风电场厂用电率分析
- 格式:docx
- 大小:11.60 KB
- 文档页数:1
风电场运行状况分析及优化风电场是利用风能发电的设施,对于保障风电场的高效运行和持续发电能力,进行状况分析和优化是必不可少的。
本文将围绕风电场的运行状况进行分析,并提出一些优化措施,以实现风电场的优质运营。
首先,风电场的运行状况分析是对其发电能力的评估。
通过分析风电场的发电能力,可以了解到风机的运行状态、发电效率、损耗程度等。
在分析风电场的运行状况时,可以采用以下指标进行评估:1.发电量:通过分析风电场的历史发电数据,可以统计出每个时间段的发电量,包括日发电量、月发电量、年发电量等。
通过对比不同时间段的发电量,可以评估风电场的发电能力是否稳定,是否存在周期性的波动。
2.可利用率:可利用率是指风电场实际发电量与理论发电量之比。
通过计算风电场的可利用率,可以反映出风电场是否充分利用了风能资源。
若可利用率较低,说明存在一些限制因素或者发电系统不稳定等问题。
3.平均风速:风速是影响风力发电的主要因素,风速越大,风机的发电效率越高。
通过对风电场的平均风速进行分析,可以评估风能资源的利用情况,以及风机的发电效率。
4.故障次数和维修时间:通过分析风电场的故障次数和维修时间,可以了解到风电场的运行稳定性和可靠性。
如果故障次数较多,维修时间较长,就需要对风机进行改进和优化,以提高风电场的运行效率和可靠性。
在分析风电场的运行状况之后,可以根据分析结果进行相应的优化措施。
1.风机布局优化:对于风电场的风机布局,可以通过合理设计风机的位置和布局,以最大限度地利用风能资源。
同时,根据风电场的地形和风能资源分布情况,对布局进行调整,以使得每台风机都能够获得较高的风速,提高发电效率。
2.运行调度优化:通过合理的运行调度,可以避免风电场的过载运行或停机等情况,以最大限度地提高发电量和可利用率。
通过建立合理的预测模型,可以提前预测风能资源的变化,以调整风机的运行速度和运行时间,实现发电量的最大化。
3.维护管理优化:风电场的维护管理对于保障风机的正常运行至关重要。
如何降低风电场综合厂用电摘要:分析风电场降低综合厂用电率的可行措施建设风电场的目的是要电量、要效益,从这个意义上讲,风电场的节能管理工作显得更加重要。
一个刚投运不久的风电场,在运行维护中将会出现各种各样的问题,如运行维护管理不得力,将会导致风力机等设备的非计划停运次数、停运小时增加,风电场设备可利用率下降,风电场应有的发电效益也会受到影响。
所以说,如何做好已建风电场的运行管理工作,是风电企业的中心工作。
在整个电力行业的工作重点转移到“以效益为中心”的轨道上来的今天,向运行管理要效益就显得尤为重要。
为此,我本着相互交流、相互学习的精神,介绍一下降低风电场厂用电率的可行措施,共同提高节能管理水平。
风电场综合厂用电概念及分析风电场是由升压站内设备、架空线及箱变、风力发电机组等三部分设备组成。
从负载上来看,风电场厂用电和有功损耗主要有变压器及输电线路损耗、风力发电机组自用、站用变用电。
针对以上因素分别分析如下:一、减少损耗1、变压器损耗分析1.1变压器并非在额定负荷时运行最经济,当铜损和铁损相等时才是最经济的,效益最高。
1.2变压器不平衡度越大损耗也越大,因此,一般要求变压器低压侧电流的不平衡度不得超过10%,低压干线及主要支线始端的电流不平衡度不得超过20%。
我风场风力发电机组内部的很多用电设备用的是220V电源,分别取自内部干变A、B、C三相,如果负载不均匀势必导致电流不平衡,增加干变损耗。
1.3提高功率因素和降低变压器运行温度的措施可提高运行经济性。
1.4变压器铁损和铜损随着电压的变化而变化。
电压升高,变压器铁损将增加;电压降低,变压器的铜损将增加。
而变压器的铁损在空载和带负载的时候通常误差不会超过0.5%。
这样在满足电网电压的前提下,进行优化选择变压器档位,尽可能维持高电压,便降低变压器损耗,提高其运行效率。
