第21章 Logistic 回归分析
- 格式:ppt
- 大小:2.19 MB
- 文档页数:67
logistic regression法
(原创实用版)
目录
1.线性回归概述
2.Logistic 回归法的原理
3.Logistic 回归法的应用
4.Logistic 回归法的优缺点
正文
线性回归是一种常见的统计分析方法,主要用于研究因变量和自变量之间的关系。
在线性回归中,因变量通常是连续的,而自变量可以是连续的或离散的。
然而,当因变量为二分类或多分类时,线性回归就不再适用。
这时,Logistic 回归法就被引入了。
Logistic 回归法是一种用于解决分类问题的统计方法,其原理是基于逻辑斯蒂函数。
逻辑斯蒂函数是一种 S 型函数,其取值范围在 0 到 1 之间,可以用来表示一个事件发生的概率。
在 Logistic 回归法中,我们通过将自变量输入逻辑斯蒂函数,得到一个概率值,然后根据这个概率值来判断因变量所属的类别。
Logistic 回归法广泛应用于二分类和多分类问题中,例如信用风险评估、疾病预测、市场营销等。
在我国,Logistic 回归法也被广泛应用于各种领域,如金融、医疗、教育等。
Logistic 回归法虽然具有很多优点,但也存在一些缺点。
首先,Logistic 回归法对于自变量过多或者数据量过小的情况不太适用,因为这样容易导致过拟合。
其次,Logistic 回归法的计算过程比较复杂,需要用到特种数学知识,对计算资源的要求也比较高。
总的来说,Logistic 回归法是一种重要的分类方法,具有广泛的应
用前景。
Logistic 曲线的回归分析例 某一品种玉米高度与时间(生长周期,每个生长周期为2-3天,与气温有关)的数据如表1.所示。
用转化为线性方程的方法估计其logistic 曲线预测模型。
设最大值k 为300(cm )。
表1. 玉米高度与时间(生长周期)的关系时间(生长周期) 高度/cm 时间(生长周期) 高度/cm 时间(生长周期) 高度/cm12 3 4 5 6 7 8 9 10 11 0.67 0.85 1.28 1.75 2.27 2.75 3.69 4.71 6.36 7.73 9.9112 13 14 15 16 17 18 19 20 21 12.75 16.55 20.1 27.35 32.55 37.55 44.75 53.38 71.61 83.89 22 23 24 25 26 27 28 29 30 31 97.46 112.7 135.1 153.6 160.3 167.1 174.9 177.9 180.2 180.83.1 基本绘图操作在Excel 中输入时间x 与高度y 的数据。
选择插入->图表图87点击图表,选择“标准类型”中的xy 散点图,并点击子图表类型的第一个。
图88 点击下一步,得到如图89。
图 89点击下一步。
图90分别点击标题、网格线、图例进行修改,然后点击下一步。
图91点击完成。
图92右击绘图区,修改绘图区格式,双击做表格,修改坐标轴刻度,最后的散点图。
图93观察散点图,其呈S 型曲线,符合logistic 曲线。
采用转化为线性方程的方法求解模型。
3.2 Logistic 曲线方程及线性化Logistic 曲线方程为:1atk y me-=+ (12)(1) 将数据线性化及成图转化为线性方程为:01'y a a t =+ (13)其中,'ln(/1)y k y =-,0ln a m =,1a a =-具体操作为:向excel 表格中输入y ’数据。
一、回归分析的分类logistic回归(logistic regression)是研究因变量为二分类或多分类观察结果与影响因素(自变量)之间关系的一种多变量分析方法,属概率型非线性回归。
根据1个因变量与多个因变量之分,有以下区分:①一个因变量y:I连续形因变量(y)——线性回归分析II分类型因变量(y)——Logistic 回归分析III 生存时间因变量(y)——生存风险回归分析IV时间序列因变量(y)——时间序列分析②多个因变量(y1,y2,……yn):I 路径分析II 结构方程模型分析在流行病学研究中,常需要分析疾病与各种危险因素间的定量关系,同时为了能真实反映暴露因素与观察结果间的关系,需要控制混杂因素的影响。
(1)Mantel-Haenszel分层分析:适用于样本量大、分析因素较少的情况。
当分层较多时,由于要求各格子中例数不能太少,所需样本较大,往往难以做到;当混杂因素较多时,分层数也呈几何倍数增长,这将导致部分层中某个格子的频数为零,无法利用其信息。
(2)线性回归分析:由于因变量是分类变量,不能满足其正态性要求;有些自变量对因变量的影响并非线性。
(3)logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研究某个二分类(或无序及有序多分类)目标变量与有关因素的关系。
