支持向量机
- 格式:ppt
- 大小:1.52 MB
- 文档页数:1
envi svm 参数摘要:1.简介2.支持向量机(SVM)基本原理3.环境变量(ENVI)与支持向量机(SVM)结合应用4.ENVI 中SVM 参数设置5.参数调整与优化6.总结正文:支持向量机(SVM)是一种广泛应用于分类和回归的非线性监督学习算法。
近年来,随着遥感技术的发展,支持向量机在遥感图像分类领域得到了广泛应用。
ENVI 是一款专业的遥感图像处理软件,提供了丰富的遥感图像分析工具,其中包括支持向量机分类器。
本文将详细介绍ENVI 中支持向量机的参数设置及其对分类结果的影响。
支持向量机(SVM)的基本原理是通过划分超平面,使得不同类别的数据点到超平面的距离最大。
在这个过程中,我们需要确定超平面的方向和位置,同时找到一个最大间隔超平面。
支持向量机算法中,超平面的一般形式为:w * x + b = 0,其中w 表示法向量,x 为样本数据,b 为截距。
环境变量(ENVI)与支持向量机(SVM)结合应用,可以充分利用遥感图像数据的特征信息,提高分类精度和可靠性。
在ENVI 中,支持向量机分类器可以通过以下步骤实现:1.选择数据集:加载遥感图像数据,并将其分为训练样本和测试样本。
2.定义输入变量:根据实际需求,选择与分类任务相关的波段或特征。
3.设置分类参数:在ENVI 中,支持向量机参数包括核函数、松弛参数(C)、惩罚参数(gamma)等。
4.训练分类器:利用训练样本数据,训练支持向量机分类器。
5.分类结果评估:使用测试样本数据,评估分类器性能。
在ENVI 中,支持向量机参数设置对分类结果具有重要影响。
以下是一些常用参数的设置方法:1.核函数:选择适合分类任务的核函数,如线性核(Linear)、多项式核(Polynomial)、径向基函数核(Radial basis function, RBF)等。
2.松弛参数(C):控制分类器对训练样本的容错程度,较小的C 值会导致更严格的分类边界,可能错过一些样本;较大的C 值会允许更多的错误分类,以换取更宽的分类边界。
支持向量机原理与应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法,其基本思想是通过寻找最优超平面将数据分成两类。
在这篇文章中,我们将深入探讨支持向量机的原理和应用。
一、支持向量机的原理支持向量机通过最大化间隔超平面来分类数据。
间隔是定义为支持向量(也就是最靠近分类边界的数据点)之间的距离。
因此,我们的目标是找到一个最优的超平面使得此间隔最大。
在二维空间中,最大间隔超平面是一条直线。
在高维空间中,最大间隔超平面是一个超平面。
这个超平面定义为:w\cdot x-b=0其中,w是一个向量,x是样本空间中的向量,b是偏差。
支持向量机的目标是找到一个可以将训练样本分成两个类别的最大间隔超平面,并且使得间隔为M(M是最大间隔)。
二、支持向量机的应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法。
这里我们将讨论支持向量机在分类问题中的应用。
1. 图像分类支持向量机在图像分类中的应用非常广泛。
通过将图像转换为特征向量,可以用支持向量机实现图像分类。
支持向量机特别适用于图像分类,因为它可以处理高维特征空间。
2. 自然语言处理支持向量机可以通过文本分类实现在自然语言处理中的应用。
支持向量机可以学习在给定文本语料库中的所有文档的特定类别的模式(如“金融”或“体育”)。
3. 生物信息学支持向量机在生物信息学中的应用非常广泛。
生物信息学家可以使用支持向量机分类DNA,RNA和蛋白质序列。
4. 金融支持向量机在金融中的应用也很广泛。
通过识别是否存在欺诈行为,可以使用支持向量机实现信用评估。
三、总结在这篇文章中,我们深入探讨了支持向量机的原理和应用。
通过理解支持向量机的原理,我们可以更好地了解如何使用它解决分类问题。
在应用方面,支持向量机广泛应用于各种领域,包括图像分类、自然语言处理、生物信息学和金融等。