2、输电线路损耗同变压器铜损一样,线路损耗随着电压降低,线路损耗增加。
由P=3UIcosΦ可以看出,有功功率P和功率因数cosΦ一定时,U越大,I越小。
风电场运行指标与评价导则风电场是一种利用风力发电的设施,通过将风能转化为电能来实现可持续、清洁的能源生产。
为了保证风电场的正常运行和高效发电,需要对其进行指标评价和综合评估。
下面给出一些常见的风电场运行指标与评价导则。
1.发电量指标风电场的核心目标是发电,因此发电量是最重要的指标之一、发电量指标可以分为年度发电量和小时发电量两个层面进行评价。
年度发电量是指风电场在一年内总共发电的电量,可以用来判断风电场的发电能力和效益。
小时发电量是指在特定时间段内发电的电量,可以用来评价风电场的日常运行情况和稳定性。
2.发电厂用电率发电厂用电率是指风电场发电机组的利用率,即发电机组实际发电量与额定发电量之比。
高的发电厂用电率意味着发电机组运行效益高,能够更充分利用风资源进行发电。
3.故障率与可靠性风电场运行中可能出现的故障会影响风电机组的正常运行和发电效率。
因此,故障率是评价风电场运行良好与否的重要指标之一、故障率可以通过统计风电机组故障次数与运行时间的比值得到。
可靠性是指风电机组正常运行和提供持续发电的能力。
通过对故障率和可靠性的评价,可以对风电场进行风险评估,提出相应的改进和维护措施。
4.电网并网率电网并网率是指风电场实际接入电网的能力与理论全年最大接入能力之比。
高的电网并网率意味着风电场能够更充分地接入电网,实现综合利用风能和电能的目标。
5.经济效益经济效益是评价风电场运行好坏的重要指标之一、经济效益可以通过对风电场的发电成本、维护成本、收益等进行评估。
随着技术的不断发展和成熟,风电场的经济性逐渐提高,成为可持续、清洁能源发展的重要支撑。
为了对以上指标进行综合评估,可以建立风电场运行评价导则,包括但不限于以下几方面:1.评估标准与方法:制定合理的评估标准和评估方法,基于科学数据和统计信息进行评估,确保评价结果的准确性和可靠性。
2.数据采集与分析:建立健全的数据采集与分析系统,监测风电场的运行数据和指标,及时发现问题和异常,并进行针对性的分析和处理。
风力发电场综合厂用电率分析风力发电场是一种利用风能转换成电能的装置。
随着可再生能源的发展和环境保护意识的提升,风力发电在全球范围内得到了广泛应用。
然而,风力发电场的综合厂用电率是衡量其运行效益的一个重要指标。
综合厂用电率指的是风力发电场所产生的电能与实际使用的电能之间的比值。
这一比值可以反映出风力发电场的发电效率和电能利用情况。
因此,分析风力发电场的综合厂用电率对于提高其能源利用率、优化发电布局以及提高经济效益具有重要意义。
首先,影响风力发电场综合厂用电率的主要因素之一是风能资源。
风能的强度和稳定性对风力发电场的发电能力有着直接影响。
风力发电场一般会选择风能资源丰富、平稳的地区建设,以确保稳定的发电能力和高的综合厂用电率。
其次,风力发电机组的技术性能和运行状态也会对综合厂用电率产生影响。
风力发电机组需要具备稳定的发电能力和高效的转换效率。
此外,机组的负载适配性和响应速度也会对综合厂用电率产生直接影响。
因此,保持风力发电机组的良好状态和高效运行是提高综合厂用电率的关键。
再次,风力发电场的布局和连接方式也会对综合厂用电率产生影响。
风力发电场通常由多个风力发电机组组成,这些机组之间的布局和连接方式会影响电能传输和输送的效率。
因此,合理的布局设计和优化的电网连接方式可以提高风力发电场的综合厂用电率。
此外,风力发电场的综合厂用电率还会受到外部环境因素的影响。
例如,天气条件的变化、气温的波动等都会对风力发电场的发电效率产生直接影响。
因此,风力发电场需要根据实际情况合理调整发电方式和电网运行策略。
综上所述,风力发电场的综合厂用电率是评估其运行效益和经济效益的重要指标。
