==-==0222g g g g ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,在同一坐标系下作出两函数在13-,22⎡⎤⎢⎥⎣⎦上的图像,发现在13-,22⎡⎤⎢⎥⎣⎦内图像共有6个公共点,则函数()()()=-h x g x f x 在13-,22⎡⎤⎢⎥⎣⎦上的零点个数为6,故选B.12. 若[)0,+x ∈∞,则下列不等式恒成立的是 A .21++xe x x ≤ B2111-+24x x ≤C .21cos 1-2x x ≥ D .()21ln 1+-8x x x ≥【命题意图】本题主要考查不等式恒成立问题,是难题.【解析】验证A ,当332=3>2.7=19.68>1+3+3=13x e 时,,故排除A ;验证B ,当1=2x 时,,3,而111113391-+===<=22441648484848⨯⨯,故排除B ;验证C ,令()()()21=cos -1+,'=-sin +,''=1-cos 2g x x x g x x x g x x ,显然()''>0g x 恒成立 所以当[)0,+x ∈∞,()()''0=0g x g ≥,所以[)0,+x ∈∞,()21=cos -1+2g x x x 为增函数,所以()()0=0g x g ≥,恒成立,故选C ;验证D ,令()()()()()2-311=ln 1+-+,'=-1+=8+144+1x x x h x x x x h x x x ,令()'<0h x ,解得0<<3x ,所以当0<<3x 时,()()<0=0h x h ,显然不恒成立,故选C.二、填空题:本大题共4小题,每小题5分.13. 一个几何体的三视图如图所示,则该几何体的表面积为 .【命题意图】本题主要考查简单几何体的三视图及其体积计算,是简单题.【命题意图】由三视图知,此几何体为一个长为4,宽为3,高为1的长方体中心,去除一个半径为1的圆柱,所以表面积为()243+41+31+2-2=38ππ⨯⨯⨯⨯14.已知等比数列{}n a 为递增数列,且()2510+2+1=,2+=5n n n a a a a a ,则数列{}n a 的通项公式=n a ____________.【命题意图】本题主要考查等比数列的通项公式及方程思想,是简单题. 【解析】设等比数列{}n a 的公比为q ,则由()+2+12+=5n nn a a a 得,222+2=5,2-5+2=0q q q q ,解得1==2q 或q 2,又由2510=a a 知,()24911=a qa q ,所以1=a q ,因为{}n a 为递增数列,所以1==2a q ,=2nn a15. 已知,P Q 为抛物线2=2x y 上两点,点,P Q 的横坐标分别为4,-2,过,P Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 .【命题意图】本题主要考查抛物线的切线与两直线的交点,是中档题.【解析】21=,'=2y x y x ,所以以点P 为切点的切线方程为=4-8y x ,以点Q 为切点的切线方程为=-2-2y x ,联立两方程的1-4x y =⎧⎨=⎩16. 已知正三棱锥-P ABC ,点,,,P A B C ,,PA PB PC 两两相互垂直,则球心到截面ABC 的距离为 .【命题意图】本题主要考查球与正三棱锥的切接问题,是难题. 【解析】如图所示,O 为球心,'O 为截面ABC 所在圆的圆心,设===PA PB PC a ,,,PA PB PC 两两相互垂直,==AB BC CA ,所以'=3CO a ,'=3PO a , 22+=333a a ⎛⎛⎫ ⎪ ⎪⎝⎝⎭,解得=2a ,所以=33PO a ,OO 三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,角,,A B C 成等差数列。
2012年普通高等学校招生全国统一考试理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至8页,第II卷9至16页,共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第I卷一、选择题:1.同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同。