二、logistic回归分析(一)logistic回归的分类(1)二分类资料logistic回归:因变量为两分类变量的资料,可用非条件logistic回归和条件logistic回归进行分析。
非条件logistic回归多用于非配比病例-对照研究或队列研究资料,条件logistic回归多用于配对或配比资料。
(2)多分类资料logistic回归:因变量为多项分类的资料,可用多项分类logistic回归模型或有序分类logistic回归模型进行分析。
队列研究(cohort study):也称前瞻性研究、随访研究等。
是一种由因及果的研究,在研究开始时,根据以往有无暴露经历,将研究人群分为暴露人群和非暴露人群,在一定时期内,随访观察和比较两组人群的发病率或死亡率。
logistic回归模型讲稿Logitic回归分析模型2022-10-241各位老师,同学们大家上午好:非常感谢大家抽出宝贵的时间来参加沙龙,感谢我的导师对沙龙内容及PPT制作过程中的悉心指导,今天和大家一起分享的是在课题中用到的一种统计学分析方法,Logitic回归分析。
2这是CNKI学术搜索给出的近年来Logitic回归分析方法的学术关注度,由此可见,Logitic回归分析方法在当前学术研究中应用比较广泛、流行,关注度比较高,是进行科研数据分析不可缺少的利器。
3下面我将分以下几个部分对回归模型做详细的介绍:1.Logitic回归的基本概念与原理;2.Logitic回归的应用范畴;3.Logitic回归的类型及实例分析;这是本次沙龙的重点部分。
4.应用Logitic回归的注意事项;5.小结与答疑。
4首先来了解一下Logitic回归模型的基本概念与原理:Logitic回归又称「Logitic回归分析」,是一种「概率型非线性回归」,主要用于危险因素分析以及预后评估等方面,是目前流行病学和医学中最常用的分析方法之一。
近年来已逐渐成为发表高质量SCI论文必不可少的重要统计学分析利器。
Logitic回归本质上是一种用于研究二分类(或多分类)结局(y,因变量)与有关影响因素(某,自变量)之间关系的多因素分析方法。
5用比较通俗的话来解释它的基本原理,也就是说:用一组观察数据拟合Logitic模型,然后揭示若干个自变量某与一个因变量y之间的关系,结果反应了y对某的依存关系。
统计学的东西比较抽象,下面通过两张图再来重复解说一下。
6(1)与某一事件或某一疾病的结局有关的,存在很多可疑的影响因素,在这些可疑因素中包括促使结局发生的有关的一些危险因素、也包括抑制结局发生的有关的一些保护因素。
那么这些因素到底哪些是危险因素,哪些是保护因素呢?它们的危险及保护的程度大概有多少呢?7通过Logitic回归分析我们就可以看到详细的结果。
Logistic回归分析简介Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。
1.应用范围:①适用于流行病学资料的危险因素分析②实验室中药物的剂量-反应关系③临床试验评价④疾病的预后因素分析2.Logistic回归的分类:①按因变量的资料类型分:二分类多分类其中二分较为常用②按研究方法分:条件Logistic回归非条件Logistic回归两者针对的资料类型不一样,后者针对成组研究,前者针对配对或配伍研究。
3.Logistic回归的应用条件是:①独立性。
各观测对象间是相互独立的;②LogitP与自变量是线性关系;③样本量。
经验值是病例对照各50例以上或为自变量的5-10倍(以10倍为宜),不过随着统计技术和软件的发展,样本量较小或不能进行似然估计的情况下可采用精确logistic回归分析,此时要求分析变量不能太多,且变量分类不能太多;④当队列资料进行logistic回归分析时,观察时间应该相同,否则需考虑观察时间的影响(建议用Poisson回归)。
4.拟和logistic回归方程的步骤:①对每一个变量进行量化,并进行单因素分析;②数据的离散化,对于连续性变量在分析过程中常常需要进行离散变成等级资料。
可采用的方法有依据经验进行离散,或是按照四分、五分位数法来确定等级,也可采用聚类方法将计量资料聚为二类或多类,变为离散变量。
③对性质相近的一些自变量进行部分多因素分析,并探讨各自变量(等级变量,数值变量)纳入模型时的适宜尺度,及对自变量进行必要的变量变换;④在单变量分析和相关自变量分析的基础上,对P≤α(常取0.2,0.15或0.3)的变量,以及专业上认为重要的变量进行多因素的逐步筛选;模型程序每拟合一个模型将给出多个指标值,供用户判断模型优劣和筛选变量。
可以采用双向筛选技术:a进入变量的筛选用score统计量或G 统计量或LRS(似然比统计量),用户确定P值临界值如:0.05、0.1或0.2,选择统计量显著且最大的变量进入模型;b剔除变量的选择用Z统计量(Wald统计量),用户确定其P值显著性水平,当变量不显者,从模型中予以剔除。