要提高综合厂用电率,需要从风能资源、技术性能、布局连接、外部环境等多个方面进行综合考虑和优化。
未来,随着科技的发展和经验的积累,相信风力发电场的综合厂用电率将会进一步提高,为可持续发展和绿色能源的推广作出更大的贡献。
风电场运行数据分析风电场作为一种常见的可再生能源发电方式,正逐渐在全球范围内得到广泛应用和推广。
随着风电场的不断建设和运行,对其运行数据进行分析成为一个重要的研究课题。
通过对风电场运行数据的分析,可以了解风电场的发电效率、运行状况以及可能存在的问题,从而提出相应的改进措施,优化风电场的运行。
风电场的运行数据主要包括风速、功率、温度等多个参数,这些参数的变化可以反映风电场的运行情况。
首先,可以对风速数据进行分析。
风速是影响风力发电机发电效率的重要因素,通过对风速数据进行统计和分析,可以确定每个风速区间内的发电量及占比,了解风电场的发电效率。
同时,还可以根据风速数据预测未来的发电量,制定相应的发电计划。
其次,对风电场的功率数据进行分析也是十分重要的。
功率是风力发电机发电的关键指标,通过对功率数据的统计和分析,可以了解风电场的发电能力及其波动情况。
特别是在高峰时段,是否能够稳定供电,对风电场的性能评估具有重要意义。
此外,还可以通过对风电场功率数据的分析,识别并解决可能存在的发电故障问题,提高风电场的可靠性和稳定性。
除了风速和功率外,温度也是影响风电场运行的一个重要参数。
高温会导致风力发电机的散热效果下降,从而影响发电效率;低温则可能导致设备冻结、发电机损坏等问题。
因此,对风电场温度数据的分析可以了解温度对发电量的影响,并采取相应的措施保障风电场的正常运行。
此外,还可以通过对风电场的故障数据进行分析,及时发现并解决可能存在的风电机故障问题。
风电场中的故障主要包括机械故障、电力故障等,通过对故障数据的分析,可以识别故障的类型、发生的频率和位置,进而制定相应的维修和改进策略,提高风电场的可维护性和运行效率。
综上所述,风电场运行数据的分析对于优化风电场的运行和提高发电效率具有重要的意义。
通过分析风速、功率、温度等参数的变化,可以了解风电场的运行状况,预测未来的发电情况,并及时解决可能存在的问题。
因此,在风电场建设和运营过程中,对风电场运行数据的分析应给予足够的重视,为风电场的可持续发展提供有效的支持。
风电场运行数据的监测与分析方法随着可再生能源的快速发展,风电场在能源领域占据着重要的地位。
风电场的运行数据监测与分析是确保风电场安全可靠运行的关键步骤。
本文将介绍一些常用的风电场运行数据监测与分析方法,来帮助人们更好地了解风电场运行情况并做出有效的决策。
1. 风速数据的监测与分析方法风速是风电场运行的关键参数之一。
首先,对于风速数据的监测来说,可以使用气象塔和杆塔上的风速传感器进行实时监测。
其次,通过统计学方法可以对风速数据进行分析,常用的方法有概率密度函数、累积分布函数以及频率分析方法。
这些方法可以帮助判断风速的变化规律、存在的趋势及概率特征等,为风电场运行提供有益的参考。
2. 发电功率数据的监测与分析方法发电功率是评价风电场运行质量的重要指标。
在发电功率数据的监测方面,可以通过直接采集风机控制器中的数据来实时监测发电功率的变化情况。
在分析发电功率数据时,可以使用时间序列分析方法,包括平稳性检验、自相关和偏自相关系数等。
这些方法可以帮助分析发电功率变化的趋势、周期以及异常情况等,以便及时采取相应的措施。
3. 健康监测与故障诊断方法风电场的健康监测与故障诊断是提高风电场稳定运行和可靠性的重要手段。
在健康监测方面,可以使用振动传感器和温度传感器等设备来实时监测风机的运行状态。
同时,可以利用大数据和机器学习技术对采集到的数据进行分析,以识别出潜在的健康问题。
对于故障诊断,可以通过故障诊断算法对数据进行处理和分析,以快速准确地诊断出风电场中的故障类型和位置。
4. 可视化分析方法风电场运行数据的可视化分析是提高数据理解和决策能力的重要手段。