其原因是参与这两种蛋白质合成的是(B)A. tRNA 种类不同B. mRNA碱基序列不同C.核糖体成分不同D.同一密码子所决定的氨基酸不同2.下列关于细胞癌变的叙述,错误的是(D)A.癌细胞在条件不适宜时可无限增殖B.癌变前后,细胞的形态和结构有明显差别C.病毒癌基因可整合到宿主基因组诱发癌变D.原癌基因的主要功能是阻止细胞发生异常增殖3.哺乳动物因长时间未饮水导致机体脱水时,会发生的生理现象是(B)A.血浆渗透压降低B.抗利尿激素分泌增加C.下丘脑渗透压感受器受到的刺激减弱D.肾小管和集合管对水的重吸收作用减弱4.当人看到酸梅时唾液分泌会大量增加,对此现象的分析,错误的是(C)A.这一反射过程需要大脑皮层的参与B.这是一种反射活动,其效应器是唾液腺C.酸梅色泽直接刺激神经中枢引起唾液分泌D.这一过程中有“电—化学—电”信号的转化5.取生长状态一致的燕麦胚芽鞘,分为a、b、c、d四组。
将a、b两组胚芽鞘尖端下方的一段切除,再从c、d两组胚芽鞘中的相应位置分别切取等长的一段,并按图中所示分别接入a、b两组胚芽鞘被切除的位置,得到a′、b′两组胚芽鞘。
2012年普通高等学校招生全国统一考试答案(全国卷Ⅱ)理科综合(物理部分)2012年全国普通高等学校招生考试理科综合能力测试(答案)二、选择题:14.AD 15.BD 16.B 17.B 18.BD 19.C 20.A 21.A 三、非选择题:22. 0.010; 6.870; 6.86023(2)重新处于平衡状态;电流表的示数I ;此时细沙的质量m 2;D 的底边长度l ; (3) (4)m 2>m 1 24. 解:(1)设该同学沿拖杆方向用大小为F 的力推拖把。
将推拖把的力沿竖直和水平方向分解,按平衡条件有 ①②式中N 和f 分别为地板对拖把的正压力和摩擦力。
按摩擦定律有 f=μN ③联立①②③式得 ④(2)若不管沿拖杆方向用多大的力都不能使拖把从静止开始运动,应有⑤这时①式仍满足。
联立①⑤式得⑥现考察使上式成立的θ角的取值范围。
注意到上式右边总是大于零,且当F 无限大时极限为零,有 ⑦使上式成立的θ角满足θ≤θ0,这里θ0是题中所定义的临界角,即当θ≤θ0时,不管沿拖杆方向用多大的力都推不动拖把。
临界角的正切为⑧25. 解:粒子在磁场中做圆周运动。
设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得①式中v 为粒子在a 点的速度。
过b 点和O 点作直线的垂线,分别与直线交于c 和d 点。
由几何关系知,线段和过a 、b两点的轨迹圆弧的两条半径(未画出)围成一正方形。
因此②设有几何关系得③④联立②③④式得再考虑粒子在电场中的运动。
设电场强度的大小为E,粒子在电场中做类平抛运动。
设其加速度大小为a,由牛顿第二定律和带电粒子在电场中的受力公式得qE=ma ⑥粒子在电场方向和直线方向所走的距离均为r,有运动学公式得⑦ r=vt⑧式中t是粒子在电场中运动的时间。
联立①⑤⑥⑦⑧式得⑨33. (1):ACE(2)解:(i)在打开阀门S前,两水槽水温均为T0=273K。
设玻璃泡B中气体的压强为p1,体积为V B,玻璃泡C中气体的压强为p C,依题意有p1=p C+Δp①式中Δp=60mmHg。
2012高考新课标理综卷第一卷一.选择题(每小题6分)1.同一物种的两类细胞各产生一种分泌蛋白,组成这两种蛋白质的各种氨基酸含量相同,但排列顺序不同,其原因是参与这两种蛋白质合成的( )A. tRNA种类不同B. mRNA碱基序列不同C.核糖体成分不同D.同一密码子所决定的氨基酸不同2.下列关于细胞癌变的叙述,错误的是()A.癌细胞在条件适宜时可无限增殖B.癌变前后,细胞的形态和结构有明显差异C.病毒癌基因可整合到宿主基因组诱发癌变D.原癌基因的主要功能是阻止细胞发生异常增殖3.哺乳动物因长时间未饮水导致机体脱水时,会发生的生理现象是()A.血浆渗透压降低B.