因此,支持向量机是一种非常有用的机器学习算法,对于了解它的原理和应用非常重要。
支持向量机支持向量机,英文名为support vector machine,一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划(convex quadratic programming)问题的求解,支持向量机的学习算法是求解凸二次规划的最优化算法。
其方法包含构建由简到繁的模型:线性可分支持向量机、线性支持向量机和非线性支持向量机。
线性可分支持向量机假定一特征空间上的训练数据集T={(x1,y1),(x2,y2),⋯,(x N,y N)},其中x i∈χ= R n,y i∈Y={+1,−1},i=1,2,⋯,N,x i为第i个特征向量,也就是实例,y i为x i的类标记,当y i=+1时,称x i为正例;当y i=−1时,称x i为负例,(x i,y i)称为样本点。
再假设训练数据集是线性可分的,即存在某个超平面能够将正例和负例完全正确的分开,不妨设分离超平面方程为w∙x+b=0,法向量为w、截距为b。
一般地,当训练数据集线性可分时,存在无穷多个分离超平面可将两类数据正确分开,线性可分支持向量机利用间隔最大化求最优分离超平面,这是解是唯一的。
若最优分离超平面为w∗∙x+b∗=0,则分类决策函数为f(x)=sign(w∗∙x+b∗)。
在上图中,有A、B、C三个点,表示三个实例,设“。
”表示正类,“×”表示负类,则这三个点全在正类。
A距分类超平面较远,若预测该点为正类就比较确信预测是正确的;C距分类超平面较近,若预测该点为负类就不那么确信;B介于AC两者之间,预测为正类的确信度也在A与C之间。
故一般来说,点距离分离超平面的远近可以表示分类预测的确信程度。
在超平面w ∙x +b =0确定的情况下,|w ∙x +b |能够相对地表示点x 到超平面的远近,而w ∙x +b 的符号与类标记y 的符号是否一致可表示分类是否正确,所以y (w ∙x +b )可以来表示分类的真确性及确信度,我们称之为函数间隔。
3.支持向量机(回归)3.1.1 支持向量机支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。
它将输入样本集合变换到高维空间使得其分离性状况得到改善。
它的结构酷似三层感知器,是构造分类规则的通用方法。
SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。
作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。
所谓核技巧,就是找一个核函数使其满足,代(,)K x y (,)((),())K x y x y φφ=替在特征空间中内积的计算。
因为对于非线性分类,一般是先找一(),())x y φφ(个非线性映射将输入数据映射到高维特征空间,使之分离性状况得到很大改φ观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。
由于内积运算量相当大,核技巧就是为了降低计算量而生的。
特别, 对特征空间为Hilbert 空间的情形,设是定义在输入空H (,)K x y 间上的二元函数,设中的规范正交基为。
如果n R H 12(),(),...,(),...n x x x φφφ,221(,)((),()),{}k k k k k K x y a x y a l φφ∞==∈∑那么取即为所求的非线性嵌入映射。
由于核函数的定义1()()k k k x a x φφ∞==∑(,)K x y 域是原来的输入空间,而不是高维的特征空间。
因此,巧妙地避开了计算高维内积所需付出的计算代价。
实际计算中,我们只要选定一个,(),())x y φφ((,)K x y并不去重构嵌入映射。
所以寻找核函数(对称且非负)1()()k k k x a x φφ∞==∑(,)K x y 就是主要任务了。
满足以上条件的核函数很多,例如●可以取为d-阶多项式:,其中为固定元素。