通过合理的数据可视化方式,可以更清晰地展示风电场运行的情况。
常用的可视化技术包括曲线图、散点图、热力图等。
通过对可视化结果的观察和分析,可以更直观地发现风电场中存在的问题和潜在的改进空间,为决策提供有力的支持。
总之,风电场运行数据的监测与分析是确保风电场安全可靠运行的重要环节。
四子王风电场综合厂用电率分析一、概述四子王风电场装机49.5MW,共安装33台华锐SL1500双馈异步风力发电机。
于2008年8月21日升压站全站顺利带电,8月31日首台风机并网发电;2008年11月31日,33台风机全部并网发电。
二、综合厂用电率分析(一)、四子王历年每月综合厂用电率情况从上图中分析,自2009年以来四子王风电场综合厂用电率每年呈上升趋势。
2009年、2010年、2011年在3月-10月份基本相近,2009年、2010年在6月-12月份综合厂用电率相近,2012年每月综合厂用电率最高。
由于四子王风电场无功补偿设备自2011年以来开始全部投运,且风速、限电形势基本一致,所以以下就详细对比分析2012年高于2011年综合厂用电率的原因。
(二)、四子王2011年及2012年1-9月份综合厂用电率分析1、2011年-2012年总体指标情况四子王风电场2012年度指标情况(单位:万kWh)四子王风电场2011年度指标情况(单位:万kWh)2012年与2011年综合厂用电率曲线图如下:2、具体分析综合厂用电率=(发电量—上网电量)/发电量=综合厂用电量/发电量。
综合厂用电量=站用电+主变及场内线路损耗电量+电抗器用电量,以下将对影响综合厂用电率的几个量进行比较:(1)站用电量由上图可以看出,2012年2月、3月、6月高于2011年同期,2012和2011年站用电量基本相同,可见站用电并不是导致综合厂用电率较高的主要原因。
(2)主变及场内线路损耗情况2011年和2012年主变及场内线路损耗电量基本相近,但占总发电量的损耗率却相差较多,见下图。
从图中观察2012年每月主变及汇集线路损耗率都高于2011年。
2012年1-9月累计损耗率高于2011年约1.23个百分点。
①汇集线路损耗场区汇集线路损耗=风机侧发电量-35KV侧发电量+35KV侧下网电量从上图中分析,2012年每月风机汇集线路损耗率高于2011年,2012年高于可见风机汇集线路损耗率的升高是导致综合厂用电率升高的主要原因。
桐风风电场降低综合厂用电率措施一、影响综合厂用电量的因素综合厂用电量=(发电量-上网电量)+网购电量,从公式中可以分析出影响综合厂用电量的以下几个因素:1、风机机组、线路及箱式变损耗;2、无功补偿装置损耗;3、主变损耗;4、站用变损耗;5、220kv吉桐线路损耗;从上图可以看出,损耗最多的为风机机组、线路及箱式变损耗占总比重的57.2%;无功补偿装置损耗为5.21%;主变损耗为7.6%;站用变损耗12.99%;220kv吉桐线路损耗为16.92%。
二、降低综合厂用电率措施综合厂用电率={(发电量-上网电量)+网购电量}/发电量=综合厂用电量/发电量=K,从公式中可以分析出影响综合厂用电率的因素有以下几个方面:1、不可控因素:主变损耗、220kv吉桐线路损耗、无功补偿装置损耗(调度中心调度管辖设备);2、可控因素:风机线路及箱式变损耗、站用变损耗、综合厂用电量/发电量的比值(人为能控制的部分)1)针对风机线路及箱式变损耗在停机时间内风机、箱变、35KV线路一直从电网中受电,一直消耗电网电量造成损耗增多。
降低损耗的措施有以下几点:①在冬季时盖好机舱吊装孔盖,保证机舱温度,降低加热器损耗。
②风机维护或检修完毕后,人走灯灭;2)站用变损耗①桐风风电场制定了节能降耗制度,从制度上约束人。