抗利尿激素分泌增加C.下丘脑渗透压感受器受到的刺激减弱D.肾小管和集合管对水的重吸收作用减弱4.当人看到酸梅时唾液分泌会大量增加,对此现象的分析,错误的是()A.这一反射过程需要大脑皮层的参与B.这是一种反射活动,其效应器是唾液腺C.酸梅色泽直接刺激神经中枢引起唾液分泌D.这一过程中有“电—化—电”信号的转化5.取生长状态一致的燕麦胚芽鞘,分为a、b、c、d四组,将a、b两组胚芽鞘尖端下方的一段切除,再从c、d两组胚芽鞘中的相应位置分别切取等长的一段,并按图中所示分别插入a、b两组胚芽鞘被切除的位置,得到a'、b'两组胚芽鞘,然后用单侧光照射,发现a'组胚芽鞘向光弯曲生长,b'组无弯曲生长,其原因是()A.c组尖端能合成生长素,d组尖端不能B.a'组尖端能合成生长素,b'组尖端不能C.c组尖端的生长素能向胚芽鞘基部运输,d组尖端的生长素不能D.a'组尖端的生长素能向胚芽鞘基部运输,b'组尖端的生长素不能6.某岛屿上生活着一种动物,其种群数量多年维持相对稳定,该动物个体从出生到性成熟需要6个月,下图为某年该动物种群在不同月份的年龄结构(每月最后一天统计种群各年龄组的个体数),关于该种群的叙述,错误的是()A.该种群10月份的出生率可能为零B.天敌的迁入可影响该种群的年龄结构C.该种群的年龄结构随着季节更替而变化D.大量诱杀雄性个体不会影响该种群的密度可能用到的相对原子质量:H l C l2 N 14 O 16 Mg 24 S 32 C1 35 5 Fe 56 Cu 64 Zn 65 Br80一、选择题:本大题共13小题.每小题6分。
2012年普通高等学校招生全国统一考试
理科综合能力测试
物理部分
二、选择题。
本题共8小题,每小题6分。
在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。
早期物理学家关于惯性有下列说法,其中正确的是 A.物体抵抗运动状态变化的性质是惯性 B.没有力作用,物体只能处于静止状态
C.行星在圆周轨道上保持匀速率运动的性质是惯性
D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动
15.如图,x 轴在水平地面内,y 轴沿竖直方向。
图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹,其中b 和c
A.a 的飞行时间比b 的长
B.b 和c 的飞行时间相同
C.a 的水平速度比b 的小
D.b 的初速度比c 的大
16.如图,一小球放置在木板与竖直墙面之间。
设墙面对球的压力大小为N 1,球对木板的压力大小为N 2。
以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转
到水平位置。
不计摩擦,在此过程中 A.N 1始终减小,N 2始终增大 B.N 1始终减小,N 2始终减小 C.N 1先增大后减小,N 2始终减小 D.N 1先增大后减小,N 2先减小后增大
17.自耦变压器铁芯上只绕有一个线圈,原、副线圈都只取该线圈的某部分,一升压式自耦调压变压器的电路如图所示,其副线圈匝数可调。
已知变压器线圈总匝数为1900匝;原线圈为1100匝,接在有效值为220V 的交流电源上。
当变压器输出电压调至最大时,负载R 上的功率为 2.0kW 。
设此时原线圈中电流有效值为I 1,负载两端电压的有效值为U 2,且变压
器是理想的,则
U 2和I 1分别约为 A.380V 和5.3A B.380V 和9.1A C.240V 和5.3A D.240V 和9.1A
18.如图,
图中所示水平直线通过电容器,则在此过程中,该粒子 A.所受重力与电场力平衡
B.电势能逐渐增加
C.动能逐渐增加
D.做匀变速直线运动
19.如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。
现使线框保持图中所示位置,磁感应强度大小随时间线性变化。
为了产生与线框转动半周过程中同样大小的电流,磁感应闲磕牙随时间的变化率t
B
∆∆的大小应为
A.
π
ω0
4B B.
π
ω0
2B C.