支持向量机原理支持向量机(Support Vector Machine,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。
支持向量机的学习策略是间隔最大化,可形式化为一个求解凸二次规划问题。
SVM是一种分类算法,它的基本原理是找到一个超平面,将不同类别的数据分隔开来,使得两个类别的数据点到超平面的距离最大化。
支持向量机的原理主要包括间隔、支持向量、对偶问题和核函数等几个方面。
首先,我们来看支持向量机的间隔。
在支持向量机中,间隔是指两个异类样本最近的距离,而支持向量机的目标就是要找到一个超平面,使得所有样本点到这个超平面的距离最大化。
这个距离就是间隔,而支持向量机的学习策略就是要最大化这个间隔。
其次,支持向量机的支持向量。
支持向量是指离超平面最近的那些点,它们对超平面的位置有影响。
支持向量决定了最终的超平面的位置,而其他的点对超平面的位置没有影响。
因此,支持向量是支持向量机模型的关键。
然后,我们来看支持向量机的对偶问题。
支持向量机的原始问题是一个凸二次规划问题,可以通过求解对偶问题来得到最终的分类超平面。
通过对偶问题,我们可以得到支持向量的系数,从而得到最终的分类超平面。
最后,我们来看支持向量机的核函数。
在实际应用中,很多时候样本不是线性可分的,这时就需要用到核函数。
核函数可以将原始特征空间映射到一个更高维的特征空间,使得样本在这个高维特征空间中线性可分。
常用的核函数有线性核、多项式核和高斯核等。
综上所述,支持向量机是一种非常强大的分类算法,它通过最大化间隔来得到最优的分类超平面,支持向量决定了最终的超平面的位置,对偶问题可以通过求解对偶问题来得到最终的分类超平面,而核函数可以处理非线性可分的情况。
支持向量机在实际应用中有着广泛的应用,是一种非常重要的机器学习算法。
希望本文对支持向量机的原理有所帮助,让读者对支持向量机有更深入的理解。
支持向量机作为一种经典的机器学习算法,有着重要的理论意义和实际应用价值。
支持向量机与神经网络的比较与优劣分析在机器学习领域,支持向量机(Support Vector Machine,SVM)和神经网络(Neural Network)是两种常见且广泛应用的算法。
它们都有着自己独特的特点和优势,但也存在一些局限性。
本文将对这两种算法进行比较与优劣分析。
一、支持向量机支持向量机是一种监督学习算法,主要用于分类和回归问题。
其核心思想是找到一个最优的超平面,将不同类别的样本分开。
SVM通过构建一个决策边界,使得不同类别的样本与该边界的距离最大化,从而实现分类。
SVM的优势在于:1. 可以处理高维数据集:SVM通过将数据映射到高维空间,将非线性问题转化为线性问题,从而提高了分类的准确性。
2. 泛化能力强:SVM通过最大化边界来选择最优的超平面,使得对未知数据的分类效果更好,具有较强的泛化能力。
3. 可以处理小样本问题:SVM的决策边界只与支持向量相关,而不依赖于整个数据集,因此对于小样本问题,SVM表现出较好的性能。
然而,SVM也存在一些不足之处:1. 计算复杂度高:SVM的训练时间复杂度为O(n^2),当数据量较大时,计算时间会显著增加。
2. 对参数和核函数选择敏感:SVM的性能很大程度上取决于参数和核函数的选择,需要进行大量的调参工作。
3. 不适用于大规模数据集:由于计算复杂度高,SVM在处理大规模数据集时效率较低。
二、神经网络神经网络是一种模仿生物神经系统的计算模型,由多个神经元(节点)组成的网络。
神经网络通过学习输入数据的特征和模式,进行分类和预测。
神经网络的优势在于:1. 可以处理非线性问题:神经网络通过多层隐藏层的组合,可以学习到复杂的非线性关系,适用于处理非线性问题。
2. 自适应性强:神经网络可以通过反向传播算法不断调整权重和偏置,从而提高模型的准确性和泛化能力。
3. 并行计算能力强:神经网络的计算过程可以并行处理,适用于大规模并行计算的场景。
然而,神经网络也存在一些不足之处:1. 容易过拟合:神经网络的参数较多,模型复杂度较高,容易在训练集上过拟合,对未知数据的泛化能力较差。