②开展节能降耗活动,互相学习降耗的方法,互相监督,坚决反对浪费;3、综合厂用电量/发电量的比值K时间发电量(万kwh)上网电量(万kwh)购网电量(万kwh)综合厂用电率1月4175.0112 4049.0135 2.1774 3.07%2月1420.2054 1361.6260 3.1794 4.35%3月2554.1555 2476.0000 1.5162 3.12%(注:因发电量和综合厂用电率数值相差太大,为形象观看趋势图,将综合厂用电率数值放大300倍)从上表可以看出,发电量越高,综合厂用电率K越小;因此,应确保风机发电量,严格控制减少人为因素造成的发电量损失,并做好风电场保电措施。
风电场厂用电率偏大的分析我风电场(Ⅰ期)33台风机采用国电联合动力UP82/1500型变速恒频双馈异步发电机,箱变为江苏华鹏ZGS11-Z.F-1600/35型箱式变压器,主变为天威特变SZ10-50000/110型油浸自冷有载调压变压器,自从2010年11月27日33台风机全部并网运行以来,设备运行平稳,由于巡检到位,消缺及时,未发生大的设备异常事故,超额完成了公司下达的发电任务,但厂用电率偏大引起了大家的广泛关注。
现对厂用电率偏大的原因进行分析,以便积极采取对策,为本风电场的经济指标做出贡献。
风电场不同于火电厂,对环境(风)的依赖性很大,有风了就发电,风大了就满负荷发电,当风速小于3米∕秒时就不发电了,还要用电,这就要从网上吸收电量以满足风机安全停机,部分用电设备还要继续运行,消耗电量。
风机的自用电主要有以下设备消耗:偏航电机4×3KW,变桨电机3×2.2KW,液压站油泵电机0.75KW,高速油泵电机6KW,低速油泵电机3.6KW,发电机风扇1×4.75KW,发电机风扇2×5.5KW,机舱加热器4×5KW,机舱柜加热器2×500W,塔底柜加热器2×500W,发电机加热器3×230W,变流器控制柜加热器800W,齿轮箱加热器,齿轮箱风扇等。
偏航电机在风向稳定时,1小时偏航运行一次,一般情况下1小时两次,每次10秒左右;变桨电机只有当风速超过12米∕秒时才频繁使用,启动并网开桨时运行45秒左右;液压站油泵电机在偏航时运行,正常时1到2小时运行一次,维持偏航及刹车压力,每次10秒左右;并网时油泵一直低速运行,当油池温度超过35℃时,油泵高速运行,启动时油温低于35℃时,油泵低速运行;所有加热器温控可以人为设定,一般0℃以下投入运行,5℃以上退出运行;当发电机温度高于50℃发电机风扇运转,低于30℃发电机风扇停运;当油池温度高于50℃齿轮箱散热风扇投运;发电机加热器、齿轮箱加热器、变流器控制柜加热器一般不运行,只有当检修后上电前运行。
风电场综合厂用电率偏高分析及改进摘要:在落实“碳达峰、碳中和”目标的大背景下,风电的开发利用必然会更加受到重视。
本文主要对风电场综合厂用电率偏高分析及改进进行论述,详情如下。
关键词:风电场;综合厂;用电率;分析引言风电场综合厂用电率(以下简称厂用电率)是风电场一项重要的经营运行指标。
降低风电场生产运行的电能损耗和综合厂用电率,在当下节能减排的大环境下,综合厂用电率的降低对风电场可持续发展有着重大意义。
风电场在保证安全生产的前提下,适当采取一些措施降低综合厂用电率,提高风电场的经济效益。
1风电场综合厂用电率偏高分析变压器的损耗=空载损耗+负载损耗,即变压器的铁损+变压器的铜损。
电压升高,变压器的铁损会增加;电流升高,变压器的铜损会增加。
电力电缆的损耗主要表现为热效应,在空载情况下,电流微弱,损耗基本可以忽略。
在满载条件下且电缆长度不是足够长,可忽略分布电容,采用理想纯电阻电路模型计算电力电缆损耗。
2风电场综合厂用电率优化措施2.1考虑调压裕度的风电场无功电压控制策略以风力发电为代表的可再生能源取得了迅猛发展,然而大规模风电并网也给系统的安全稳定运行带来了不良影响。
当风电场受到风速波动影响时,线路无功损耗加大,存在并网电压越限风险,进而危害电力系统安全。
并网电压的稳定性与风电场的无功控制有密切关联,目前国内外研究主要从风电场无功控制策略设计与系统无功补偿配置两个方面进行。