πω0B D.π
ω20
B 20.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。
已知在t =0到t =t 1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。
设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是
21.假设地球是一半径为R 、质量分布均匀的球体。
一矿井深度为d 。
已知质量分布均匀的球壳对壳内物体
的引力为零。
矿井底部和地面处的重力加速度大小之比为 A.R d -1 B. R d +1 C. 2)(
R d R - D. 2
)(d
R R -
第Ⅱ卷
三、非选择题。
包括必考题和选考题两部分。
第22题~第32题为必考题,每个试题考生都必须做答。
第33题~第40题为选考题,考生根据要求做答。
(一)必考题(11题,共129分) 22.(5分)
某同学利用螺旋测微器测量一金属板的厚度。
该螺旋测微器校零时的示数如图(a )所示,测量金属板厚度时的示数如图(b )所示。
图(a )所示读数为_________mm ,图(b )所示读数为_________mm ,所测金属板的厚度为_________mm 。
23.(10分)
图中虚线框内存在一沿水平方向、且与纸面垂直的匀强磁场。
现通过测量通电导线在磁场中所受的安培力,来测量磁场的磁感应强度大小、并判定其方向。
所用部分器材已在图中给出,其中D 为位于纸面内的U 形金属框,其底边水平,两侧边竖直且等长;E 为直流电源;R 为电阻箱;○A 为电流表;S 为开关。
此外还有细沙、天平、米尺和若干轻质导线。
(1)在图中画线连接成实验电路图。
(2)完成下列主要实验步骤中的填空 ①按图接线。
②保持开关S 断开,在托盘内加入适量细沙,使D 处于平衡状态;然后用天平称出细沙质量m 1。
③闭合开关S ,调节R 的值使电流大小适当,在托盘内重新加入适量细沙,使D________;然后读出___________________,并用天平称出____________。
④用米尺测量_______________。
(3)用测量的物理量和重力加速度g 表示磁感应强度的大小,可以得出B =_________。
(4)判定磁感应强度方向的方法是:若____________,磁感应强度方向垂直纸面向外;反之,磁感应强度方向垂直纸面向里。
24.(14分)
拖把是由拖杆和拖把头构成的擦地工具(如图)。
设拖把头的质量为m ,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g ,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ。
(1) 若拖把头在地板上匀速移动,求推拖把的力的大小。
(2) 设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。
已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力多大,都不
可能使拖把从静止开始运动。
求这一临界角的正切tan θ0。
25.(18分)
如图,一半径为R 的圆表示一柱形区域的横截面(纸面)。
在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,
离开时速度方向与直线垂直。
圆心O 到直线的距离为
R 5
3。
现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b
点离开该区域。
若磁感应强度大小为B ,不计重力,求电场强度的大小。
33.[物理——选修3-3](15分)
(1)(6分)关于热力学定律,下列说法正确的是_________(填入正确选项前的字母,选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)。
A.为了增加物体的内能,必须对物体做功或向它传递热量
B.对某物体做功,必定会使该物体的内能增加
C.可以从单一热源吸收热量,使之完全变为功
D.不可能使热量从低温物体传向高温物体
E.功转变为热的实际宏观过程是不可逆过程
(2)(9分)如图,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0°C的水槽中,B的容积是A的3倍。
阀门S将A和B两部分隔开。
A内为真空,B和C内都充有气体。
U形管内左边水银柱比右边的低60mm。
打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等。
假设U形管和细管中的气体体积远小于玻璃泡的容积。
(i)求玻璃泡C中气体的压强(以mmHg为单位)
(ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温。
34.[物理——选修3-4](15分)
(1)(6分)一简谐横波沿x轴正向传播,t=0时刻的波形如图(a)所示,x=0.30m处的质点的振动图线如图(b)所示,该质点在t=0时刻的运动方向沿y轴_________(填“正向”或“负向”)。
已知该波的波长大于0.30m,则该波的波长为_______m。
(2)(9分)一玻璃立方体中心有一点状光源。
今在立方体的部分表面镀上不透明薄膜,以致从光源发出的光线只经过一次折射不能透出立方体。
已知该玻璃的折射率为2,求镀膜的面积与立方体表面积之比
的最小值。
35.[物理——选修3-5](15分)
(1)(6分)氘核和氚核可发生热核聚变而释放巨大的能量,该反应方程为:21H+31H →4
2He+x ,式中x 是某种粒子。
已知:21H 、31H 、42He 和粒子x 的质量分别为2.0141u 、3.0161u 、4.0026u 和1.0087u ;1u=931.5MeV/c 2,c 是真空中的光速。
由上述反应方程和数据可知,粒子x 是__________,该反应释放出的能量为_________ MeV (结果保留3位有效数字)
(2)(9分)如图,小球a 、b 用等长细线悬挂于同一固定点O 。
让球a 静止下垂,将球b 向右拉起,使细线水平。
从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°。
忽
略空气阻力,求
(i )两球a 、b 的质量之比;
(ii )两球在碰撞过程中损失的机械能与球b 在碰前的最大动能之比。