风电场无功整定层与风电机组无功分配层结合的控制结构,能够根据并网点无功需求值,考虑调压裕度,控制风电机组与无功补偿装置协调进行无功补偿,并按照无功容量比例算法,将补偿量分配给所有风电机组,提高了无功电压控制的灵活性,有效提升了系统运行的稳定性。
风电机组采用自适应下垂控制与减载控制方法,可在不同运行情况下判断风电场内各机组的运行状态,合理调整机组功率,最大程度利用了风电机组的无功输出能力,为电网提供无功支持的同时减少了无功补偿装置的投入,满足经济性的要求。
风力发电场综合厂用电率分析张卫东(国家电投集团山西新能源有限公司,山西太原030006)【摘要】本文结合某风力发电场综合厂用电率偏高的实际情况,从影响综合厂用电率的发电量、上网电量和下网电量着手,分析耗电的设备和运行原因,寻求降低综合厂电率的有效途径。
【关键词】风力发电综合厂用电率降低1前言综合厂用电率是风力发电企业主要的经济运行指标,也是发电集团开展对标管理的主要指标之一,因此加强综合厂电率分析,有效减少场用电量消耗,降低综合厂电率,在弃风限电日趋严重的是今天显得尤为重要。
2基本情况本风电场一期项目工程安装33台HW82/1500型风力发电机组,该风电场投运以来,各设备运行正常,无功补偿装置按电网要求在线投运,月度综合场用电率指标维持在2.04%-5.79之间。
2015年2月,该风电场月度综合统计为9.3%,远高于年初下达的指标计划值,也严重偏离风电场正常运行的指标范围,为此,我们对综合场用电量、发电量、电流互感器或表计故障使计量不准确等深入检查、分析寻找原因。
3分析依据综合场用电率=综合场用电量/发电量*100%(1)综合场用电量=发电量-上网电量+下网电量(2)为了能够深入寻找原因,我们考虑各种实际情况对相关数据进行统计如下:日期发电量(万kWh)下网电量(万kWh)厂用电(万kWh)发电小时站用变(万kWh)SVC(万kWh)主变压器(万kWh)综合厂用电量(万kWh)综合厂用电率(%)平均风速(m/s)风场可利用率(%)2015年2月422.04415.97211.2073746.1255.0826.72839.249.34.1398.6 2015年1月971.09614.5213.1184856.7556.3637.535238.383.955.7696.98 2014年2月1042.37.37887.48655111.81655.679.981629.702.856.7796.71 2013年2月1209.96411.91968.55334981.89636.65739.9823.37.0396.172014年7月夏季对比408.4089.385211.0744442.0868.9886.10723.64125.794.2795.344数据分析(1)发电量分析:影响风电场发电量的主要因素是平均风速和风场可利用率。
风电场生产运行统计指标释义一、风能资源指标本类指标用以反映风电场在统计周期内的实际风能资源状况。
采用年平均风速加以表示(此类指标只作统计、参考之用)。
1、年平均风速年平均风速是指在给定时间内瞬时风速的平均值。
测风高度应与风电机组轮毂高度相等或接近,由场内有代表性的测风塔(或若干测风塔)读取(取平均值)。
式中:V —统计周期内风电场平均风速;n —统计周期内场内有代表性的测风塔(或若干测风塔)的个数;Vi—统计周期内,第i 个测风塔的平均风速。
本指标应逐日统计并在日报、月报及年报中反映。
年平均风速是反映风电场风资源状况的一个重要数据。
二、电量指标本类指标用以反映风电场在统计周期内的出力和购网电情况,采用发电量、上网电量、购网电量和年利用小时数四个指标。
1、发电量单机发电量是指统计周期内在单台风力发电机出口处计量的输出电能,一般从风电机组SCADA 系统读取。
风电场发电量是指统计周期内风电场所有风电机组发出电量的总和。
式中:E --统计周期内风电场的发电量;Ei --统计周期内,第i 台风电机组的发电量;N--统计周期内风电场风电机组的总台数。
风电场发电量应逐日统计并在日报、月报及年报中反映。
单机发电量可逐月记录。
2、上网电量上网电量是指统计周期内风电场主变压器高压侧或开关站出线侧的正向有功。
单位:kWh风电场上网电量应逐日统计并在日报、月报及年报中反映。
3、购网电量购网电量是指统计周期内风电场主变压器高压侧或开关站出线侧的反向有功。
单位:kWh风电场购网电量应逐日统计并在日报、月报及年报中反映。
4、年利用小时数风电机组利用小时数也称作等效满负荷发电小时数,是指统计周期内风电机组发电量折算到其满负荷运行条件下的发电小时数,且利用小时数的统计仅针对统计期之前已达到稳定运行的风电机组。
风电场利用小时数是指统计周期内风电场发电量折算到风电场总装机容量满负荷运行条件下的发电小时数。
风电场利用小时数和风电机组利用小时数以年度为单位统计,仅在年报中反映。
风电利用率
风电利用率是指风力发电机组在一定时间内实际发电量与理论发电量之比。
风电利用率是衡量风力发电机组运行效率的重要指标,也是评价风电场经济效益的重要参数。
风电利用率受多种因素影响,如风速、风向、风机转速、风机叶片角度等。
其中,风速是影响风电利用率最为重要的因素。
当风速达到额定风速时,风力发电机组的发电效率最高,此时风电利用率可达到90%以上。
但是,当风速低于额定风速时,风力发电机组的发电效率会大幅下降,风电利用率也会随之降低。
除了风速,风向也会影响风电利用率。
当风向与风机转向不一致时,风力发电机组的发电效率也会下降,风电利用率也会受到影响。
此外,风机转速和叶片角度也会影响风电利用率。
当风机转速过高或叶片角度不合适时,风力发电机组的发电效率也会下降,风电利用率也会受到影响。
为提高风电利用率,需要采取一系列措施。
首先,要选择合适的风电场建设地点,确保风速充足。
其次,要选择高效的风力发电机组,提高发电效率。
此外,还要加强风电场的运维管理,及时发现和处理故障,保证风力发电机组的正常运行。
风电利用率是衡量风力发电机组运行效率的重要指标,也是评价风电场经济效益的重要参数。
提高风电利用率需要从多个方面入手,
包括选择合适的建设地点、选择高效的风力发电机组、加强运维管理等。
只有不断提高风电利用率,才能更好地发挥风力发电的优势,为可持续发展做出贡献。
浅究风电场综合场用电率1 九龙山风电场基本情况介绍该风电场采用某公司生产的19台2.5MW机型,每台风机配置一台容量为2750kVA的35kV箱式变压器,通过3回35kV地埋集电线缆将电能汇集至升压站,主变压器额定容量为80MVA,将35kV升压至110kV后,采用1回110kV 线路-变压器组接线方式与电网并网。
本文着重对风电场输变电设备电能损耗、不同风速对场用电的影响、风力发电机组自用电、场内生产生活用电四部分进行分析讨论。
2 九龙山标准综合场用电率分解计算综合场用电量除去场用电量外,还包括风机无风待机损耗、箱变损耗、集电线损耗、场用变损耗、主变损耗、开关损耗、隔离开关损耗、无功补偿装置损耗、母线损耗等,即:E综合场用电量=E发电量-E上网电量+E网购电量本文九龙山标准综合场用电率计算从满负荷运行时综合场用电率和年均负荷运行时综合场用电率两部分来进行。
2.1 满负荷时综合场用电率分解计算2.1.1 风机自身消耗。
九龙山风电场所采用的2.5MW机型,其自用电主要来自变浆电机、偏航电机、变频器冷却风机等,具体参数见表1:表1 风机内部主要用电设备参数表2 九龙山风电场箱变主要参数但风机内部各用电设备运行状况随风速、机组运行状态不同而变化,而目前无法精确计算,如需精确统计需加装CT、PT。
考虑到损耗较低,故在本文中忽略不计。
2.1.2 箱变损耗。
九龙山风电场选用箱变主要参数见表2。
即在风电场满负荷运行时:P(箱变空载损耗)=3000WP(箱变负载损耗)=25000WP(箱变总损耗)=(3000+25000)*19=532kW2.1.3 集电线路损耗。
线路损耗简称线损,是电能通过输电线路传输而产生的能量损耗。
九龙山风电场选用箱变主要参数见表3:表3 九龙山风电场选用箱变主要参数以集电Ⅰ线为例:P(集电1线负载损耗)=I12R1+I22R2+I32R3+I42R4+I52R5+I62R6=I12(R1+4R2+9R3+16R4+25R5+36R6)其中:R1=0.3*0.44=0.132Ω4R2=4*0.368*0.44=0.64768Ω9R3=9*0.582*0.44=2.30472Ω16R4=16*0.258*0.16=0.66048Ω25R5=25*0.3481*0.16=1.3924Ω36R6=36*0.53*0.12=2.2896Ω代入数值计算得出:P(集电1线负载损耗)=12.61W。
风能行业报告编制中的风资源评估和发电效率调查一、引言二、风资源评估的重要性1. 为什么需要对风资源进行评估2. 风资源评估的方法与工具三、风资源评估中的关键参数1. 平均风速与风能密度2. 风向与测风高度3. 风能的季节变化与时域特性四、风资源评估的难点与挑战1. 复杂地形对风场分布的影响2. 风资源预估与实际发电量的差异五、风资源评估在风能行业报告中的应用1. 市场规模与潜力评估2. 风电场选址与规划3. 投资决策与风险评估六、发电效率调查与优化1. 发电效率的意义与计算方法2. 影响发电效率的因素与调查手段3. 提高发电效率的策略与技术七、结论【引言】随着可再生能源的快速发展,风能成为许多国家实现清洁能源转型的首选之一。
然而,在风能行业报告的编制中,准确评估风资源和发电效率是至关重要的。
本文将从风资源评估和发电效率调查两个方面对风能行业报告的编制进行详细论述。
【风资源评估的重要性】在编制风能行业报告时,对风资源进行评估是至关重要的。
首先,风资源评估可以为风能项目的选址提供科学依据,通过评估风能密度和平均风速等参数,确定最佳的风电场建设地点。
其次,风能报告需要预估未来市场规模和潜力,而这些数据都是通过对风资源的评估得出的。
最后,在投资决策中,风资源评估也能为投资方提供风险评估和收益预测的依据。
【风资源评估中的关键参数】在风资源评估中,有一些关键参数需要被重点考虑。
首先是平均风速与风能密度,它们是评估风能资源优劣的重要指标。
其次是风向与测风高度,这些参数可以影响风能装置的设计和运行。
此外,风能的季节变化和时域特性也需要考虑,以更准确地评估风资源的可利用程度。
【风资源评估的难点与挑战】风资源评估中存在一些难点与挑战。
首先是复杂地形对风场分布的影响,例如山区、沿海地区等地形会对风能分布产生重大影响,需要采用先进的建模和仿真技术进行评估。
其次是风资源预估与实际发电量存在差异,原因包括气象因素、设备损耗和维护等。
风电场厂用电分析
我风电场(Ⅰ期)25台风机采用湘电XE116-2000型发电机,箱变为宁波天ZGS-Z.F-2200/35箱式变压器,主变为西电济南
SZ11-50000/110型油浸自冷有载调压变压器。
风电场对环境(风)的依赖性很大,有风就能发电,风大了就满负荷发电。
当风速小于3米、秒时就不发电,还要从网上吸收电量以满足风机安全停机,部分用电设备还要继续运行,消耗点量。
主要耗电设备有:偏航电机3kw*2,变桨电机8kw*2,液压油泵电机1.1kw,机舱冷却风扇2.2kw*2,变频器冷却循环泵3kw,发电机加热器6KW,塔筒通风机0.75kw,水冷风扇4kw*2,其余加热器总计4kw。
现以7个小时无风情况下平均功率计算。
购网电量主要有:主变损耗以空载损耗计算大约每天耗电643kwh,厂用电大约596kwh,集电一回路耗电1861kwh,集电二回路耗电2262kwh,集电三回路耗电2372kwh,SVG耗电267kwh。
一天总耗电量大约8004kwh。
不发电时风场主要耗电有主变损耗,线路损耗,箱变损耗,风机损耗,厂用电,SVG用电。
在发电的情况下发电量越大各种损耗也明显增大。